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Introduction

The approximation of functions is one basic problem in applied mathematics with a wide
range of applications in almost all scientific fields.

We focus on the approximation of functions from sampling values. In general, one has to
increase the number of sampling values, i.e., the amount of information, in order to achieve
better approximations. Due to the possibly huge amount of data to be processed, highly
efficient algorithms are of monumental interest. The fast Fourier transform (FFT), first intro-
duced by C. F. Gauß and most popularly published by J. Cooley and J. W. Tukey in [CT65] in
the mid-sixties of the last century, provides such a method that allows for extremely efficient
computations of interpolations of one-dimensional functions by trigonometric polynomials.
In the following decades, a huge list of papers presents modifications and improvements of
this algorithm and, in particular, generalizations to spatial domains of higher dimensions d.
Here, straightforward strategies, i.e., the consideration of tensor product grids, do not affect
the efficiency of a corresponding FFT algorithm but fails due to the excessive amount of used
data.

However, the originally introduced fast Fourier transform algorithm is an efficient imple-
mentation of the so-called one-dimensional discrete Fourier transform, which can be formally
described by a matrix vector product. The corresponding matrix, called Fourier matrix, is
unitary up to a scaling factor that might be present. Thus, the matrix has condition num-
ber one and, in addition, there exist stable and fast implementations of this discrete Fourier
transform, cf. [Sch96, PST03]. Consequently, we notice that the approximation of univariate
functions using the fast Fourier transform is also a stable method. In our considerations, we
focus on the condition number of the Fourier matrices A =

(
e2πik·x)

x∈X ,k∈I , where X ⊂ Td

is a set of sampling nodes and I ⊂ Zd the frequency index set of a multivariate trigonometric
polynomial. More precisely, we ignore the stability of the concrete fast algorithms, and call
the discrete Fourier transform stable whenever the condition number of the Fourier matrix
is near one and perfectly stable if the condition number is exactly one.

In this work, we follow a very general approach. Specifically, we consider multivariate
trigonometric polynomials with frequencies supported on a fixed but arbitrary frequency
index set I ⊂ Zd of finite cardinality. Naturally, one is interested in spatial discretizations in
the d-dimensional torus Td such that

• the sampling values of the trigonometric polynomial with frequencies supported on I
at this spatial discretization uniquely determines the trigonometric polynomial,

7



8 1 Introduction

• the corresponding discrete Fourier transform is fast realizable, and

• the corresponding fast Fourier transform is stable.

Throughout the work, we focus on specific structures of the frequency index sets I several
times. We consider weighted `p-balls for 0 < p ≤ ∞, cf. (2.15), as frequency index sets.
For full tensor product grids, i.e., weighted `∞-balls, in frequency domain there exist corre-
sponding tensor product grids in the spatial domain such that the discrete Fourier transform
is stable and efficiently realizable. As mentioned above, tensor product grids suffer from fast
growing cardinalities and, thus, are not manageable for higher spatial dimensions d. For de-
creasing parameter p, the number of frequency indices that are contained in weighted `p-balls
mildly reduces. Trigonometric polynomials with frequencies supported on weighted `p-balls,
0 < p < ∞, well approximate specific functions and, thus, may succeed in various applica-
tions. Certainly, one is interested in sampling methods that allow for good approximations,
see e.g. [LSX09] for an interpolation approach where the parameter p = 1 and dimension
d = 2 is considered. Nevertheless, `p-balls suffer from fast growing cardinalities even for
moderate expansions and dimensions d for all parameters p > 0. For that reason, hyperbolic
cross approximations have become very popular. This approach severely reduces the num-
ber of frequency indices for approximations of functions that belong to spaces of dominating
mixed smoothness, see e.g. [DS89, Tem93, DPT94]. Sampling at related so-called sparse
grids allows for a unique interpolation, cf. e.g. [BD89, BG04], and corresponding fast com-
putations, cf. [Hal92, Gra07, GH14]. Moreover, we consider arbitrary sparse frequency index
sets without any structure. In [GPR10], it is proven that with “overwhelming” probability
multivariate trigonometric polynomials supported on such arbitrary sparse frequency index
sets can be reconstructed by using relatively few sampling values at randomly chosen nodes
from the d-dimensional torus Td. However, the discrete Fourier transform related to the three
mentioned types of frequency index sets suffer from different problems.

• The usually used spatial discretizations for `p-balls that allow for a corresponding fast
Fourier transform are not well-adapted, in general.

• The Fourier matrices of the hyperbolic cross discrete Fourier transform suffers from
growing condition numbers for increasing cardinality of the frequency index set I—at
least for regular dyadic sparse grids, cf. [KK11].

