
Tight error bounds for rank-1 lattice sampling in
spaces of hybrid mixed smoothness

Glenn Byrenheid · Lutz Kämmerer ·
Tino Ullrich · Toni Volkmer

Abstract We consider the approximate recovery of multivariate periodic
functions from a discrete set of function values taken on a rank-1 lattice. More-
over, the main result is the fact that any (non-)linear reconstruction algorithm
taking function values on any integration lattice of size M has a dimension-
independent lower bound of 2−(α+1)/2M−α/2 when considering the optimal
worst-case error with respect to function spaces of (hybrid) mixed smoothness
α > 0 on the d-torus. We complement this lower bound with upper bounds
that coincide up to logarithmic terms. These upper bounds are obtained by
a detailed analysis of a rank-1 lattice sampling strategy, where the rank-1
lattices are constructed by a component–by–component (CBC) method. The
lattice (group) structure allows for an efficient approximation of the underlying
function from its sampled values using a single one-dimensional fast Fourier
transform. This is one reason why these algorithms keep attracting significant
interest. We compare our results to recent (almost) optimal methods based
upon samples on sparse grids.
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1 Introduction

This paper deals with the reconstruction of multivariate periodic functions
from a discrete set of M function values along rank-1 lattices. Such lattices
have been widely used for the efficient numerical integration of multivariate
periodic functions since the 1950ies, cf. [25,28,5] and the references therein.
They represent a well-distributed set of points in [0, 1)d. A rank-1 lattice with
generating vector z ∈ Zd and lattice size M ∈ N is given by

Λ(z,M) :=

{
j

M
z mod 1 : j = 0, . . . ,M − 1

}
⊂ Td . (1)

In this paper we will show that restricting the set of available discrete informa-
tion to samples from a rank-1 lattice seriously affects the rate of convergence
of a corresponding worst-case error with respect to classes of functions with
(hybrid) mixed smoothness α > 0. To be more precise, for any (possibly non-
linear) reconstruction procedure from sampled values along rank-1 lattices we
can find a function in the periodic Sobolev spaces of dominating mixed smooth-
ness such that the L2(Td) mean square error is at least 2−(α+1)/2M−α/2. This
result also holds for integration lattices in general, see e.g. [28, Section 2.7] for
definition. In contrast to that, it has been proved recently that the sampling
recovery from (energy) sparse grids leads to much better convergence rates,
namely M−α in the main term, see [3] and the references therein.

Subsequently, we study particular reconstructing algorithms, which are
based on the naive approach of approximating the potentially “largest” Fourier
coefficients (integrals) with the same rank-1 lattice rule. Despite the lacking
asymptotical optimality, recovery from so-called reconstructing rank-1 lattices,
cf. [14,17], has some striking advantages.

First, the matrix of the underlying linear system of equations has orthogo-
nal columns due to the group structure [1] and the reconstruction property of
the used rank-1 lattices. Consequently, the computation is stable, cf. [16,14].

Second, the CBC strategy [13, Tab. 3.1] provides a search method for a
reconstructing rank-1 lattice which allows for the computation of the approx-
imate Fourier coefficients belonging to frequencies lying on potentially un-
structured sets. Besides a basic structure, e.g. generalized hyperbolic crosses,
additional sparsity in the structure of the set of basis functions can be easily
incorporated and may considerably reduce the number of required samples,
e.g. see [17, Example 6.1].
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Last, the approximate reconstruction can be efficiently performed using
the sampled values of the underlying function and applying a single one-
dimensional fast Fourier transform, cf. Algorithm 8.1 and [24,1]. This idea
has already been investigated by many authors including two of the present
ones, see [31,21,22,23,17]. The arithmetic complexity is O(M logM), and thus
almost linear in the number of used sampling values.

The above mentioned advantages motivate a refined error analysis for the
upper bounds which results in the observation that for the rank-1 lattice sam-
pling the lower bound M−α/2 is sharp in the main order. It is important to
mention that the rate M−α/2 is present in any dimension d ≥ 2. Hence, the
proposed naive but fast reconstruction algorithm is already more accurate
than a comparable full tensor grid in case d > 2 yielding the order M−α/d.
Moreover, the comparison to the mentioned sparse grid techniques is not com-
pletely hopeless since neither the asymptotical behavior of the approximation
error tells anything about small values of M (so-called preasymptotics), which
is indeed relevant for practical issues, nor is the computational cost for com-
puting the sparse grid approximant completely reflected in the (optimal) main
rate M−α, cf. [20]. This is the reason why rank-1 lattice based algorithms keep
attracting more and more interest recently.

We consider the rate of convergence in the number of lattice points M
of the worst-case error with respect to periodic Sobolev spaces with bounded
mixed derivatives in L2. These classes are given by

Hαmix(Td) =
{
f ∈ L2(Td) : ‖f |Hαmix(Td)‖2 :=

∑
‖m‖∞≤α

‖Dmf‖22 <∞
}
, (2)

where α ∈ N denotes the mixed smoothness of the space. In order to quantita-
tively assess the quality of the proposed approximation, we introduce specifi-
cally tailored minimal worst-case errors glatt1M (F , Y ) with respect to the func-
tion class F and the error in the norm of the function class Y . Our main result
in case F = Hαmix(Td) and Y = L2(Td) reads as follows

M−α/2 . glatt1M (Hαmix(Td), L2(Td)) .M−α/2(logM)
d−2
2 α+ d−1

2 , M ∈ N .

To be more precise, we use the following definition for sampling numbers along
rank-1 lattice nodes

glatt1M (F , Y ) := inf
z∈Zd

SampΛ(z,M)(F , Y ) , M ∈ N,

where we put for G := {x1, ...,xM} ⊂ Td

SampG(F , Y ) := inf
A:CM→Y

sup
‖f |F‖≤1

∥∥∥f −A(f(xi)
)M
i=1

∥∥∥
Y
.

Here we allow as well non-linear reconstruction operators A : CM → Y . The
general (non-linear) sampling numbers are defined as

gM (F , Y ) := inf
G

SampG(F , Y ) , M ∈ N,
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for arbitrary sets of sampling nodes G := {x1, ...,xM} ⊂ Td and are sometimes
also referred to as “optimal sampling recovery”. These quantities are not the
central focus of this paper, they rather serve as benchmark quantity. If the
reconstruction operator A is supposed to be linear then we will use the notation
glinM (F , Y ). These quantities are well studied up to some prominent logarithmic
gaps (cf. 3rd column in Table 2, 3 and 4). For an overview we refer to [3] and
the references therein. Additionally, let us mention the work of Temlyakov [32],
Griebel et al. [2,9,10], Dinh [7,3] , Sickel/Ullrich [27,3].

The main goal of this paper is to study the quantities glatt1M (F , Y ) in several
different approximation settings. At first, we measure the error in Y = Lq(Td)
with 2 ≤ q ≤ ∞. In addition, we consider worst-case errors measured in
isotropic Sobolev spaces Y = Hγ(Td) (defined as Hγ(Td) := H0,γ(Td) in (3)
below) which includes the energy-norm H1(Td) relevant for Galerkin approx-
imation schemes. Multivariate functions are taken from fractional (α > 0)
Sobolev spaces F = Hαmix(Td) of mixed smoothness and even more gen-
eral hybrid type Sobolev spaces F = Hα,β(Td), introduced by Griebel and
Knapek [10]. In fact, Yserentant [33] proved that eigenfunctions of the positive
spectrum of the electronic Schrödinger operators have a mixed type regularity.
Even more, their regularity can be described as a combination of mixed and
isotropic (hybrid) smoothness

Hα,β(Td) =
{
f ∈ L2(Td) :

‖f |Hα,β(Td)‖2 :=
∑

‖m‖∞≤α

∑
‖n‖1≤β

‖Dm+nf‖22 <∞
}
. (3)

A related concept is given by anisotropic mixed Sobolev smoothness

Hαmix(Td) =
{
f ∈ L2(Td) : ‖f |Hαmix(Td)‖2 :=

∑
mi≤αi
i=1,...,d

‖Dmf‖22 <∞
}
, (4)

where the smoothness is characterized by vectors α ∈ Nd0. In fact, we have the
representation

Hα,β =

d⋂
i=1

Hα·1+β·eimix ,

where ei is the i-th unit vector. The norms in (2), (3), (4) can be rephrased as
weighted `2-sums of Fourier coefficients which is also the natural way to ex-
tend the spaces Hα,β(Td) to fractional parameters, see (6) below. We extend
methods from [16,17] to obtain sharp bounds (up to logarithmic factors) for
glatt1M (Hα,β(Td), Hγ(Td)), which show in particular that even non-linear re-
construction maps can not get below cα,β,γ,dM

−(α+β−γ)/2. The upper bounds
are obtained with a specific simple algorithm that approximates the “largest”
Fourier coefficients (5) of the function with one fixed lattice rule, where the
corresponding frequencies of the Fourier coefficients are determined by the
function class. To this end, a so-called reconstructing rank-1 lattice [13, Ch. 3]
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is used, which is constructed via the component–by–component (CBC) strat-
egy [29]. Similar strategies have already proved useful for numerical integra-
tion, see [29,4,5]. The basic idea behind is the construction of a generating
vector z component-wise by iteratively increasing the dimension of the index
set for which a reconstruction property should hold.

Let us finally comment on some relevant earlier results in this direction.
One of the first upper bounds for glatt1M (Hαmix(Td), L2(Td)) has been obtained
by Temlyakov in [31] for the Korobov lattice, which represents a rank-1 lat-
tice with a generating vector a = (1, a, a2, . . . , ad−1) for some integer a. He
obtained the estimate

SampΛ(a,M)(Hαmix(Td), L2(Td)) .M−α/2 (logM)(d−1)(α/2+1/2).

Further results that imply upper bounds for glatt1M (Hαmix(Td), L2(Td)) have
been proved in [21]. Rephrasing the error bounds in [21] depending on the
number of lattice points M , we observe a rate of M−(α−λ)/2 for any λ > 0.
In [23] the rank-1 lattice sampling error measured in L∞(Td) is considered and
the main rate M−(α−1/2−λ)/2 is obtained for every λ > 0. In [18] the technique
used by Temlyakov [31] is expanded to model spaces Hα,β(Td) with β < 0 and
α+ β > 1/2, where the authors obtain the upper bound

glatt1M (Hα,β(Td), L2(Td)) .M−(α+β)/2

without any further logarithmic dependence.
Contribution and main results. The first main contribution of the

present paper is the lower bound

cα,β,γ M
−(α+β−γ)/2 ≤ glatt1M (Hα,β(Td), Y ), cα,β,γ := 2−(α+β−γ+1)/2,

for Y ∈ {L2(Td) = H0(Td),Hγ(Td),Hγmix(Td)} and min{α, α + β} > γ ≥ 0,
cf. Section 3. In the cases Y ∈ {L2(Td),Hγ(Td),Hγmix(Td)} and α + β >
max{γ, 1/2} with β ≤ 0 and γ ≥ 0, the upper bounds on the rank-1 lattice
sampling rates match the general lower bounds up to logarithmic factors, cf.
Sections 4 and 5.

