Publikationen | Angewandte Funktionalanalysis | Fakultät für Mathematik | TU Chemnitz
Springe zum Hauptinhalt
Dr. Lutz Kämmerer
Publikationen
Dr. Lutz Kämmerer 

Preprints

  • Kämmerer, L.
    Constructing efficient spatial discretizations of spans of multivariate Chebyshev polynomials.
    ArXiv e-prints, 2024, arXiv:2406.03281 [math.NA] (arXiv).
  • Kämmerer, L.
    A fast probabilistic component-by-component construction of exactly integrating rank-1 lattices and applications.
    ArXiv e-prints, 2020, arXiv:2012.14263 [math.NA] (arXiv).
  • Kämmerer, L.
    Multiple Lattice Rules for Multivariate L Approximation in the Worst-Case Setting.
    ArXiv e-prints, 2019; arXiv:1909.02290 [math.NA] (arXiv).

Publications

  • Bartel, F., Kämmerer, L., Potts, D., Ullrich, T.
    On the reconstruction of functions from values at subsampled quadrature points.
    Math. Comp. 93, 785-809, 2024, doi:10.1090/mcom/3896 (arXiv).
  • Kämmerer, L., Potts, D., Taubert, F.
    Nonlinear approximation in bounded orthonormal product bases.
    Sampl. Theory Signal Process. Data Anal. 21, 19, 2023, doi:10.1007/s43670-023-00057-7 (arXiv).
  • Kämmerer, L., Potts, D., Taubert, F.
    The uniform sparse FFT with application to PDEs with random coefficients.
    Sampl. Theory Signal Process. Data Anal. 20, 19, 2022, doi:10.1007/s43670-022-00037-3 (arXiv).
  • Gross, C., Iwen, M.A., Kämmerer, L., Volkmer, T.
    Sparse Fourier Transforms on Rank-1 Lattices for the Rapid and Low-Memory Approximation of Functions of Many Variables.
    Sampl. Theory Signal Process. Data Anal. 20, 1, 2022, doi:10.1007/s43670-021-00018-y (arXiv).
  • Kämmerer, L., Krahmer, F., Volkmer, T.
    A sample efficient sparse FFT for arbitrary frequency candidate sets in high dimensions.
    Numer. Algor. 89, 1479-1520, 2022, doi:10.1007/s11075-021-01162-1 (Open Access).
  • Gross, C., Iwen, M. A., Kämmerer, L., Volkmer, T.
    A Deterministic Algorithm for Constructing Multiple Rank-1 Lattices of Near-Optimal Size.
    Adv. Comput. Math. 47, 86, 2021 (arXiv).
  • Kämmerer, L., Ullrich, T., Volkmer, T.
    Worst case recovery guarantees for least squares approximation using random samples.
    Constr. Approx. 54, 295-352, 2021 (Open Access).
  • Kämmerer, L., Potts, D., Volkmer, T.
    High-dimensional sparse FFT based on sampling along multiple rank-1 lattices.
    Appl. Comput. Harmon. Anal. 51, 225-257, 2021, doi:10.1016/j.acha.2020.11.002 (arXiv).
  • Bochmann, M., Kämmerer, L., Potts, D.
    A sparse FFT approach for ODE with random coefficients.
    Adv. Comput. Math. 46, 65, 2020, (Open Access).
  • Kämmerer, L., Volkmer, T.
    Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices.
    J. Approx. Theory 246, 1-27, 2019, doi:10.1016/j.jat.2019.05.001 (arXiv).
  • Kämmerer, L.
    Constructing spatial discretizations for sparse multivariate trigonometric polynomials that allow for a fast discrete Fourier transform.
    Appl. Comput. Harmon. Anal. 47, 702-729, 2019, doi:10.1016/j.acha.2017.11.008. (arXiv).
  • Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.
    Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness.
    Numer. Math., 2017, doi:10.1007/s00211-016-0861-7. (pdf).
  • Kämmerer, L.
    Multiple Rank-1 Lattices as Sampling Schemes for Multivariate Trigonometric Polynomials. 
    J. Fourier Anal. Appl., 2016, doi:10.1007/s00041-016-9520-8. (pdf).
  • Kämmerer, L., Potts, D., Volkmer, T.
    Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling.
    J. Complexity 31, 543-576, 2015. (full paper pdf, extended Preprint)
  • Kämmerer, L., Potts, D., Volkmer, T.
    Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form.
    J. Complexity 31, 424-456, 2015. (full paper pdf)
  • Kämmerer, L., Kunis, S., Melzer, I., Potts, D., Volkmer, T.
    Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions.
    in: Extraction of Quantifiable Information from Complex Systems, S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, H. Yserentant (Eds.), Springer International Publishing, 347-363, 2014. (full paper pdf)
  • Kämmerer, L.
    Reconstructing Multivariate Trigonometric Polynomials from Samples Along Rank-1 Lattices
    in: Approximation Theory XIV: San Antonio 2013 , G.E. Fasshauer and L.L. Schumaker (Eds.), Springer International Publishing, 255-271, 2014. (full paper pdf)
  • Kämmerer, L.
    Reconstructing Hyperbolic Cross Trigonometric Polynomials by Sampling along Rank-1 Lattices
    SIAM J. Numer. Anal. 51, 2773-2796, 2013. (full paper pdf)
  • Kämmerer, L.
    Reconstructing Multivariate Trigonometric Polynomials by Sampling along Generated Sets
    in: Monte Carlo and Quasi-Monte Carlo Methods 2012, J. Dick, F.Y. Kuo, G.W. Peters, and I.H. Sloan (Eds.), Springer-Verlag, Berlin, 439-454, 2013. (full paper pdf)
  • Kämmerer, L., Kunis, S., and Potts, D.
    Interpolation lattices for hyperbolic cross trigonometric polynomials
    J. Complexity 28, 76-92, 2012. (full paper pdf)
  • Kämmerer, L. and Kunis, S.
    On the stability of the hyperbolic cross discrete Fourier transform
    Numer. Math. 117, 581-600, 2011. (full paper pdf)

Others

  • Kämmerer, L.
    High Dimensional Fast Fourier Transform Based on Rank-1 Lattice Sampling
    Dissertation (PhD thesis), 2014. (pdf)