• There exists no practicable fast algorithm for the sparse nonequispaced discrete Fourier
transform for large dimensions d.

For these reasons, we suggest to use rank-1 lattices and a generalization as spatial discretiza-
tions in order to sample multivariate trigonometric polynomials not only of the mentioned
types. Initially, rank-1 lattices were introduced as sampling schemes for numerical integra-
tion by several authors in the late 1950s and 1960s. In [Nie78], one finds a summary and
an extensive reference list of early work on so-called lattice rules, i.e., cubature rules based
on (rank-1) lattice sampling. On the contrary to the originated field of application, we use
rank-1 lattices as sampling schemes for the approximation of whole functions by trigonometric
polynomials. To the authors knowledge, this idea was first considered by V. N. Temlyakov for
specific rank-1 lattices, i.e., rank-1 lattices of Korobov type, cf. [Tem86], and later on by D. Li
and F. J. Hickernell in a more general setting, cf. [LH03]. Subsequently, the approximation
properties of rank-1 lattices were investigated in the fields of information based complexity
and applied analysis, cf. [ZLH06, KSW06, KSW08, KWW09, MS12]. However, there exist
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only a few applicable construction methods for rank-1 lattices that are suitable for approx-
imation, cf. [KSW06, KSW08, KWW09]. These methods crucially depend on the specific
function spaces that are considered in these papers and are in fact component–by–component
constructions.

Based on the considerations in [CKN10], we gave a universally applicable component–
by–component construction strategy that determines reconstructing rank-1 lattices for given
frequency index sets I, i.e., sampling sets that allow the perfectly stable reconstruction of
trigonometric polynomials with frequencies supported on the frequency index set I. The
presented construction method does not depend on the structure of the frequency index set
I. Moreover, we generalize the concept of rank-1 lattices to so-called generated sets and
present a continuous search method that also determines sampling sets that are very well
suited for a fast and stable reconstruction of trigonometric polynomials. Due to the fact
that the fast computation of the multi-dimensional discrete Fourier transforms using rank-1
lattices or generated sets as sampling schemes is realized by permutations and one-dimensional
fast Fourier transforms or one-dimensional nonequispaced fast Fourier transforms, cf. [DR93,
Bey95, Ste98], the stability of the one-dimensional fast algorithms spread to the presented
algorithms in our work.

We analyze the reconstruction and stability properties of both sampling schemes and, in
addition, apply the results in order to determine the excellent approximation properties of
the corresponding sampling methods. Moreover, we discuss our findings on the basis of some
approximation problems that are of crucial interest. Various numerical examples demonstrate
the outstanding properties and the universality of the presented sampling schemes.

We point out that essential results of this thesis have already been published in [KKP12,
Käm13a, Käm13b, Käm14, KPV13, KPV14]. Finally, we would like to encourage the prac-
tically orientated reader to make extensive use of our toolbox [Käm] which fundamentally
consists of the algorithms that are presented here.

Outline of the Thesis

Chapter 2 : Multivariate Trigonometric Polynomials.

We introduce most of our notations and describe the approximation problem of multivariate
periodic continuous functions using trigonometric polynomials. The main focus is on the
approximation of functions that have absolutely convergent Fourier series.

We define function spaces Aω(Td), cf. (2.9), that contain functions f of a specific smooth-
ness which is characterized by a so-called weight function ω that determines the decay of the
Fourier coefficients of each function f ∈ Aω(Td). The corresponding norm of a function f in
Aω(Td) is given by an ω-weighted `1-norm of the Fourier coefficients.

In particular, the weight function ω specifies more and also less important indices of
Fourier coefficient by its function values. We define the frequency index sets IN := {k ∈
Zd : ω(k) ≤ N}, N ∈ R, that somehow collect the indices of the most important Fourier

coefficients of the functions f that belong to Aω(Td). Moreover, we show that the Fourier
partial sums of f ∈ Aω(Td) with frequencies supported on these frequency index sets IN
approximate the function f well.

In general, one cannot expect to approximate a function f ∈ Aω(Td) by its exact Fourier
partial sums in numerical applications since one does not know the exact Fourier coefficients
of f . Often, functions are given by its function values at specific sampling nodes. However, we
would like to approximate multivariate continuous periodic functions f and we assume that
it is possible to sample the function f at an arbitrary finite set of sampling nodes X ⊂ Td.
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We will use a finite set of function values of f , i.e., f(x), x ∈ X , in order to compute a
trigonometric polynomial with frequencies supported on a suitable given frequency index set,
i.e., IN , that approximates the function f . Naturally, one is interested in somehow good
sampling schemes X , that guarantees approximations of high quality.