Y glatt1M (Hα,β(Td), Y ) gM (Hα,β(Td), Y )

L2(Td),Hγ(Td),Hγmix(Td) &M−
α+β−γ

2 &M−(α+β−γ)

(Proposition 1) [6] linear,
[7] non-linear, non-periodic

Table 1 Lower bounds of sampling numbers for different sampling methods.

The second column in Table 1, 2 and 3 is headlined with glatt1M (Hα,β(Td), Y )
and presents lower and upper bounds on the sampling rates in various set-
tings for sampling along (reconstructing) rank-1 lattices. Table 1 shows the
lower bounds from Section 3, which also hold for arbitrary integration lat-
tices as sampling schemes, see Remark 1. Table 2 deals with upper bounds in
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the model spaces Hαmix(Td), whereas in Table 3 model spaces Hα,β(Td) with
negative isotropic smoothness parameter β are considered. The corresponding
L2(Td) error estimate in Table 2 improves on the result obtained by Temlyakov
in [31] by a logarithmic factor (logM)α/2. In contrast to the rank-1 lattices
constructed by the CBC strategy, the considerations by Temlyakov are based
on rank-1 lattices of Korobov type. Smoothness parameters are chosen from
β < 0, α + β > max{γ, 1/2}, γ > 0, and 2 < q < ∞. Best known bounds are
based on energy sparse grid sampling. References marked with ∗ mean that the
result is not stated there explicitly but follows with the same method therein.
For our method the crucial property of the used rank-1 lattice sampling scheme
is the reconstruction property (9). In order to construct such rank-1 lattices,
one may use the CBC strategy [13, Tab. 3.1]. Additionally, in case d = 2 the
Fibonacci lattice fulfills the reconstruction property (9). In both of these cases,
we obtain the improved estimates as shown in Table 4. Smoothness parame-
ters are chosen from α > 1/2, α > γ > 0. The upper bounds for glatt1M are
realized either by the Fibonacci or CBC-generated lattice. From the point of
error estimates, the case d = 2 represents an interesting special case. We have
sharp bounds and no logarithmic dependencies here, except in the case where
we measure the error in a space with mixed regularity. Hence, lattice sampling
turns out to be as good as sampling on the full tensor grid in d = 2. Last but
not least, we consider the recovery of functions fromHαmix(Td) with anisotropic
mixed smoothness. We treat smoothness vectors α ∈ Rd with first µ smallest
smoothness directions, i.e.

1

2
< α1 = . . . = αµ < αµ+1 ≤ . . . ≤ αd.

Here we show for the L∞ approximation error the bound

glatt1M (Hαmix(Td), L∞(Td)) .M−(α1− 1
2 )/2(logM)(µ−1)(α1/2+1/4).

That means the exponent of the logarithm depends only on µ < d instead of d.
Similar effects are also known for general linear approximation and sparse grid
sampling, cf. [7,8].

Notation. As usual, N denotes the natural numbers, N0 the non-negative
integers, Z the integers and R the real numbers. With T we denote the torus
represented by the interval [0, 1). The letter d is always reserved for the
dimension in Z, R, N, and T. For 0 < p ≤ ∞ and x ∈ Rd we denote
‖x‖p = (

∑d
i=1 |xi|p)1/p with the usual modification for p = ∞. The norm

of an element x ∈ X is denoted by ‖x|X‖. If X and Y are two Banach spaces,
the norm of an operator A : X → Y will be denoted by ‖A|X → Y ‖. The sym-
bol X ↪→ Y indicates that there is a continuous embedding from X into Y .
The relation an . bn means that there is a constant c > 0 independent of
the context relevant parameters such that an ≤ c bn for all n belonging to a
certain subset of N, often N itself. We write an � bn if an . bn and bn . an
holds.



Tight error bounds for rank-1 lattice sampling 7

Y glatt1M (Hαmix(Td), Y ) glinM (Hαmix(Td), Y )

L2(Td) .M−
α
2 (logM)

d−2
2
α+ d−1

2 .M−α(logM)(d−1)(α+ 1
2
)

(Theorem 2) [3, Theorem 6.10], sparse grid

Lq(Td) .M−
α−( 1

2
− 1
q
)

2 �M−(α−( 1
2
− 1
q
))

(logM)
d−2
2

(α−( 1
2
− 1
q
))+ d−1

2 (logM)
(d−1)(α−( 1

2
− 1
q
))

(Proposition 3) [3, Theorem 6.10], sparse grid

L∞(Td) .M−
α− 1

2
2 (logM)

d−2
2

(α− 1
2
)+ d−1

2 �M−α+
1
2 (logM)(d−1)α

(Proposition 4) [3, Theorem 6.10], sparse grid

Hγ(Td) .M−
α−γ

2 (logM)
d−2
2

(α−γ)+ d−1
2 �M−(α−γ)

(Proposition 2) [3, Theorem 6.7], energy sparse grid

Hγmix(Td) .M−
α−γ

2 (logM)
d−2
2

(α−γ)+ d−1
2 �M−(α−γ)(logM)(d−1)(α−γ)

(Theorem 2) [3, Theorem 6.10], sparse grid

Table 2 Upper bounds of sampling numbers in the setting Hαmix(Td) → Y for different

sampling methods. Smoothness parameters are chosen from α > max{γ, 1
2
}, γ > 0, and

2 < q <∞. The upper bounds on glatt1M are realized by the CBC rank-1 lattice.

Y glatt1M (Hα,β(Td), Y ) glinM (Hα,β(Td), Y )

L2(Td) .M−
α+β

2 �M−(α+β)

[18, Theorem 4.7] [3, Theorem 6.10]

Lq(Td) .M−
α−( 1

2
− 1
q
)+β

2 (logM)
d−2
2

(α−( 1
2
− 1
q
)+β)

.M
−(α−( 1

2
− 1
q
)+β)

(Proposition 3) [3, *]

L∞(Td) .M−
α+β− 1

2
2 .M−(α+β)+ 1

2

(Proposition 4) [3, *]

Hγ(Td) .M−
α+β−γ

2 (logM)
d−2
2

(α+β−γ) �M−(α+β−γ)

(Proposition 2) [3, Theorem 6.7]

Hγmix(Td) .M−
α+β−γ

2 (logM)
d−2
2

(α+β−γ) �M−(α+β−γ)

(Theorem 2) [3, *]

Table 3 Upper bounds for sampling numbers for different sampling methods. Smoothness
parameters are chosen from β < 0, α+ β > max{γ, 1

2
}, γ > 0, and 2 < q <∞. Best known

bounds based on energy sparse grid sampling. References marked with ∗ means that the
result is not stated there explicitly but follows with the same method therein.

2 Definitions and prerequisites

The well known fact that decay properties of Fourier coefficients

f̂k :=

∫
Td
f(x) e−2πik·xdx, k ∈ Zd, (5)
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Y glatt1M (Hαmix(T2), Y ) glinM (Hαmix(T2), Y )

L2(T2) �M−
α
2 .M−α(logM)α+

1
2

(Theorem 4) [3, Theorem 6.10], sparse grid

L∞(T2) .M−
α− 1

2
2 �M−α+

1
2 (logM)α

(Proposition 5) [3, Theorem 6.10], sparse grid

Hγ(T2) �M−
α−γ

2 �M−(α−γ)

(Theorem 4) [3, Theorem 6.7], energy sparse grid

Hγmix(T2) .M−
α−γ

2 (logM)
1
2 �M−(α−γ)(logM)α−γ

(Remark 4) [3, Theorem 6.10], sparse grid

Table 4 Upper bounds for sampling numbers for different sampling methods. Smoothness

parameters are chosen from α > 1
2

, α > γ > 0. The upper bounds for glatt1M are realized
either by the Fibonacci or CBC-generated lattice.

of a periodic function f : Td → C can be rephrased in smoothness properties
of f motivates to define the weighted Hilbert spaces

Hα,β(Td) :=

{
f ∈ L2(Td) : ‖f |Hα,β(Td)‖2 :=

∑
k∈Zd

|f̂k|2(1 + ‖k‖22)β
d∏
s=1

(1 + |ks|2)α <∞

}
(6)

that mainly depend on the smoothness parameters α, β ∈ R, min{α, α+ β} >
0. It is easy to show that for integer α, β ∈ N0 the spaces Hα,β(Td) defined
in (6) coincide with the spaces defined in (3). Furthermore in case α = 0 and
β ≥ 0, these spaces coincide with isotropic Sobolev spaces and we use the
definition Hβ(Td) := H0,β(Td). For α ≥ 0 and β = 0, the spaces Hα,0(Td)
coincide with the Sobolev spaces of dominating mixed smoothness Hαmix(Td)
and we use the definition Hαmix(Td) := Hα,0(Td). Since we want to deal with
sampling, we are interested in continuous functions. In this paper, we identify
each function f ∈ Hα,β(Td) with its continuous representative, which always
exists for min{α, α+ β} > 1

2 due to the following lemma.

Lemma 1 Let α, β ∈ R with min{α, α+ β} > 1
2 . Then

Hα,β(Td) ↪→ C(Td).

Proof We refer to [3, Theorem 2.9]. ut

The Fourier partial sum of a function f ∈ L1(Td) with respect to the
frequency index set I ⊂ Zd, |I| <∞, is defined by

SIf :=
∑
k∈I

f̂ke2πik·◦.
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We approximate the Fourier coefficients f̂k, k ∈ I, based on sampling
values of the function f taken at the nodes of a rank-1 lattice Λ(z,M) as
defined in (1). In particular, we apply the quasi-Monte Carlo rule defined by
the rank-1 lattice Λ(z,M) on the integrand in (5), i.e.,

f̂
Λ(z,M)
k :=

1

M

M−1∑
j=0

f
( j

M
z
)

e−2πi
j
M k·z.

