Jump to main content
Nonequispaced fast Fourier transform
Hyperbolic cross
Nonequispaced fast Fourier transform  

NSFFT - nonequispaced sparse FFT

See also the Matlab Toolbox.

In order to circumvent the `curse of dimensionality' in multivariate approximation, interpolations on sparse grids were introduced.

Let N=(N1,,Nd)2Nd, INd:={N12,,N121}××{Nd2,,Nd21}, and Td:=[12,12)d. The d-variate NFFT(N1,,Nd) computes approximations f~ of the trigonometric polynomial f(x)=kINdf^ke2πikx at arbitrary knots xTd, =0,,M1.

This library of C functions evaluates the trigonometric polynomial f(x)=kHJdf^ke2πikx at arbitrary knots xTd, =0,,M1 and for a hyperbolic cross HJd, which can be partitioned into blocks of indices HJd=r(INrd+ρr) with frequency shifts.

 

 
Figure: Hyperbolic cross points in 2D
 
 
\includegraphics[scale=0.6]{nsfft/sparse2D_0.eps} \includegraphics[scale=0.6]{nsfft/sparse2D_1.eps} \includegraphics[scale=0.6]{nsfft/sparse2D_2.eps} \includegraphics[scale=0.6]{nsfft/sparse2D_3.eps}

 

 

 

Figure: Hyperbolic cross points in 3D
 
 
\includegraphics[scale=0.6]{nsfft/sparse3D_0.eps} \includegraphics[scale=0.6]{nsfft/sparse3D_1.eps} \includegraphics[scale=0.6]{nsfft/sparse3D_2.eps} \includegraphics[scale=0.6]{nsfft/sparse3D_3.eps}

 


The algorithms are implemented by Markus Fenn and Stefan Kunis in ./examples/nsfft. Related paper are

  • Fenn, M., Kunis, S., Potts, D.
    Fast evaluation of trigonometric polynomials from hyperbolic crosses.
    Numer. Algorithms 41, 339-252. (full paper ps, pdf),   2006
     
  • D�hler, M., Kunis, S. and Potts, D.
    Nonequispaced hyperbolic cross fast Fourier transform.
    SIAM J. Numer. Anal. 47, 4415 - 4428   (full paper ps, pdf),   2009