In Section 2.2, we restrict our considerations to the reconstruction of multivariate trigono-
metric polynomials and, in addition, on the perfectly stable reconstruction of multivariate
trigonometric polynomials, i.e., the corresponding Fourier matrix A, cf. (2.7), should have a
condition number that is exactly one.

We determine a general lower bound on the number of sampling values that are needed in
order to perfectly stably reconstruct all trigonometric polynomials supported on the frequency
index set I in Lemma 2.5. This lower bound mainly depends on the structure of the frequency
index set I and is determined by the maximum of the cardinalities of all frequency index sets
I ′ such that the difference sets fulfill D(I ′) ⊂ D(I). The difference set of the frequency index
set I is defined by D(I) := {h ∈ Zd : h = k1 − k2,k1,k2 ∈ I}.

We apply these results on frequency index sets I of different structures in Section 2.3.
In particular, we consider weighted `p-balls, 0 < p ≤ ∞, and weighted (energy-norm based)
hyperbolic crosses, which are motivated by function spaces of isotropic and dominating mixed
smoothness. Different types of such function spaces were of outstanding interest in approx-
imation theory during the last decades. Finally, we summarize the findings of Chapter 2 in
Section 2.4.

Chapter 3 : Rank-1 Lattices.

We consider rank-1 lattices Λ(z,M), cf. (3.1), which are structured discretizations in spatial
domain, i.e., in the d-dimensional torus Td. The vector z ∈ Zd is called generating vector and
M ∈ N is named lattice size of the rank-1 lattice Λ(z,M). The natural number M bounds
the number of sampling nodes that are contained in Λ(z,M) from above. These kind of
sampling sets are investigated extensively in the field of numerical integration. In particular,
we focus on the approximation properties of these sampling sets.

First, we restrict our considerations on multivariate trigonometric polynomials and show
that the structure of rank-1 lattices is well suited in order to fast evaluate multivariate trigono-
metric polynomials at all sampling nodes of a rank-1 lattice by means of a one-dimensional fast
Fourier transform (FFT). In detail, the corresponding computational complexity is bounded
by O (M logM + d|I|), where I is the frequency index set of the multivariate trigonometric
polynomial and M the number of sampling nodes. We emphasize that we evaluate multivari-
ate trigonometric polynomials in linear time with respect to the maximum of the cardinality
of the frequency index set I and the number of sampling nodes M up to some logarithmic
factor logM .

Subsequently, we determine necessary and sufficient conditions on a rank-1 lattice, such
that sampling along this rank-1 lattice allows for the unique reconstruction of multivariate
trigonometric polynomials with frequencies supported on a given frequency index set I, cf.
Section 3.2. We call such a rank-1 lattice reconstructing rank-1 lattice for the frequency
index set I. Within the framework of these considerations, we show that a unique recon-
struction implies a perfectly stable reconstruction of multivariate trigonometric polynomials
from samples along a rank-1 lattice naturally. We present an algorithm of a complexity in
O (M logM + d|I|) that computes this reconstruction.

However, a reconstructing rank-1 lattice for a frequency index set I is not explicitly given
by the sufficient conditions we determined. Specifically, reconstructing rank-1 lattices of rela-
tively small cardinalities are of our main interest in Section 3.2, since the computational costs
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of the reconstruction algorithm mainly depends on the number of used sampling values. We
develop a component–by–component approach that allows for the deterministic construction
of reconstructing rank-1 lattices for a given frequency index set I in Corollary 3.4, which is
based on the essential findings of Theorem 3.2. Moreover, we give bounds on the cardinality
M of such a reconstructing rank-1 lattice, which mainly depends on the difference set D(I),
cf. (2.11), and, thus, on the structure of the frequency index set I,

|I| ≤M ≤ max

{
2|I|2

3
,max{3‖k‖∞ : k ∈ I}

}
, (1.1)

where the upper bound on the right hand side is roughly simplified, see Corollary 3.4 and
the subsequent considerations for more details. We stress the fact that both bounds do not
depend on the spatial dimension d but on the cardinality and the expansion of the frequency
index set I.

In Section 3.4, we focus on the approximation properties of reconstructing rank-1 lattices
for the index sets IN in the spaces Aω(Td), i.e., we consider the trigonometric polynomial with
frequencies supported on IN that is determined from function values of f along the rank-1
lattice. We prove an upper bound on the L∞(Td) approximation error that is only two times
the upper bound of the L∞(Td) approximation error which we obtained for the exact Fourier
partial sum in Chapter 2, cf. Theorem 3.11. Furthermore, we extend the approximation
approach to an interpolation approach that guarantees the same error estimates as we have
shown for the approximation, cf. Section 3.5.