Accordingly, we define the rank-1 lattice sampling operator S
Λ(z,M)
I by

S
Λ(z,M)
I f :=

∑
k∈I

f̂
Λ(z,M)
k e2πik·◦. (7)

We call a rank-1 lattice Λ(z,M) reconstructing rank-1 lattice for the fre-

quency index set I ⊂ Zd, |I| < ∞, if the sampling operator S
Λ(z,M)
I re-

produces all trigonometric polynomials with frequencies supported on I, i.e.,

S
Λ(z,M)
I p = p holds for all trigonometric polynomials

p ∈ ΠI := span{e2πik·◦ : k ∈ I}. (8)

The condition

k1 · z 6≡ k2 · z (mod M) for all k1,k2 ∈ I, k1 6= k2, (9)

has to be fulfilled in order to guarantee that Λ(z,M) is a reconstructing rank-1
lattice for the frequency index set I. One can show that the condition in (9) is
not only sufficient but also necessary. In the following sections, we frequently
use the so-called difference set D(I) of a frequency index set I ⊂ Zd, |I| <∞,

D(I) :=
{
k ∈ Zd : k = h1 − h2, h1,h2 ∈ I

}
.

This definition allows for the reformulation of (9) in terms of the difference
set D(I), i.e.,

k · z 6≡ 0 (mod M) for all k ∈ D(I) \ {0}. (10)

Furthermore, we define the dual lattice

Λ(z,M)⊥ := {h ∈ Zd : h · z ≡ 0 (mod M)}

of the rank-1 lattice Λ(z,M). We use this definition in order to characterize the
reconstruction property of a rank-1 lattice Λ(z,M) for a frequency index set I.
A rank-1 lattice Λ(z,M) is a reconstructing rank-1 lattice for the frequency
index set I, 1 ≤ |I| <∞, iff

Λ(z,M)⊥ ∩ D(I) = {0} (11)

holds. This means the conditions (9), (10) and (11) are equivalent, see also [14].
In order to approximate functions f ∈ Hα,β(Td) using trigonometric polyno-
mials, we have to carefully choose the spaces ΠI (cf. (8)) of these trigonometric
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Fig. 1 H2,0
4 and J2,0.5

20 .

polynomials. Clearly, the spaces ΠI are described by the corresponding fre-
quency index set I. For technical reasons, we use so-called generalized dyadic
hyperbolic crosses,

I = Hd,T
R :=

⋃
j∈Jd,TR

Qj , (12)

cf. Figure 1, where R ∈ R denotes the refinement, T ∈ [0, 1) is an additional
parameter,

Jd,TR := {j ∈ Nd0 : ‖j‖1 − T‖j‖∞ ≤ (1− T )R+ d− 1},

and Qj :=×d
s=1Qjs are sets of tensorized dyadic intervals

Qj :=

{
{−1, 0, 1} : j = 0,

([−2j ,−2j−1 − 1] ∪ [2j−1 + 1, 2j ]) ∩ Z : j > 0,
(13)

cf. [19].

Lemma 2 Let the dimension d ∈ N, the parameter T ∈ [0, 1), and the refine-

ment R ≥ 1, be given. Then, we estimate the cardinality of the index set Hd,T
R

by

|Hd,T
R | �

{
2RRd−1 : T = 0,

2R : 0 < T < 1.

Proof The assertion for the upper bound follows directly from [10, Lemma 4.2].
For a proof including the lower bound we refer to [3, Lemma 6.6]. ut
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Having fixed the index set I = Hd,T
R an important question is the existence

of a reconstructing lattice for it. If there is such a lattice, out of how many
points does it consist? Can we explicitly construct it? The following lemma
answers these questions.

Lemma 3 Let the parameters T ∈ [0, 1), R ≥ 1, and the dimension d ∈ N,
d ≥ 2, be given. Then, there exists a reconstructing rank-1 lattice Λ(z,M)

for Hd,T
R which fulfills

22R−2 ≤M .

{
22R : T > 0,

22RRd−2 : T = 0.

Moreover, each reconstructing rank-1 lattice Λ(z,M) for Hd,T
R fulfills the lower

bound.

Proof For T = 0, a detailed proof of the bounds can be found in [12]. In the
case T ∈ (0, 1), one proves the lower bound using the same way as used for
T = 0. The corresponding upper bound follows directly from [14, Cor. 1] and

Hd,T
R ⊂ [−|Hd,T

R |, |H
d,T
R |]d and |Hd,T

R | . 2R. ut

A lattice fulfilling these properties can be explicitly constructed using a
component-by-component (CBC) optimization strategy for the generating vec-
tor z. For more details on that algorithm we refer to [13, Ch. 3].

3 Lower bounds and non-optimality

In this section we study lower bounds for the rank-1 lattice sampling numbers
glatt1M (Hα,β(Td),Hγ(Td)) and glatt1M (Hα,β(Td),Hγmix(Td)). At first we show that
each rank-1 lattice Λ(z,M), z ∈ Zd, d ≥ 2, and M ∈ N, has at least one
aliasing pair of frequency indices k1 and k2,

k1 · z ≡ k2 · z (mod M),

within the two-dimensional axis cross

Xd√
M

:= {h ∈ Z2 × {0} × . . .× {0}︸ ︷︷ ︸
d−2 times

: ‖h‖1 = ‖h‖∞ ≤
√
M}.

For illustration, we depict X3
8 in Figure 2a. We can even show a more general

result.

Lemma 4 Let X := {xj ∈ Td : j = 0, . . . ,M − 1}, d ≥ 2, be a sampling set
of cardinality |X | = M . In addition, we assume that

M−1∑
j=0

e2πik·xj ∈ {0,M}

for all k ∈ P d√
M

:= {−
⌊√

M
⌋
, . . . ,

⌊√
M
⌋
}2 × {0} × . . .× {0}︸ ︷︷ ︸

d−2 times

.
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−8

0

8 −8

0

8−4

0

4

(a) X3
8

−8

0

8 −8

0

8−4

0

4

(b) P 2
8 \ {0}

Fig. 2 Axis cross and subset of the difference set of the corresponding axis cross.

Then there exist at least two distinct indices k1,k2 ∈ Xd√
M

within the axis

cross Xd√
M

such that e2πik
1·xj = e2πik

2·xj for all j = 0, . . . ,M − 1.

Proof First, we assume

M−1∑
j=0

e2πih·xj = 0 for all h ∈ P d√
M
\ {0}, (14)

cf. Figure 2b for an illustration of the index set. Consequently, for all h1,h2 ∈
P̃ d√

M
:= {0, . . . ,

⌊√
M
⌋
}2 × {0} × . . .× {0}︸ ︷︷ ︸

d−2 times

we achieve h2 − h1 ∈ P d√
M

and

M−1∑
j=0

e2πi(h
2−h1)·xj =

{
M : h2 − h1 = 0

0 otherwise.

In matrix vector notation this means

A∗A = MI,

where the matrix A =
(

e2πih·xj
)
j=0,...,M−1,h∈P̃d√

M

∈ CM×(b√Mc+1)
2

must

have full column rank. However, this is not possible due to the inequality

M <
(⌊√

M
⌋

+ 1
)2

. Thus, the assumption given in (14) does not hold in any
case.
Accordingly, we consider the case where

∑M−1
j=0 e2πih

′·xj = M for at least

one h′ ∈ P d√
M
\ {0}. Consequently, we observe e2πih

′·xj = 1 for all j =

0, . . . ,M − 1. Then, for the frequency indices k1 = (h′1, 0 . . . , 0)> ∈ Xd√
M

and k2 = (0,−h′2, 0 . . . , 0)> ∈ Xd√
M

, the equalities e2πik
1·xj = e2πik

2·xj , j =
0, . . . ,M − 1, hold. ut
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As a consequence of the last considerations, we know that for each d-
dimensional rank-1 lattice of size M , d ≥ 2, there is at least one aliasing pair
k1,k2 ∈ Xd

b√Mc = Xd√
M

of frequencies within the two-dimensional axis cross

of size
√
M fulfilling k1 · z ≡ k2 · z (mod M). As a consequence, we estimate

the error of rank-1 lattice sampling operators from below as follows.

Theorem 1 Let the smoothness parameters α, β, γ ∈ R, α > γ − β ≥ 0,
α+ β > 1

2 . Then, we obtain

glatt1M (Hα,β(Td),Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2 (15)

and

glatt1M (Hα,β(Td),Hγmix(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2. (16)

for all M ∈ N.

Proof For a given rank-1 lattice Λ(z,M), we have

M−1∑
j=0

e2πih·xj =

M−1∑
j=0

(
e2πih·z/M

)j
=

e2πih·z − 1

e2πih·z/M − 1
=

{
M : h · z ≡ 0 mod M,

0 otherwise.

Now, we construct the fooling function g̃(x) := e2πik
1·x − e2πik

2·x, where
k1,k2 ∈ Xd√

M
are an aliasing pair of frequency indices with respect to Λ(z,M),

i.e., k1 · z ≡ k2 · z (mod M). Such an aliasing pair exists due to Lemma 4.
Using the notation

ωd,α,β(k)2 :=
[ d∏
s=1

(1 + |ks|2)
]α

(1 + ‖k‖22)β ,

the normalization of g̃ in Hα,β(T) is given by

g(x) :=
e2πik

1·x − e2πik
2·x√

ωd,α,β(k1)2 + ωd,α,β(k2)2
.

According to Lemma 4, the fooling function g is zero at all sampling nodes
xj ∈ Λ(z,M) and we obtain

‖g|Hγ(Td)‖ =

√
ωd,0,γ(k1)2 + ωd,0,γ(k2)2√
ωd,α,β(k1)2 + ωd,α,β(k2)2

.

W.l.o.g. we assume ‖k1‖∞ ≥ ‖k2‖∞, i.e., ωd,α,β(k1) ≥ ωd,α,β(k2). We achieve

‖g|Hγ(Td)‖ ≥

√
ωd,0,γ(k1)2√

2ωd,α,β(k1)2
=

1√
2ωd,α,β−γ(k1)

. (17)
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For k ∈ Xd√
M

with |k1| = ‖k‖∞ and M ∈ N we have

ωd,α,β−γ(k) = (1 + |k1|2)(α+β−γ)/2

≤ (1 +M)(α+β−γ)/2 ≤ (2M)(α+β−γ)/2.

Inserting this into (17) yields

‖g|Hγ(Td)‖ ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2.

Now (15) follows by a standard argument. Let A : CM 7→ Hγ(Td) be an arbi-

trary algorithm applied to

(
f(0), f

(
1
M z
)
, . . . , f

(
M−1
M z

))
= 0. We estimate

as follows

2−(α+β−γ+1)/2M−(α+β−γ)/2 ≤ ‖g|Hγ(T)‖

≤ 1

2
(‖g −A(0)|Hγ(T)‖+ ‖ − g −A(0)|Hγ(T))‖

≤ max{‖g −A(0)|Hγ(T)‖, ‖ − g −A(0)|Hγ(T)‖}.

Accordingly, each algorithm A badly approximates at least one of the func-
tions g or −g. Thus, we observe an infimum over the worst case errors of all
algorithms A

SampΛ(z,M)(Hα,β(Td), Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2.