Additionally, we discuss improvements on the component–by–component construction of
reconstructing rank-1 lattices in Section 3.7. In particular, we present two basic component–
by–component strategies that deterministically constructs reconstructing rank-1 lattices with-
out the computation of the difference sets D(I), which is a bottleneck of our previous deter-
mined algorithm due to the possibly huge memory requirements.

In addition, we apply the theoretical findings on rank-1 lattices to the specific frequency
index sets that are introduced in Chapter 2. We prove that reconstructing rank-1 lattices
are in some sense optimal sampling schemes, specifically, with respect to the perfectly stable
reconstruction. Furthermore, we apply our component–by–component constructions of re-
constructing rank-1 lattices to several examples, i.e., weighted `p-balls, weighted hyperbolic
crosses, axis crosses, and randomly chosen frequency index sets, and discuss the correspond-
ing results. We obtain the proved asymptotic behavior in general. Nevertheless, the rank-1
lattice sizes M of reconstructing rank-1 lattices are much smaller than the theoretical upper
bounds in practice and, thus, reasonable even for frequency index sets I of cardinalities up
to millions. We summarize the crucial findings of this chapter in Section 3.9.

Chapter 4 : Generated Sets.

First, we introduce and motivate a generalization of rank-1 lattices, which we call generated
sets. In contrast to rank-1 lattices, generated sets are sampling sets that are generated by a
real valued vector r ∈ Rd. Our generalization retains the most important property of rank-1
lattices—the rank-1 structure.

In Section 4.2 we show that the evaluation of a multivariate trigonometric polynomial at
all nodes of a generated set simplifies to a one-dimensional nonequispaced discrete Fourier
transform. Thus, we simultaneously, fast evaluate a multivariate trigonometric polynomial at
all nodes of a generated set by means of a one-dimensional nonequispaced fast Fourier trans-
form (NFFT), cf. Algorithm 3.1. We would like to point out that the used one-dimensional
NFFT is an approximate algorithm that has almost the same complexity as the FFT. In
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detail, the computational complexity of Algorithm 3.1 is in O (M logM + (| log ε|+ d)|I|),
where ε characterizes the accuracy of the one-dimensional NFFT.

Subsequently, we shift our attention to the reconstruction problem, i.e., how to reconstruct
the frequencies of a trigonometric polynomial from sampling values along a generated set, in
Section 4.3. We show, that we can simply determine a generated set that allows for the unique
reconstruction of trigonometric polynomials with frequencies supported on I by randomly
choosing a generating vector r and fixing M ≥ |I|. In our theoretical considerations, we
show that one fixes a so-called reconstructing generated set for I with probability one in
this way. In addition to it, we specify a fast algorithm that reconstructs a multivariate
trigonometric polynomial with frequencies supported on the index set I from the sampling
values along a reconstructing generated set for I. Due to the fact that there does not exist
a direct fast computation of the pseudoinverse of a one-dimensional nonequispaced discrete
Fourier transform, we apply an iterative method, i.e., a conjugate gradient method, that
uses the NFFT and its adjoint algorithm. The computational complexity of one step of
this iterative method is bounded by O (M logM + (| log ε|+ d)|I|). In Lemma 4.5, we give
an upper bound on the number of iterations that are sufficient in order to achieve a given
relative error. As usual, this upper bound depends on the condition number of the Fourier
matrix A. However, the corresponding Fourier matrix A may suffer from huge condition
numbers in general.

In Section 4.4, we show that the condition |{k · r mod 1: k ∈ I}| = |I| is necessary
and also sufficient in order to determine a generated set with generating vector r that offers
a stable discrete Fourier transform, i.e., a Fourier matrix A that has a condition number
cond2(A) near 1. We estimate the condition number by terms that are finite if and only if
the condition |{k · r mod 1: k ∈ I}| = |I| is fulfilled. Furthermore, the almost surely finite
upper bound on the condition number cond2(A) is inversely proportional to the number of
used sampling values M and tends to one if M tends to infinity. We use that property in
order to determine an M = M(I, r, C) ∈ N such that the related Fourier matrix A, that
is specified by the frequency index set I and the first M(I, r, C) multiples of r as sampling
scheme, has a condition number cond2(A) not larger than a specific target condition number
C > 1, cf. Corollary 4.10.

Within this context, we develop an algorithm that allows for the fast computation of
M(I, r, C) with a complexity of O (|I|(log |I|+ d)). Thus for a given frequency index set I
and given target condition number C, we rate a vector r by the value of M(I, r, C). Since
we are interested in suitable sampling sets, i.e., sampling sets that cause a Fourier matrix A
with a small condition number cond2(A) < C and have a relatively small number of sampling
nodes as well, we would like to determine generating vectors r such that M(I, r, C) is as small
as possible. For that reason, we present a fast continuous search method based on a simplex
search method that numerically determines local minimizers of M(I, ◦, C).

Furthermore, we investigate the approximation properties of the presented sampling
method and show that the L2(Td) error of approximations of Fourier partial sums of functions
f ∈ Aω(Td) are of optimal order, provided that we determined the approximation of f from
sampling values of f along a reconstructing generated set for IN with a stable Fourier matrix
A, cf. Theorem 4.12.

Due to the fact that the concept of generated sets is a generalization of rank-1 lattices
which also includes rank-1 lattices, we can apply the existence results for rank-1 lattices to
generated sets. Our construction method for generated sets is based on a continuous opti-
mization method that finds only local minimizers of an upper bound of the Gershgorin circle
radius. In Section 4.6, we demonstrate the usability of the generated set search algorithm in
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various examples and compare the results to rank-1 lattices that we determined in Section
3.8. Finally, we summarize the findings of this chapter in Section 4.7.

Chapter 5 : Applications and Numerical Examples.

The last chapter exemplifies some applications. In Section 5.1, we treat multivariate smooth
periodic test functions and approximate these functions with approximated Fourier partial
sums with frequencies supported on suitable frequency index sets, which are weighted `1-balls
up to dimension d = 22 and equally weighted hyperbolic crosses up to dimension d = 10.
In particular, we compare the rank-1 lattice approximation with the interpolation approach
and point out and discuss the advantages of the interpolation in Sections 5.1.1 and 5.1.2.
Additionally, we compare rank-1 lattice approximations to generated set approximations and
obtain almost the same errors in Section 5.1.1.

In Section 5.2, we consider Poisson’s equation in d dimensions with periodic boundary
conditions. We give an error estimate for the rank-1 lattice sampling method and com-
pare the errors of different sampling methods for trigonometric polynomials by means of an
example that deals with functions up to dimension d = 9. In detail, we compare rank-1
lattice discretizations to full grid and standard sparse grid discretizations and demonstrate
the differences in the asymptotics of these approaches.

As a last application, we treat multivariate non-periodic functions, explain how to peri-
odize such functions, and discuss difficulties that may occur by approximating non-periodic
functions using the algorithms that are adapted for periodic functions in Section 5.3.1. The
periodized version of our non-periodic test function can be well approximated by trigonomet-
ric polynomials with frequencies supported on hyperbolic crosses with gaps. We determine
reconstructing rank-1 lattices for these frequency index sets and compute approximations
and interpolations in dimensions d up to d = 10. The error decay of the approximations is
almost optimal with respect to the parameter N of the frequency index sets IN .

Within all examples, we point out the advantages of well adapted frequency index sets I.
At this point, we emphasize that all computed approximations are based on the approxima-
tion of functions using different Dirichlet kernels, see e.g. [Wei12]. We stress the fact that our
sampling methods are not limited to such approximations. One may also compute approx-
imations based on other trigonometric kernels, e.g., `q-Fejér and Riesz kernels, cf. [Wei12].
To this end, one determines the frequency index sets of the specific kernels and compute
approximations from sampling values along reconstructing rank-1 lattices for those frequency
index sets.
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Approximation using
Multivariate Trigonometric Polynomials

In the wide field of approximation theory, one mostly uses smoothness properties of a function
in order to determine the quality of a specific approximation method. In particular for
sufficiently smooth multivariate periodic functions f : Td → C, d ∈ N is the spatial dimension,
one takes the function f as its Fourier series

f(x) =
∑
k∈Zd

f̂ke2πik·x

and characterizes the smoothness of the function f using properties of its Fourier coefficients

f̂k :=

∫
Td
f(x)e−2πik·xdx. (2.1)

We assume that the function f belongs to the function space L1(Td) in order to guarantee the
existence of all Fourier coefficients f̂k, k ∈ Zd, of f . The function spaces Lp(Td), 1 ≤ p <∞,
are defined by

Lp(Td) :=

{
f : Td → C,

∫
Td
|f(x)|pdx <∞

}
(2.2)

and for p =∞

L∞(Td) :=
{
f : Td → C, ess supx∈Td |f(x)| <∞

}
. (2.3)

As usual, the norm of a function f ∈ Lp(Td) is denoted and given by ‖f |Lp(Td)‖ :=(∫
Td |f(x)|pdx

)1/p
for 1 ≤ p <∞, and ‖f |L∞(Td)‖ := ess supx∈Td |f(x)| for p =∞.