Finally the infimum over all rank-1 lattices with M points yields

glatt1
M (Hα,β(Td), Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2.

The assertion in (16) can be proven analogously. ut

Following attentively the last proof we recognize that the condition
α+ β > 1

2 plays no fundamental role in the estimations there. It is required
for a well interpretation of the function evaluations in the definition of
glatt1M (Hα,β(Td), Y ), which is given for continuous functions (cf. Lemma 1).
For min{α, α + β} > 0, a generalization of the last theorem can be achieved
using the space

Hα,β(Td) ∩∗ C(Td) :=
{
f ∈ C(Td) : ‖f |Hα,β(Td)‖ <∞

}
,

equipped with the norm of Hα,β(Td), see (6) for comparison. Then the proof
of Theorem 1 yields the following proposition.

Proposition 1 Let the smoothness parameters α, β, γ ∈ R, α > γ − β ≥ 0,
α+ β > 0. Then, we obtain

glatt1M (Hα,β(Td) ∩∗ C(Td),Hγ(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2

and

glatt1M (Hα,β(Td) ∩∗ C(Td),Hγmix(Td)) ≥ 2−(α+β−γ+1)/2M−(α+β−γ)/2.

for all M ∈ N. ut
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Remark 1 We stress on the fact that each d-dimensional integration lattice
of size M , d ≥ 2, fulfills the requirements of Lemma 4, cf. [28, Lemma 2.7].
Consequently, there exists at least one aliasing pair k1,k2 ∈ Xd√

M
within the

two-dimensional axis cross of size
√
M . Therefore, we can construct the fooling

function g as in the proof of Theorem 1, which is now zero at each node of the
integration lattice. This means we obtain the lower bounds of Theorem 1 also
for the errors of integration lattice sampling using the identical proof strategy.

ut

4 Improved upper bounds for d > 2

In this section we study upper bounds for glatt1M . To do this, we consider ap-

proximation error estimates for S
Λ(z,M)

Hd,TR
f . To obtain these estimates, the car-

dinality of the dual lattice Λ(z,M)⊥ intersected with rectangular boxes Ω
plays an important role.

Lemma 5 Let Λ(z,M) be a rank-1 lattice generated by z ∈ Zd with M points.
Assume that the dual lattice Λ(z,M)⊥ is located outside the hyperbolic cross

Hd,0
R , R ≥ 1, i.e.,

Λ(z,M)⊥ ∩Hd,0
R = {0}. (18)

Then we have

|Λ(z,M)⊥ ∩Ω| ≤

{
2d+1 volΩ

2R
: volΩ > 2R−1,

1 : volΩ ≤ 2R−1,
(19)

where Ω is an arbitrary rectangle with side-lenghts ≥ 1.

Proof For two arbitrary distinct dual lattice points k1,k2 ∈ Λ(z,M)⊥,
k1 6= k2, we obtain k := k1 − k2 ∈ Λ(z,M)⊥ \ {0}. As a consequence of (12)
and (18), the vector k belongs to a cuboid Qj with ‖j‖1 > R + d − 1. We
achieve

d∏
s=1

max{|ks|, 1} =

d∏
s=1
js>0

|ks| ≥
d∏
s=1
js>0

(2js−1 + 1) >

d∏
s=1
js>0

2js−1 ≥ 2‖j‖1−d > 2R−1.

Step 1. We prove the second case in (19) by contradiction. For any rectangle
Ω := [a1, a1 + b1] × . . . × [ad, ad + bd] with side lengths bs ≥ 1, s = 1, . . . , d,

and volΩ =
∏d
s=1 bs ≤ 2R−1 we assume |Λ(z,M)⊥ ∩ Ω| ≥ 2 and we choose

k1,k2 ∈ Ω∩Λ(z,M)⊥, k1 6= k2. Consequently, there is a d-dimensional cuboid
K ⊂ Ω of side lengths ≥ 1 which contains the minimal cuboid with corners
k1 and k2. The volume of K is bounded from below by

∏d
s=1 max{|ks|, 1} >

2R−1, and hence larger than the volume of Ω, which is in contradiction to the
relation K ⊂ Ω. Accordingly, there can not be more than one element within
Λ(z,M)⊥ ∩Ω.
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`1

`2B

b1

b2
Ω

Fig. 3 The counting argument in Lemma 5.

Step 2. We prove the first case and assume that Ω has volume larger than 2R−1.
The sidelengths of Ω are denoted by bs, s = 1, . . . , d. We construct a disjoint
covering/packing of Ω consisting of half side opened cuboids B with sidelength
`1, . . . , `d such that 1 ≤ `s ≤ max(1, bs), s = 1, . . . , d, and volB = 2R−1, cf.
Figure 3 for illustration. We need at most 2d volΩ

2R−1 of the cuboids B in order to
cover the set Ω. Due to Step 1, each B contains at most one element from the
dual lattice Λ(z,M)⊥. Accordingly, the number of elements in Λ(z,M)⊥ ∩Ω
is bounded from above by 2d+1 volΩ

2R
. ut

Lemma 6 Let the smoothness parameters α, β ∈ R, β ≤ 0, α + β > 1/2, the
refinement R ≥ 1, and the parameter T := −β/α be given. In addition, we
assume that the rank-1 lattice Λ(z,M) is a reconstructing rank-1 lattice for

the hyperbolic cross Hd,0
R . We define

θ2α,β(k, z,M) :=
∑

h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α. (20)

Then the estimate

θ2α,β(k, z,M) .

{
2−2(α+β)R : T > 0,

2−2αRRd−1 : T = β = 0

holds for all k ∈ Hd,0
R .

Proof For k ∈ Zd and j ∈ Nd0 we define the indicator function

ϕj(k) :=

{
0 : k 6∈ Qj ,
1 : k ∈ Qj ,
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where Qj is defined in (13). We fix k ∈ Hd,0
R and decompose the sum in (20),

which yields

θ2α,β(k, z,M) =
∑

h∈Λ(z,M)⊥

h 6=0

∑
j∈Nd0

ϕj(k + h)

· (1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α.

Since Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R , we know from (11)

that

D(Hd,0
R ) ∩

(
Λ(z,M)⊥ \ {0}

)
= ∅ .

This yields

k1 + h1 6= k2 + h2

for all k1,k2 ∈ Hd,0
R , k1 6= k2, and h1,h2 ∈ Λ(z,M)⊥ since otherwise 0 6= k1−

k2 = h2 − h1 ∈ Λ(z,M)⊥ which is in contradiction to (11). In particular, we

have that k+h /∈ Hd,0
R for all k ∈ Hd,0

R and h ∈ Λ(z,M)⊥ \ {0}. Accordingly,
we modify the summation index set for j and we estimate the summands

θ2α,β(k, z,M) .
∑

j∈Nd0\J
d,0
R

2−2(α‖j‖1+β‖j‖∞)
∑

h∈Λ(z,M)⊥

h 6=0

ϕj(k + h).

We apply Lemma 5 on Qj and get

θ2α,β(k, z,M) . 2−R
∑

j∈Nd0\J
d,0
R

2−((2α−1)‖j‖1+β‖j‖∞).

Taking Lemma 7 into account, the assertion follows. ut

Lemma 7 Let the smoothness parameters α, β ∈ R, β ≤ 0, α+ β > 1/2, and
the refinement R ≥ 1 be given. Then, we estimate

∑
j∈Nd0\J

d,T
R

2−((2α−1)‖j‖1+2β‖j‖∞) .

{
2−(2α−1+2β)R : T ≤ −β

α and β < 0,

2−(2α−1)RRd−1 : T = β = 0.

Proof In the proof of [19, Theorem 4], one finds the following estimate

∑
j∈Nd0\J

d,T
R

2−t‖j‖1+s‖j‖∞ .

{
2(s−t)R : T < s

t ,

Rd−12(s−t+(Tt−s) d−1
d−T )R : T ≥ s

t

for s < t and t ≥ 0. Accordingly, we apply this result setting s := −2β and
t := 2α− 1. We require β ≤ 0 and obtain the necessity α+ β > 1/2 from the
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conditions s < t and t ≥ 0. Moreover, we set the parameter T := −β/α. This
yields

T =
s

t+ 1

{
= 0 : 0 = s = β,

< s
t : 0 < s = −2β.

This implies the assertion. ut

Theorem 2 Let the smoothness parameters α > 1
2 , β ≤ 0, γ ≥ 0 with α+β >

max{γ, 12}, the dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be given. In

addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R .

We estimate the error of the sampling operator Id− SΛ(z,M)

Hd,0R

by

M−(α+β−γ)/2 . ‖Id− SΛ(z,M)

Hd,0R

|Hα,β(Td)→ Hγmix(Td)‖

. 2−(α+β−γ)R
{
R(d−1)/2 : β = 0,

1 : β < 0.

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1], we continue

.M−(α+β−γ)/2(logM)
d−2
2 (α+β−γ)

{
(logM)(d−1)/2 : β = 0,

1 : β < 0.

Proof The lower bound was discussed in Theorem 1. We apply the triangle
inequality and split up the error of the sampling operator into the error of the
best approximation and the aliasing error. The error of the projection operator
SHd,0R

can be easily estimated using

‖f − SHd,0R
f |Hγmix(Td)‖ =

( ∑
k/∈Hd,0R

d∏
s=1

(1 + |ks|2)γ |f̂k|2
) 1

2

≤ sup
k/∈Hd,0R

( 1

(1 + ‖k‖22)β
∏d
s=1(1 + |ks|2)α−γ

) 1
2

(21)

( ∑
k/∈Hd,0R

(1 + ‖k‖22)β
[ d∏
s=1

(1 + |ks|2)α
]
|f̂k|2

) 1
2

.

It is easy to check that (21) becomes maximal at the peaks of the hyperbolic
cross. Therefore, we obtain

‖f − SHd,0R
f |Hγmix(Td)‖ . 2−(α+β−γ)R‖f |Hα,β(Td)‖.