In the following, we consider the Fourier coefficients f̂k in dependence on k ∈ Zd. If
the absolute values of the Fourier coefficients decrease sufficiently fast for growing frequency
index k, we may approximate the function f using only a few terms f̂ke2πik·x, k ∈ I ⊂ Zd,
|I| <∞, very well. We call the set I frequency index set of the Fourier partial sum

SIf(x) :=
∑
k∈I

f̂ke2πik·x (2.4)

15
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which is a trigonometric polynomial with frequencies supported on the index set I, in fact.
We emphasize that we left out a lot of details in the last sentences. Specifically, the reader

may ask the following questions:

• What means “sufficiently fast decreasing Fourier coefficients”?

• How do we define the growth of a vector k ∈ Zd?

• How do we get the Fourier coefficients f̂k of the function f for specific k ∈ Zd, i.e., how
do we evaluate the integrals in (2.1)?

A lot of details on the characterizations of periodic functions and suitable function spaces,
particularly concerning the properties of the Fourier coefficients of f , can be found in [ST87,
Chapter 3].

In this chapter, we consider the approximation of functions f using Fourier partial sums
SIf , where the frequency index set I should be carefully chosen with respect to the proper-
ties of the sequence of the Fourier coefficients (f̂k)k∈Zd . In detail, we are interested in the
approximation of functions f that belongs to a subspace of L2(Td), which is a Hilbert space
with the scalar product

〈f, g〉L2(Td) :=

∫
Td
f(x)g(x)dx, (2.5)

where g is the complex conjugate of g. More specifically, we consider periodic functions
f ∈ L1(Td), where the sequence of Fourier coefficients of f is absolutely summable, which
implies that the considered functions f have continuous representatives within L1(Td). We
call the function space

A(Td) := {f ∈ L1(Td) :
∑
k∈Zd

|f̂k| <∞} (2.6)

the Wiener algebra and define the related norm of f by ‖f |A(Td)‖ :=
∑
k∈Zd |f̂k|. Since

we would like to sample the functions f ∈ A(Td) in the following chapters, we identify each
function f ∈ A(Td) with its continuous representative

∑
k∈Zd f̂ke2πik·◦. Furthermore, we

introduce subspaces of the Wiener algebra. The corresponding function spaces may consist
of functions that have a specific type of smoothness, i.e., isotropic smoothness or dominating
mixed smoothness.

We consider the approximation properties of Fourier partial sums SIf , see (2.4), where
the frequency index set I has to be suitably chosen with respect to a function space that
contains the function f . Later on, our goal will be the approximation of the Fourier partial
sum SIf from sampling values of the function f . For that reason, we study the corresponding
Fourier matrix

A :=
(

e2πik·x
)
x∈X ,k∈I

, (2.7)

where X := {xj ∈ Td : j = 0, . . . ,M − 1} is a sampling scheme on the d-dimensional torus
Td. Note that we assume to run through the sets I and X in some fixed order whenever we
use k ∈ I or x ∈ X as running index of matrices or vectors.

We assume that the frequency index set I is fixed and determine some specific necessary
conditions on the Fourier matrix A and, in particular, the cardinality of the sampling set
X in order to guarantee pairwise orthogonal columns within the Fourier matrix A, i.e.,
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the condition number of A is one and, thus, the corresponding discrete Fourier transform
perfectly stable, cf. Lemma 2.5. In particular, we prove a lower bound on the number of
sampling values in X that are necessarily needed in order to obtain such perfectly stable
Fourier matrices A.

Furthermore, we apply our general findings on different well-known structures of frequency
index sets I and give specific lower bounds on the number of sampling values that are needed
in order to achieve Fourier matricesA that have orthogonal columns. Specifically, we consider
so-called weighted lp-balls, 0 < p ≤ ∞, as frequency index sets I, that may occur if one
approximates functions in spaces of isotropic smoothness. In addition, we also deal with
(energy-norm based) hyperbolic cross type frequency index sets I, that are very well suited
to the approximation of functions of dominating mixed smoothness.

2.1 Approximation of Multivariate Periodic Functions

We denote by ΠI the space of all multivariate trigonometric polynomials with frequencies
supported on the index set I ⊂ Zd, which is a set of finitely many integer vectors. The
cardinality of the set I is denoted by |I|. In formula, we gain

ΠI := span{e2πik·◦ : k ∈ I}. (2.8)

The space ΠI is spanned by orthogonal basis functions with respect to the scalar product
in L2(Td), cf. (2.5), which implies that each element f ∈ ΠI is uniquely determined by its

vector of Fourier coefficients
(
f̂k

)
k∈I

with f(x) =
∑
k∈I f̂ke2πik·x.

In general, a suitable chosen frequency index set I ensures good approximating Fourier
partial sums SIf ∈ ΠI , see (2.4), in specific function spaces. We define the weighted function
spaces

Aω(Td) := {f ∈ L1(Td) : f(x) =
∑
k∈Zd

f̂ke2πik·x,
∑
k∈Zd

ω(k)|f̂k| <∞}, (2.9)

where ω : Zd → [1,∞] is called weight function and characterizes the decay of the Fourier
coefficients of all functions f ∈ Aω(Td), i.e., the Fourier coefficients f̂k have to decrease
faster than the weight function ω increases with respect to k in order to obtain f ∈ Aω(Td).
Specifically, the decay of the Fourier coefficients f̂k describe the smoothness of the function f .
Moreover, we define the norm of a function f ∈ Aω(Td) by ‖f |Aω(Td)‖ :=

∑
k∈Zd ω(k)|f̂k|.

The space of continuous Td-periodic functions is represented by C(Td). The norm in the
vector space C(Td) coincides with the norm in L∞(Td). The next Lemma states that the
embeddings Aω(Td) ⊂ Aω1(Td) = A(Td)∩C(Td) hold, where ω1(k) = 1 for all k ∈ Zd. A(Td)
is called Wiener algebra.

Lemma 2.1. Each function f ∈ A(Td) has a continuous representative. In particular, we
obtain Aω(Td) ⊂ A(Td) ⊂ C(Td) with the usual interpretation.

Proof. Let f ∈ Aω(Td) be given. Then the function f belongs to A(Td) since the estimate

∞ >
∑
k∈Zd

ω(k)|f̂k| ≥
∑
k∈Zd

|f̂k|

holds.



18 2 Multivariate Trigonometric Polynomials

Now, let f ∈ A(Td) be given. The summability of the sequence (|f̂k|)k∈Zd of the absolute

values of the Fourier coefficients implies the summability of the sequence (|f̂k|2)k∈Zd of the
squared absolute values of the Fourier coefficients and, thus, the embeddings A(Td) ⊂ L2(Td)
is proved using Parseval’s identity and a standard estimate.

Clearly, the function g =
∑
k∈Zd f̂ke2πik·◦ is a representative of f in L2(Td) and also in

A(Td). We show, that g is the continuous representative of f .
The absolute values of the Fourier coefficients of f ∈ A(Td) are summable. So, for each

ε > 0 there exists an index set I ⊂ Zd of finite cardinality with
∑
k∈Zd\I |f̂k| <

ε
4 . For a fixed

x0 ∈ Td, we estimate

|g(x0)− g(x)| =

∣∣∣∣∣∣
∑
k∈Zd

f̂ke2πik·x0 −
∑
k∈Zd

f̂ke2πik·x

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
k∈I

f̂ke2πik·x0 −
∑
k∈I

f̂ke2πik·x
∣∣∣∣∣+

ε

2
.

The trigonometric polynomial SIf(x) =
∑
k∈I f̂ke2πik·x is a continuous function. Accord-

ingly, for ε > 0 and x0 ∈ Td there exists δ0 > 0 such that ‖x0 − x‖1 < δ0 implies
|SIf(x0)− SIf(x)| < ε

2 and we obtain

|g(x0)− g(x)| < ε for all x with ‖x0 − x‖1 < δ0.

In particular for further considerations on sampling methods, cf. Sections 3.4, 3.5, and
4.5, it is essential that we identify each function f ∈ A(Td) with its continuous representative
in the following. Note that the definition of Aω(Td) in (2.9) already comprises the continuity
of the contained functions.

Lemma 2.2. Assuming the cardinality |IN | of the index set IN = {k ∈ Zd : ω(k) ≤ N},
N ∈ R, being finite, the exact Fourier partial sum

SIN f(x) :=
∑
k∈IN

f̂ke2πik·x (2.10)

approximates the function f ∈ Aω(Td) and we estimate the error by

‖f − SIN f |L∞(Td)‖ ≤ N−1‖f |Aω(Td)‖.

Proof. Let f ∈ Aω(Td). We obtain SIN f ∈ Aω(Td) ⊂ C(Td) and straightforward calculation
yields

‖f − SIN f |L∞(Td)‖ = ess supx∈Td |(f − SIN f)(x)| = ess supx∈Td

∣∣∣∣∣∣
∑

k∈Zd\IN

f̂ke2πik·x

∣∣∣∣∣∣
≤

∑
k∈Zd\IN

|f̂k| ≤
1

infk∈Zd\IN ω(k)

∑
k∈Zd\IN

ω(k)|f̂k|

≤ 1

N

∑
k∈Zd

ω(k)|f̂k| = N−1‖f |Aω(Td)‖.
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Lemma 2.3. Let N ∈ R and the index set IN := {k ∈ Zd : ω(k) ≤ N} with the cardinality
0 < |IN | <∞ be given. The norm of the operator SIN is bounded by

1

mink∈Zd ω(k)
≤ ‖SIN |Aω(Td)→ C(Td)‖ ≤ 1

mink∈Zd ω(k)
+

1

N
.