The aliasing error fulfills

‖SHd,0R
f − SΛ(z,M)

Hd,0R

f |Hγmix(Td)‖2 =
∑

k∈Hd,0R

[ d∏
s=1

(1 + |ks|2)γ
]∣∣∣ ∑
h∈Λ(z,M)⊥

h 6=0

f̂k+h

∣∣∣2.
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Applying Hölder’s inequality twice yields

‖SHd,0R
f − SΛ(z,M)

Hd,0R

f |Hγmix(Td)‖2

≤
∑

k∈Hd,0R

[ d∏
s=1

(1 + |ks|2)γ
]

·
( ∑
h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)β
[ d∏
s=1

(1 + |ks + hs|2)α
]
|f̂k+h|2

)

·
( ∑
h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α

︸ ︷︷ ︸
=:θ2α,β(k,z,M), cf. (20)

)

≤ sup
k∈Hd,0R

[ d∏
s=1

(1 + |ks|2)γ
]
θ2α,β(k, z,M)

·
( ∑
k∈Hd,0R

∑
h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)β
[ d∏
s=1

(1 + |ks + hs|2)α
]
|f̂k+h|2

)

≤ sup
h∈Hd,0R

[ d∏
s=1

(1 + |hs|2)γ
]

sup
k∈Hd,0R

θ2α,β(k, z,M)‖f |Hα,β(Td)‖2 (22)

since Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R and, consequently,

the sets {k + h ∈ Zd : h ∈ Λ(z,M)⊥}, k ∈ Hd,0
R , do not intersect. We apply

Lemma 6 and take the upper bound

sup
k∈Hd,0R

d∏
s=1

(1 + |ks|2)γ . sup
j∈Jd,0R

22γ‖j‖1 . 22γR

into account. We achieve

‖SHd,0R
f − SΛ(z,M)

Hd,0R

f |Hγmix(Td)‖ . ‖f |Hα,β(Td)‖ 2−(α+β−γ)R
{
R
d−1
2 : β = 0,

1 : β < 0,

and, in conjunction with Lemma 3, the second assertion of the theorem. ut

Remark 2 The basic improvement in the error analysis compared to [18] is
provided by applying Lemma 5 in (22). Here, the information about the cardi-
nality of the dual lattice intersected with rectangular boxes yields sharp main
rates coinciding with the lower bounds given in Theorem 1. From that view-
point this technique improves also the asymptotical main rates obtained in
[21] for the L2(Td) approximation error. In case β < 0 and γ = 0 the result



20 Glenn Byrenheid et al.

above behaves not optimal compared to the result obtained in [18] where a
Korobov type lattice is used. The authors there obtain no logarithmic depen-
dence in M . The main reason for that issue is the probably technical limitation
in Lemma 5 discussed in Remark 7 that does not allow us to use energy-type
hyperbolic crosses as index sets here. ut

Due to the embedding Hγmix(Td) ↪→ Hγ(Td) we obtain the following propo-
sition.

Proposition 2 Let the smoothness parameters α > 1
2 , β ≤ 0, γ ≥ 0 with

α+β > max{γ, 12}, the dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be
given. In addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice

for Hd,0
R . We estimate the error of the sampling operator Id− SΛ(z,M)

Hd,0R

by

M−(α+β−γ)/2 . ‖Id− SΛ(z,M)

Hd,0R

|Hα,β(Td)→ Hγ(Td)‖

. 2−(α+β−γ)R
{
R(d−1)/2 : β = 0,

1 : β < 0.

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1], we continue

.M−(α+β−γ)/2(logM)(d−2)(α+β−γ)/2
{

(logM)(d−1)/2 : β = 0,

1 : β < 0.

ut

For 2 < q <∞ the embedding

H
1
2− 1

q (Td) ↪→ Lq(Td)

(see [26], 2.4.1) extends the last theorem to target spaces Lq(Td).

Proposition 3 Let the smoothness parameters α > 1
2 and β ≤ 0 with

α+ β > 1
2 , 2 < q < ∞. Let the dimension d ∈ N, d ≥ 2, and the refine-

ment R ≥ 1, be given. In addition, we assume that Λ(z,M) is a reconstruct-

ing rank-1 lattice for Hd,0
R . We estimate the error of the sampling operator

Id− SΛ(z,M)

Hd,0R

by

‖Id− SΛ(z,M)

Hd,0R

|Hα,β(Td)→ Lq(Td)‖ . 2−(α+β−(
1
2− 1

q ))R

{
R(d−1)/2 : β = 0,

1 : β < 0.

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1], we continue

.M−(α+β−(
1
2− 1

q ))/2(logM)
d−2
2 (α+β−( 1

2− 1
q ))

{
(logM)(d−1)/2 : β = 0,

1 : β < 0.

ut
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In addition to Lq(Td), 2 < q < ∞, we study the case q = ∞. For techni-
cal reasons we estimate the sampling error with respect to the d-dimensional
Wiener algebra

A(Td) := {f ∈ L1(Td) :
∑
k∈Zd

|f̂k| <∞}

and subsequently we use the embedding A(Td) ↪→ C(Td) ↪→ L∞(Td).

Theorem 3 Let the smoothness parameters α > 1
2 and β ≤ 0 with α+β > 1

2 ,
the dimension d ∈ N, d ≥ 2, and the refinement R ∈ R, R ≥ 1, be given. In
addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice for Hd,T

R

with T := −β
α . We estimate the error of the sampling operator Id − SΛ(z,M)

Hd,TR
by

‖Id− SΛ(z,M)

Hd,TR
|Hα,β(Td)→ A(Td)‖ . 2−(α+β−

1
2 )R

{
R
d−1
2 : β = 0,

1 : β < 0.

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1], we continue

.M−(α+β−
1
2 )/2

{
(logM)

d−2
2 (α− 1

2 )+
d−1
2 : β = 0,

1 : β < 0.

Proof Again we use the triangle inequality and split up the error of the sam-
pling operator into the error of the truncation error and the aliasing error.
The truncation error fulfills

‖f − SHd,TR f |A(Td)‖ . ‖f |Hα,β(Td)‖2−(α+β− 1
2 )R

{
R
d−1
2 : β = 0,

1 : β < 0.
(23)

For completeness we give a short proof. Applying the orthogonal projection
property of SHd,TR

f , we obtain

‖f − SHd,TR f |A(Td)‖ =
∑

k/∈Hd,TR

|f̂k|

≤
( ∑
k/∈Hd,TR

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2

·
( ∑
k/∈Hd,TR

(1 + ‖k‖22)β
[ d∏
s=1

(1 + |ks|2)α
]
|f̂k|2

) 1
2

.
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Decomposing the first sum into dyadic blocks yields

‖f − SHd,TR f |A(Td)‖

≤
( ∑
j /∈Jd,TR

∑
k∈Qj

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2 ‖f |Hα,β(Td)‖ (24)

.
( ∑
j /∈Jd,TR

2−2α‖j‖1−2β‖j‖∞
∑
k∈Qj

1
) 1

2 ‖f |Hα,β(Td)‖

.
( ∑
j /∈Jd,TR

2−(2α−1)‖j‖1−2β‖j‖∞
) 1

2 ‖f |Hα,β(Td)‖.

Applying Lemma 7, we obtain (23). The aliasing error behaves as follows

‖SHd,TR f − SΛ(z,M)

Hd,TR
f |A(Td)‖ =

∑
k∈Hd,TR

∣∣∣ ∑
h∈Λ(z,M)⊥

h 6=0

f̂k+h

∣∣∣.
Applying Hölder’s inequality twice yields

‖SHd,TR f − SΛ(z,M)

Hd,TR
f |A(Td)‖

≤
( ∑
k∈Hd,TR

∑
h∈Λ(z,M)⊥

h6=0

(1 + ‖k + h‖22)−β
d∏
s=1

(1 + |ks + hs|2)−α
) 1

2

( ∑
k∈Hd,TR

∑
h∈Λ(z,M)⊥

h 6=0

(1 + ‖k + h‖22)β
d∏
s=1

(1 + |ks + hs|2)α|f̂k+h|2
) 1

2

.

Since Λ(z,M) is a reconstructing rank-1 lattice for Hd,T
R and, consequently,

the sets {k + h ∈ Zd : h ∈ Λ(z,M)⊥}, k ∈ Hd,T
R , do not intersect, we obtain

‖SHd,TR f − SΛ(z,M)

Hd,TR
f |A(Td)‖

≤
( ∑
k/∈Hd,TR

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2

·
( ∑
k/∈Hd,TR

(1 + ‖k‖22)β
d∏
s=1

(1 + |ks|2)α|f̂k|2
) 1

2

≤
( ∑
k/∈Hd,TR

(1 + ‖k‖22)−β
d∏
s=1

(1 + |ks|2)−α
) 1

2 ‖f |Hα,β(Td)‖.
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Now we are in the same situation as in (24). Therefore, we achieve

‖SHd,TR f − SΛ(z,M)

Hd,TR
f |A(Td)‖ . ‖f |Hα,β(Td)‖2−(α+β− 1

2 )R

{
R
d−1
2 : β = 0,

1 : β < 0.

Here, we would like to particularly mention that the aliasing error has the
same order as the truncation error. ut

Proposition 4 Let the smoothness parameter α > 1
2 and β ≤ 0 with

α+ β > 1
2 , the dimension d ∈ N, d ≥ 2, and the refinement R ≥ 1, be given. In

addition, we assume that Λ(z,M) is a reconstructing rank-1 lattice for Hd,T
R

with T := −β
α . We estimate the error of the sampling operator Id − SΛ(z,M)

Hd,TR
by

‖Id− SΛ(z,M)

Hd,TR
|Hα,β(Td)→ L∞(Td)‖ . 2−(α+β−

1
2 )R

{
R
d−1
2 : β = 0,

1 : β < 0.

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1], we continue

.M−(α+β−
1
2 )/2

{
(logM)

d−2
2 (α− 1

2 )+
d−1
2 : β = 0,

1 : β < 0.

ut

Remark 3 In case β < 0 the technique used in the proof of Theorem 3 and
Proposition 4 allows it to benefit from smaller index sets Hd,T

R with T > 0,
so called energy-type hyperbolic crosses. Therefore, we obtain no logarithmic
dependencies in the error rate. ut

5 The two-dimensional case

In this section we restrict our considerations to two-dimensional approximation
problems, i.e., the dimension d = 2 is fixed. We collect some basic facts from
above on this special case.

Lemma 8 Let R ≥ 0, and T ∈ [0, 1) be given. Each reconstructing rank-1

lattice Λ(z,M) for the frequency index set H2,T
R ⊂ Z2 fulfills

• M ≥ 22bRc,
• Λ(z,M) is a reconstructing rank-1 lattice for the tensor product grid
G2
R := (−2bRc, 2bRc]2 ∩ Z2.

Moreover, there exist reconstructing rank-1 lattices Λ(z,M) for the frequency

index sets H2,T
R that fulfill M = (1 + 3 · 2dRe−1)2dRe . 22R.

Proof The proof follows from [16, Theorem 3.5 and Lemma 3.7] and the em-

beddings H2,T
R ⊂ H2,0

R for T ≥ 0, which is a direct consequence of the defini-
tion. ut
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We interpret the last lemma. The reconstruction property of reconstruct-
ing rank-1 lattices Λ(z,M) for two-dimensional hyperbolic crosses H2,T

R ⊂
(−2R+2, 2R+2]2 ∩ Z2 implies automatically that the rank-1 lattices Λ(z,M)
are reconstructing rank-1 lattices for only mildly lower expanded full grids
(−2bRc, 2bRc]2 ∩ Z2. Accordingly, in the sense of sampling numbers it seems
appropriate to use a rank-1 lattice sampling in combination with tensor prod-
uct grids as frequency index sets in order to even approximate functions of
dominating mixed smoothness in dimensions d = 2. Thus, we consider the

sampling operator S
Λ(z,M)

G2
R

, cf. (7).

Lemma 9 Let a ∈ R, 0 < a < 1 and L ∈ N be given. Then we estimate∑
j∈N2

0

‖j‖∞≥L

a‖j‖1 ≤ 2− aL

(1− a)2
aL ≤ Ca · aL.

Proof We evaluate the geometric series and get∑
j∈N2

0

‖j‖∞≥L

a‖j‖1 =

L−1∑
j1=0

aj1
∞∑

j2=L

aj2 +

L−1∑
j2=0

aj2
∞∑

j1=L

aj1 +

∞∑
j1=L

aj1
∞∑

j2=L

aj2

=

(
1− aL

1− a
+

1− aL

1− a
+

aL

1− a

)
aL

1− a
.

ut
Theorem 4 Let the smoothness parameter α > 1

2 , γ ≥ 0 with α > γ and
the refinement R ≥ 0, be given. In addition, we assume that Λ(z,M) is a
reconstructing rank-1 lattice for G2

R with M � 22R. We estimate the error of

the sampling operator Id− SΛ(z,M)

G2
R

by

‖Id− SΛ(z,M)

G2
R

|Hαmix(T2)→ Hγ(T2)‖ �M−(α−γ)/2.

Proof The lower bound goes back to Theorem 1. The proof of the upper bound
is similar to the proof of Theorem 2. The main difference is that we use the
full grid G2

R instead of H2,0
R here. This yields for the projection

‖Id− SG2
R
|Hαmix(T2)→ Hγ(T2)‖ .M−(α−γ)/2.

The estimation for the aliasing error ‖SG2
R
f − SΛ(z,M)

G2
R

f |Hγ(T2)‖ is also very

similar to (2). We follow the proof line by line with the mentioned modification
and come to the estimation

‖SG2
R
f − SΛ(z,M)

G2
R

f |Hγ(T2)‖

≤ sup
k∈G2

R

(
(1 + ‖k‖22)γ

∑
j∈N2

0

∑
h∈Λ(z,M)⊥

h 6=0

ϕj(k + h)

d∏
i=1

(1 + |ki + hi|2)−α
) 1

2

· ‖f |Hαmix(T2)‖.
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Due to the reconstruction property of the reconstructing rank-1 lattice Λ(z,M)
for G2

R the sum over j breaks down to

‖SG2
R
f − SΛ(z,M)

G2
R

f |Hγ(T2)‖

. sup
k∈G2

R

(
(1 + ‖k‖22)γ

∑
j∈N2

0

‖j‖∞>bRc

2−2α‖j‖1
∑

h∈Λ(z,M)⊥

h6=0

ϕj(k + h)
) 1

2

· ‖f |Hαmix(T2)‖.

Next, we recognize

sup
k∈G2

R

(1 + ‖k‖22)
γ
2 . 2γR. (25)

Using Hd,0
R−2 ⊂ G2

R, we obtain Λ(z,M)⊥∩Hd,0
R−2 = {0}. We apply Lemma 5

and employ R− 1 ≤ bRc ≤ ‖j‖∞ ≤ ‖j‖1 to see

‖SG2
R
f − SΛ(z,M)

G2
R

f |Hγ(T2)‖

. 2γR
(

2−R
∑
j∈N2

0

‖j‖∞>bRc

2−(2α−1)‖j‖1
) 1

2 ‖f |Hαmix(T2)‖.

Applying Lemma 9 yields

‖SG2
R
f − SΛ(z,M)

G2
R

f |Hγ(T2)‖ . 2−(α−γ)R‖f |Hαmix(T2)‖

.M−(α−γ)/2‖f |Hαmix(T2)‖.

ut

Remark 4 This method does not work for Hγmix(T2) as target space. Here the
estimation of the mixed weight, similar to (25) implies a worse main rate for the

asymptotic behavior of ‖SG2
R
f−SΛ(z,M)

G2
R

f |Hγmix(T2)‖. Here we have to useH2,0
R

as index set for our trigonometric polynomials and therefore Theorem 2 is the
best we have in this situation. ut

Theorem 5 Let the smoothness parameter α > 1
2 and the refinement R ≥ 0

be given. In addition, we assume that Λ(z,M) is a reconstructing rank-1 lat-
tice for G2

R with M � 22R. We estimate the error of the sampling operator

Id− SΛ(z,M)

G2
R

by

‖Id− SΛ(z,M)

G2
R

|Hαmix(T2)→ A(T2)‖ .M−(α−
1
2 )/2.

Proof The result is a consequence of replacing H2,0
R by G2

R in the proof of
Theorem 3. ut
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Bn

D(Bn)

Fig. 4 Relations between Bn,D(Bn) and a hyperbolic cross of size δbn.

Proposition 5 Let the smoothness parameter α > 1
2 and the refinement

R ≥ 0 be given. In addition, we assume that Λ(z,M) is a reconstructing rank-1
lattice for G2

R with M � 22R. We estimate the error of the sampling operator

Id− SΛ(z,M)

G2
R

by

‖Id− SΛ(z,M)

G2
R

|Hαmix(T2)→ L∞(T2)‖ .M−(α−
1
2 )/2.

ut

Now we come to the second very special property of the 2-dimensional sit-
uation. Here we know closed formulas for lattices that are reconstructing
for H2,0

R (and G2
R). The well studied Fibonacci lattice Fn = Λ(z, bn), where

z = (1, bn−1)> and M = bn gives a universal reconstructing rank-1 lattice for
index sets considered in this section. The Fibonacci numbers bn are defined
iteratively by

b0 = b1 = 1, bn = bn−1 + bn−2, n ≥ 2.

Since the size of the Fibonacci lattice depends on M = bn, we go the other
way around. For a fixed refinement n ∈ N we choose a suitable rectangle Bn
for which the reconstruction property (11) is fulfilled. Let us start with the
box

Bn :=
[
−
⌊
C
√
bn

⌋
,
⌊
C
√
bn

⌋]2
∩ Z2,

where C > 0 is a suitable constant. Obviously, the difference set of such a box
fulfills

D(Bn) =
[
−2
⌊
C
√
bn

⌋
, 2
⌊
C
√
bn

⌋]2
∩ Z2.
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It is known (see Lemma IV.2.1 in [32]) that there is a δ > 0 such that for all
frequencies of the dual lattice F⊥n of Fn

2∏
s=1

max{1, |hs|} ≥ δbn

holds. For that reason we find a C > 0 (depending only on δ) such that the
property

D(Bn) ∩ F⊥n = {0}

is fulfilled for all n ∈ N (see Figure 4), which guarantees the reconstruction
property for the index set Bn. Additionally we have |Bn| � bn. Therefore, the
Fibonacci lattice fulfills the properties mentioned in Lemma 8.

6 Further comments

6.1 Minkowski’s theorem in Section 3

Remark 5 In order to show the lower bounds in Theorem 1, one may alter-
natively use Minkowski’s theorem instead of the construction in Lemma 4.
Then the main rate in M is identical but one obtains an additional factor that
decreases exponentially in the dimension d in the lower bound. ut

6.2 Hyperbolic cross property in Section 4

The lower bounds for the rank-1 lattice sampling numbers
glatt1M (Hα,β(Td),Hγ(Td)) in Table 1 and upper bounds in Table 2 suffer
a gap of logarithmic order in the cases d ≥ 2. For d = 2, this logarithmic gap
could be removed in Section 5, e.g. by using Fibonacci lattices. These have
the property Λ(z,M)⊥ ∩Hd,0

2R = {0} with M � 22R, cf. [32, Lemma IV.2.1].
We call this “hyperbolic cross property”. For d > 2, we aim to reduce the
logarithmic gap using a rank-1 lattice Λ(z,M) with this “hyperbolic cross
property”.

The following remark is hypothetical since it is not clear that such a lattice
exists. We do not even know whether there exists a rank-1 lattice with the
“weaker” reconstruction property (11) and lattice size M � 22R, see Lemma 3.

Nevertheless, making such a hypothetical assumption still gives us a loga-
rithmic factor in the upper bound.

Remark 6 Let Λ(z,M) be a lattice with “hyperbolic cross property”, i.e.,

Λ(z,M)⊥ ∩Hd,0
2R = {0} with M � 22R holds. Then

‖f − SΛ(z,M)

Hd,0R

f |Hγ(Td)‖ . 2−(α−γ)RR
d−1
2 ‖f |Hαmix(Td)‖

�M−
α−γ

2 (logM)
d−1
2 .
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Proof Computing the truncation error is straight-forward. For the aliasing
error we get

‖SHd,0R
f − SΛ(z,M)

Hd,0R

f |Hγ(Td)‖

≤ sup
k∈Hd,0R

(
(1 + ‖k‖22)γ

∑
j /∈Jd,0R

∑
h∈Λ(z,M)⊥

h6=0

ϕj(k + h)

d∏
s=1

(1 + |ks + hs|2)−α
) 1

2

· ‖f |Hαmix(Td)‖.

Now we use the fact that the difference set D(Hd,0
R ) is contained in Hd,0

c+2R

and therefore, Λ(z,M) is a reconstructing rank-1 lattice for Hd,0
R (the dual

lattice Λ(z,M)⊥ is located outside of the difference set D(Hd,0
R )). With the

usual calculation we get then

‖SHd,0R
f − SΛ(z,M)

Hd,0R

f |Hγ(Td)‖

. sup
k∈Hd,0R

(1 + ‖k‖22)
γ
2

( ∑
R<‖j‖1<2R

2−2α‖j‖1 +
∑

‖j‖1>2R

2−2α‖j‖1
2‖j‖1

22R

) 1
2

· ‖f |Hαmix(Td)‖

. 2−(α−γ)RR
d−1
2 ‖f |Hαmix(Td)‖

�M−
α−γ

2 (logM)
d−1
2 ‖f |Hαmix(Td)‖.

ut

Unfortunately, if d > 2 such a lattice is not known. We see that even in

this “ideal” case we do not get rid of the (logM)
d−1
2 . If d = 2 we get rid of

both logs, see Section 5. One reason is that e.g. the Fibonacci lattice has a
“hyperbolic cross property”. The other reason is that due to the “half rate” we
can truncate from a larger set than the hyperbolic cross. In that sense d = 2
is a very specific case.

6.3 Energy-norm setting in Section 4

Remark 7 Additionally to the considerations in Proposition 2 it seems natural
to treat the cases γ > β > 0. One would expect from the theory of sparse
grids that a modification of the hyperbolic cross index sets Hd,0

R to energy-

norm based hyperbolic crosses Hd,T
R with T = γ−β

α or a little perturbation
of it would help to reduce logarithmic dependence on M . Unfortunately, we
are currently not able to improve or even get equivalent results for that. One
reason is that we have no improved results fitting Hd,T

R in Lemma 5. The
other reason is that in case γ > 0 we have not yet found a way to exploit
smoothness that come from the target space such that one can use smaller
index sets than Hd,0

R in the error sum. Our standard estimation yields a worse
main rate for that. ut
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6.4 Sampling along multiple rank-1 lattices

Similar to sampling along sparse grids, which are unions of anisotropic full
grids, one may use the union of several rank-1 lattices as sampling set, cf. [15].
In contrast to the CBC approach of reconstructing rank-1 lattices that uses
a single rank-1 lattice as sampling scheme, one builds up finite sequences of
rank-1 lattices which allow for the exact reconstruction of trigonometric poly-
nomials. Numerical tests suggest significantly lower numbers M of sampling
nodes that are required. In detail, numerical tests in [15] seem to promise con-

stant oversampling factors M/|Hd,0
R |. Accordingly, the sampling rates could be

possibly similar to those of sparse grids.

7 Results for anisotropic mixed smoothness

In this section we give an outlook on function spaces Hαmix(Td), d ≥ 2, where
α ∈ Rd is a vector with first µ smallest smoothness directions, i.e.,

1

2
< α1 = . . . = αµ < αµ+1 ≤ . . . ≤ αd.

Definition 1 Let α ∈ Rd with positive entries. We define the Sobolev spaces
with anisotropic mixed smoothness α as

Hαmix(Td) :=
{
f ∈ L2(Td) :

‖f |Hαmix(Td)‖2 :=
∑
k∈Zd

|f̂k|2
d∏
s=1

(1 + |ks|2)αs <∞
}
.

Again, we want to study approximation by sampling along rank-1 lattices.
Therefore, we introduce new index sets, so-called anisotropic hyperbolic crosses
Hd,α
R , defined by

Hd,α
R :=

⋃
j∈Jd,αR

Qj

where

Jd,αR :=
{
j ∈ Nd0 :

1

α1
α · j ≤ R

}
.

Lemma 10 Let α ∈ Rd with 0 < α1 = . . . = αµ < αµ+1 ≤ . . . ≤ αd. Then

|Hd,α
R | �

∑
j∈Jd,αR

2‖j‖1 � 2RRµ−1.
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Proof For the upper bound we refer to [30, Chapt. 1., Lem. D]. For the lower
bound we consider the subset

Jd,αR,µ := {j ∈ Jd,αR : jµ+1 = . . . = jd = 0} ⊂ Jd,αR

and obtain with the help of Lemma 2∑
j∈Jd,αR

2‖j‖1 ≥
∑
j∈Jd,αR,µ

2‖j‖1 �
∑

j∈Jµ,0R+c

2‖j‖1 & 2RRµ−1.

ut

Lemma 11 Let the refinement R ≥ 1, and the dimension d ∈ N with d ≥ 2,
be given. Then there exists a reconstructing rank-1 lattice Λ(z,M) for Hd,α

R

which fulfills

2RRµ−1 � |Hd,α
R | ≤M . 22RRµ−1.

Proof First, we show the embedding of the difference set D(Hd,α
R ) ⊂

Hd,α
2R+‖α‖1 . Let k,k′ ∈ Hd,α

R . Then there exist indices j, j′ ∈ Jd,αR such that

k ∈ Qj and k′ ∈ Qj′ . The difference k − k′ ∈ D(Hd,α
R ) and k − k′ ∈ Qj̃ for

an index j̃ ∈ Nd0. Next, we show α · j̃ ≤ 2R+ ‖α‖1. The differences ks − k′s of
one component of k and k′ fulfill

ks−k′s ∈ [−2js−2j
′
s , 2js+2j

′
s ] ⊂ [−2max(js,j

′
s)+1, 2max(js,j

′
s)+1] =

max(js,j
′
s)+1⋃

t=0

Qt

and we obtain j̃s ≤ max(js, j
′
s) + 1 ≤ js + j′s + 1. This yields

α · j̃ ≤ α · j +α · j′ + ‖α‖1 ≤ 2R+ ‖α‖1

and consequently the embedding D(Hd,α
R ) ⊂ Hd,α

2R+‖α‖1 holds. Finally, the

assertion is a consequence of Lemma 10 and [13, Corollary 3.4]. ut

Remark 8 The proof of Lemma 11 referred here is based on an abstract result
suitable for much more general index sets than Hd,α

R . Similar to Lemma 3
there should be also a direct computation for counting the cardinality of the
difference set D(Hd,α

R ). We leave the details to the interested reader. ut

Lemma 12 Let α,γ ∈ Rd with 1
2 < α1 = γ1 = . . . = αµ = γµ < αµ+1 ≤

. . . ≤ αd with αµ < γs < αs for s = µ+ 1, . . . , d. Then it holds∑
j∈Nd0\J

d,γ
R

2−(2α−1)·j . 2−(2α1−1)RRµ−1.
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Proof We start decomposing the sum. For technical reasons we introduce the
notation

P d,γR :=
{
j ∈ Nd0 :

γs
γ1
js ≤ R, s = 1, . . . , d

}
.

Since Jd,γR ⊂ P d,γR we obtain∑
j∈Nd0\J

d,γ
R

2−(2α−1)·j =
∑
j /∈Jd,γR
j∈Pd,γR

2−(2α−1)·j +
∑

j∈Nd0\P
d,γ
R

2−(2α−1)·j . (26)

We estimate the first summand in (26)∑
j /∈Jd,γR
j∈Pd,γR

2−(2α−1)·j

=

γ1R
γd∑
jd=0

2−(2αd−1)jd · . . . ·

γ1R
γµ+1∑
jµ+1=0

2−(2αµ+1−1)jµ+1

·

γ1R
γµ∑
jµ=0

2−(2αµ−1)jµ · . . . ·

γ1R
γ2∑
j2=0

2−(2α2−1)j2
R∑

j1=
γ1R−

∑d
s=2 γsjs
γ1

2−(2α1−1)j2

.

γ1R
γd∑
jd=0

2−(2αd−1)jd · . . . ·

γ1R
γµ+1∑
jµ+1=0

2−(2αµ+1−1)jµ+1

·

γ1R
γµ∑
jµ=0

2−(2αµ−1)jµ · . . . ·

γ1R
γ2∑
j2=0

2−(2α2−1)j22−(2α1−1) γ1R−
∑d
s=2 γsjs
γ1 .

Interchanging the order of multiplication yields

∑
j /∈Jd,γR
j∈Pd,γR

2−(2α−1)·j . 2−(2α1−1)R
∞∑
jd=0

2−[(2αd−1)−(2γd−
γd
α1

)]jd · . . .

·
∞∑

jµ+1=0

2−[(2αµ+1−1)−(2γµ+1−
γµ+1
α1

)]jµ+1 ·

R
γµ−ε∑
jµ=0

1 · . . . ·

R
γ2−ε∑
j2=0

1

. 2−(2α1−1)RRµ−1.

The second summand in (26) can be trivially estimated by . 2−(2α1−1)R. ut
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Theorem 6 Let α,γ ∈ Rd such that

1

2
< α1 = γ1 = . . . = αµ = γµ < αµ+1 ≤ . . . ≤ αd

and

α1 < γs < αs, s = µ+ 1, . . . , d,

and the refinement R ≥ 1, be given. In addition, we assume that Λ(z,M) is a

reconstructing rank-1 lattice for Hd,γ
R . We estimate the error of the sampling

operator Id− SΛ(z,M)

Hd,γR
by

‖Id− SΛ(z,M)

Hd,γR
|Hαmix(Td)→ L∞(Td)‖ . 2−(α1− 1

2 )RR
µ−1
2 .

If Λ(z,M) is constructed by the CBC strategy [13, Tab. 3.1], we continue

.M−(α1− 1
2 )/2(logM)

µ−1
2 (α1+

1
2 ).

Proof We use the embedding A(Td) ↪→ L∞(Td) and follow the estimation of

Theorem 3 where we replace the weight
∏d
s=1(1+ |ks|2)α by

∏d
s=1(1+ |ks|2)αs .

We obtain

‖f − SΛ(z,M)

Hd,γR
f |L∞(Td)‖ . ‖f − SΛ(z,M)

Hd,γR
f |A(Td)‖

.

 ∑
j∈Nd0\J

d,γ
R

2−(2α−1)·j

 1
2

‖f |Hαmix(Td)‖.

Applying Lemma 12 yields

‖f − SΛ(z,M)

Hd,γR
f |L∞(Td)‖ . 2−(α1− 1

2 )RR
µ−1
2 ‖f |Hαmix(Td)‖.

Now the bound for the number of points in Lemma 11 implies

‖f − SΛ(z,M)

Hd,γR
f |L∞(Td)‖ .M−(α1− 1

2 )/2(logM)
µ−1
2 (α1+

1
2 )‖f |Hαmix(Td)‖,

which proves the claim. ut

Remark 9 Comparing the last result with the results obtained in Proposition 4
we recognize that there is only the exponent µ − 1 instead of d − 1 in the
logarithm of the error term with µ < d. Especially in the case µ = 1 the
logarithm completely vanishes. Similar effects were also observed for sparse
grids and general linear approximation, cf. [8, Section 10.1] and the references
therein. ut
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8 Numerical results

8.1 Constant mixed smoothness

In this section we numerically investigate the sampling rates for different types
of rank-1 lattices Λ(z,M) when sampling the scaled periodized (tensor prod-
uct) kink function

g(x) :=

d∏
t=1

(
53/415

4
√

3
max

{
1

5
−
(
xt −

1

2

)2

, 0

})
, x := (x1, . . . , xd)

> ∈ Td,

(27)

similar to [11]. We remark that g ∈ H3/2−ε
mix (Td), ε > 0, and ‖g|L2(Td)‖ = 1.

For the fast approximate reconstruction, Algorithm 8.1 can be used. This
algorithm applies a single one-dimensional fast Fourier transform (FFT) on the
function samples and performs a simple index transform. As input parameter a
reconstructing rank-1 lattice Λ(z,M) is required, which may be easily searched
for by means of the CBC strategy [13, Tab. 3.1].

Algorithm 8.1 Fast approximate reconstruction of a function f ∈ Hα,β(Td)
from sampling values on a reconstructing rank-1 lattice Λ(z,M) using a single
one-dimensional FFT, see [17, Algorithm 1].

Input: I ⊂ Zd frequency index set of finite cardinality
Λ(z,M) reconstructing rank-1 lattice for I of size M

with generating vector z ∈ Zd
f =(
f
(
jz
M

mod 1
))M−1

j=0

samples of f ∈ Hα,β(Td) on Λ(z,M)

â := FFT 1D(f)
for each k ∈ I do
f̂
Λ(z,M)
k := 1

M
âk·z mod M

end for

Output: f̂
Λ(z,M)
k Fourier coefficients of the approximation

S
Λ(z,M)
I f as defined in (7)

Complexity: O (M logM + d|I|)

8.1.1 Hyperbolic cross index sets

First, we build reconstructing rank-1 lattices for the hyperbolic cross index
sets Hd,0

R in the cases d = 2, 3, 4, 5, 6, 7 with various refinements R ∈ Z,
R ≥ 1− d, using the CBC strategy [13, Tab. 3.1]. Then, we apply the sampling

operators S
Λ(z,M)

Hd,0R

on the kink function g using Algorithm 8.1. The resulting

sampling errors ‖g−SΛ(z,M)

Hd,0R

g|L2(Td)‖ are shown in Figure 5 and 6 denoted by

“CBC hc”. The corresponding theoretical upper bounds for the sampling rates
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from Table 2, which are (almost) M−
1
2 · 32 (logM)

d−2
2 · 32+

d−1
2 , are also depicted.

Additionally in the two-dimensional case, we consider the Fibonacci lattices
from Section 5 as well as the special Korobov lattices

Λ
(
z := (1, 2R+2 + 2)>,M := (2R+2 + 3) · (2R+1 + 2)

)
similar to the ones from [16]. The corresponding sampling errors are denoted
by “Fib. hc” and “Kor. hc” in Figure 5a. We observe that in all considered
cases, the sampling errors decay approximately as fast as the theoretical upper
bound implies. In Figure 7, we investigate the logarithmic factors in more

detail. Assuming that the sampling error ‖g−SΛ(z,M)

Hd,0R

g|L2(Td)‖ nearly decays

like M−
1
2 · 32 (logM)

d−2
2 · 32+

d−1
2 , we consider its scaled version

‖g − SΛ(z,M)

Hd,0R

g|L2(Td)‖/[M− 1
2 · 32 (logM)

d−2
2 · 32+

d−1
2 ].

Obviously, if the scaled error decays exactly like the given rate, then the plot
should be (approximately) a horizontal line. In the plot in Figure 7a for the
two-dimensional case, this is almost the case for all three types of lattices.

The scaled errors ‖g − SΛ(z,M)

Hd,0R

g|L2(Td)‖ ·M1.5/2 · (logM)−1/2 decay slightly

but the errors in Figure 7b, which are scaled without the logarithmic factor,
seem to grow slightly. We interpret this observation as an indication that
there may be some logarithmic dependence in the error rate. Moreover, for
the reconstructing rank-1 lattices built using the CBC strategy [13, Tab. 3.1],
the scaled errors in the cases d = 3, d = 4, and d = 5 behave similarly as in
the two-dimensional case, see Figure 7c.

8.1.2 `∞-ball index sets

Next, we use the lattices from Section 8.1.1 in the two-dimensional case, but
instead of hyperbolic cross index sets H2,0

R , we are going to use the `∞-ball

index sets I2N :=
{
−
⌈
N−2
2

⌉
, . . . ,

⌈
N−1
2

⌉}2
, N ∈ N. For each of the rank-1

lattices Λ(z,M) generated in Section 8.1.1, we determine the largest refine-
ment N ∈ N such that the reconstruction property (9) is still fulfilled for the

`∞-ball I2N . Then, we apply each sampling operator S
Λ(z,M)

I2N
on the kink func-

tion g from (27). The resulting sampling errors are depicted in Figure 8, where
the errors for the CBC, Fibonacci and Korobov rank-1 lattices are denoted by
“CBC `∞-ball”, “Fib. `∞-ball” and “Kor. `∞-ball”, respectively. We observe
that the L2(Td) sampling errors decay approximately as the rate M−

3
4 as ex-

pected. In more detail, this behaviour may be seen in the scaled error plot in
Figure 9.

8.2 Anisotropic mixed smoothness

In this section we consider an example for the case of anisotropic mixed
smoothness from Section 7. We define the cardinal B-splines Mm : R 7→ R
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Fig. 5 L2(Td) sampling error and number of sampling points for the approximation of the
kink function g from (27).

of order m ∈ N recursively by

M1(x) :=

{
1 : x ∈ [−1/2, 1/2),

0 otherwise,

Mm+1(x) := (Mm ∗M1)(x) =

∫
R
Mm(x− t)M1(t) dt,



36 Glenn Byrenheid et al.

101 102 103 104 105 106 107 108

10−4

10−3

10−2

10−1

100

Number of sampling points M

‖g
−
S
Λ
(z
,M

)

H
d
,0
R

g
|L

2
(T
d
)‖

CBC hc 0.01 ·M−
3
4 (logM)

17
4 40 ·M−

3
4

(a) d = 5

101 102 103 104 105 106 107 108
10−3

10−2

10−1

100

Number of sampling points M

‖g
−
S
Λ
(z
,M

)

H
d
,0
R

g
|L

2
(T
d
)‖

CBC hc 0.01 ·M−
3
4 (logM)

11
2 95 ·M−

3
4

(b) d = 6

101 102 103 104 105 106 107 108

10−2

10−1

100

Number of sampling points M

‖g
−
S
Λ
(z
,M

)

H
d
,0
R

g
|L

2
(T
d
)‖

CBC hc 6e-4 ·M−
3
4 (logM)

27
4 500 ·M−

3
4

(c) d = 7

Fig. 6 L2(Td) sampling error and number of sampling points for the approximation of the
kink function g from (27).

and based on these, the shifted, periodized and normalized B-splines

Nm : T 7→ R, Nm(x) :=
√
m Mm((mx−m/2) mod 1)/

√∫ m/2

−m/2
|Mm(x)|2.

We numerically investigate the sampling rates for reconstructing rank-1 lat-
tices Λ(z,M) constructed by means of the CBC strategy [13, Tab. 3.1] when
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Fig. 7 Scaled L2(Td) sampling error and number of sampling points for the approximation

of the kink function g from (27), where err := ‖g − SΛ(z,M)

H
d,0
R

g|L2(Td)‖, c2 := 1, c3 := 1.5,

c4 := 4.5, c5 := 22.

sampling the 4-dimensional test function

h(x) := N2(x1) ·N2(x2) ·N3(x3) ·N3(x4), x := (x1, x2, x3, x4)> ∈ T4, (28)
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Fig. 8 L2(T2) sampling error and number of sampling points for the approximation of the
kink function g from (27).
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Fig. 9 Scaled L2(T2) sampling error and number of sampling points for the approximation

of the kink function g from (27), where err := ‖g − SΛ(z,M)

I2
N

g|L2(T2)‖.

which consists of tensor products of shifted B-splines of order 2 and 3. The
Fourier series of the latter factors are given by

N2(x) :=
∑
k∈Z

√
3/4 (−1)k sinc(πk/2)2 e2πikx,

N3(x) :=
∑
k∈Z

√
20/33 (−1)k sinc(πk/3)3 e2πikx,

sinc(x) :=

{
sin(x)/x : x 6= 0,

1 : x = 0.

We remark that N2 ∈ H3/2−ε
mix (T), ε > 0, and N3 ∈ H5/2−ε

mix (T), which yields

h ∈ H(3/2−ε,3/2−ε,5/2−ε,5/2−ε)
mix (Td) ↪→ H3/2−ε

mix (Td).

Instead of measuring the sampling error in the L∞(Td) norm, we measure in
the slightly stronger Wiener algebra A(Td) norm, which was already consid-
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ered in the proof of Theorem 6. The estimate in Theorem 6 yields

‖f − SΛ(z,M)

Hd,γR
f |A(Td)‖ .M−(α1− 1

2 )/2(logM)
µ−1
2 (α1+

1
2 )‖f |Hαmix(Td)‖.

First, we consider isotropic hyperbolic cross index sets H4,0
R with various

refinements R ∈ Z, R ≥ −3, and we build reconstructing rank-1 lattices us-
ing the CBC strategy [13, Tab. 3.1]. Then, we apply the sampling operators

S
Λ(z,M)

H4,0
R

on the test function h using Algorithm 8.1. The resulting relative sam-

pling errors ‖h−SΛ(z,M)

H4,0
R

h|A(Td)‖/‖h|A(Td)‖ are shown in Figure 10 denoted

by “CBC hc”. The corresponding theoretical upper bounds for the sampling
rates from Theorem 3, which are (almost) M−

1
2 (logM)

5
2 in our case, are also

depicted. We observe that the measured errors decay slightly faster than the
upper bounds suggests.
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Fig. 10 Sampling error and number of sampling points for the approximation of the 4-

dimensional test function h from (28), where err := ‖h− SΛ(z,M)
I h|A(Td)‖/‖h|A(Td)‖.
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Fig. 11 Scaled sampling error and number of sampling points for the approximation of the

4-dimensional test function h from (28), where err := ‖h− SΛ(z,M)
I h|A(Td)‖/‖h|A(Td)‖.
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Next, we use anisotropic hyperbolic cross index sets Hd,γ
R . For our con-

sidered test function h, we set γ := (1.5, 1.5, 2.45, 2.45) and we build re-
constructing rank-1 lattices for the hyperbolic cross index sets H4,γ

R with
various refinements R ∈ N0 using the CBC strategy [13, Tab. 3.1]. The ob-

tained relative sampling errors ‖h − SΛ(z,M)

H4,γ
R

h|A(Td)‖/‖h|A(Td)‖ are shown

in Figure 10 denoted by “CBC hc anisotropic”. The corresponding theoret-
ical upper bounds from Theorem 6, which are (almost) M−

1
2 logM for our

test setting, are also depicted. In the plot, the obtained sampling errors for
the anisotropic case seem to decay accordingly to this upper bound. We in-
vestigate this behaviour in more detail and consider the scaled errors ‖h −
S
Λ(z,M)
I h|A(Td)‖/‖h|A(Td)‖/(M− 1

2 logM) for I ∈ {Hd,0
R , H4,γ

R } in Figure 11.
We observe that the error plot of the sampling which uses the anisotropic
hyperbolic cross index sets is (approximately) a horizontal line, which sug-
gests that the sampling error (approximately) decays like the theoretical up-
per bound. The error plot of the sampling which uses the isotropic hyperbolic
cross index sets increases, which means that the corresponding sampling error
decays slower compared to the anisotropic hyperbolic cross.
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