Proof. Due to 0 < |IN | < ∞ there exists mink∈IN ω(k) and mink∈Zd ω(k) = mink∈IN ω(k).
In order to obtain the upper bound we apply the triangle inequality and Lemma 2.2. We
estimate

‖SIN |Aω(Td)→ C(Td)‖ = sup
f∈Aω
‖f |Aω‖=1

‖SIN f |C(T
d)‖

≤ sup
f∈Aω
‖f |Aω‖=1

‖SIN f − f |C(T
d)‖+ sup

f∈Aω
‖f |Aω‖=1

‖f |C(Td)‖

≤ sup
f∈Aω
‖f |Aω‖=1

∑
k∈Zd

|f̂(k)|+N−1‖f |Aω(Td)‖

≤ sup
f∈Aω
‖f |Aω‖=1

∑
k∈Zd

ω(k)

mink∈Zd ω(k)
|f̂(k)|+N−1‖f |Aω(Td)‖

≤ 1

mink∈Zd ω(k)
+

1

N
.

To prove the lower bound we construct a suitable example. Let k′ ∈ IN be a frequency index
with ω(k′) = mink∈Zd ω(k). The trigonometric polynomial g(x) = 1

ω(k′)e2πik′·x is an element

of Aω(Td) and the corresponding norm amounts to ‖g|Aω(Td)‖ = 1. With SIN g = g, we
achieve

‖SIN |Aω(Td)→ C(Td)‖ ≥ ‖SIN g|C(T
d)‖ = ‖g|C(Td)‖ = g(0) =

1

ω(k′)
=

1

mink∈IN ω(k)
.

2.2 Stability

It is well known that for full grid discretizations X in spatial domain and corresponding full
grid I in frequency domain the related Fourier matrix

A := A(I,X ) :=
(

e2πik·x
)
x∈X ,k∈I

∈ C|X |×|I|

is a unitary one up to some constant. This basically means that the columns of the matrix
A are pairwise orthogonal, i.e., A∗A = MI, where M = |X | is the number of discretization
nodes in the spatial domain, A∗ ∈ C|I|×|X | is the adjoint matrix of A, and I ∈ C|I|×|I| is
the identity matrix. In particular for full grid discretizations I in frequency domain and
corresponding full grid discretization X in spatial domain, the Fourier matrix A is a squared
matrix, i.e., |I| = |X |, and describes a bijective mapping from frequencies supported on the
frequency index set I to function values at the spatial discretization X .
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Lemma 2.4. For a, b ∈ Zd with as ≤ bs, s = 1, . . . , d, let I =
(
×d

s=1
[as, bs]

)
∩ Zd be a full

grid discretization in frequency domain. The sampling set X =×d
s=1
{0, 1

bs−as+1 , . . . ,
bs−as
bs−as+1}

entails a Fourier matrix

A =
(

e2πik·x
)
x∈X ,k∈I

such that A∗A =
∏d
s=1(bs − as + 1) I.

Proof. For each k, h ∈ I we obtain

(A∗A)k,h =
∑
x∈X

e2πi(h−k)·x =

d∏
s=1

bs−as∑
js=0

e2πi(hs−ks) js
bs−as+1

=

d∏
s=1

(bs − as + 1)δ0(hs − ks) =

{
0 for h 6= k,∏d
s=1(bs − as + 1) for h = k.

The function δ0 is the Dirac delta function, i.e., δ0(x) =

{
1 for x = 0,

0 otherwise.

In Chapter 3 of this work, we will show that we can construct a suitable spatial dis-
cretization for each arbitrary index set I such that A∗A = MI takes effect. In gen-
eral, we have to expect some oversampling. That means the matrices A are rectangular
matrices with a number of rows at least as big as the number of columns, i.e. M ≥
|I|. Note that the full grid spatial discretization corresponding to the full frequency grid
×ds=1 ([min{ks ∈ Z : k ∈ I},max{ks ∈ Z : k ∈ I}] ∩ Z) that contains I fulfills A∗A = MI, for
example. But in general, the cardinality of this full grid in spatial domain is huge and so
impractical for higher dimensions d. Nevertheless this cardinality is a simple upper bound
for the number of samples needed to perfectly stable evaluate and reconstruct trigonometric
polynomials with frequencies supported on the index set I. The next lemma gives a lower
bound of this number of samples. Prior to this, we have to define an operator working on
sets in the following sense

D(I) := {h ∈ Zd : h = k1 − k2,k1,k2 ∈ I}. (2.11)

Thus, the operator D applied on the set I results in a set containing all possible differences
of two elements of the set I. We call the set D(I) difference set of the frequency index set I.

Lemma 2.5. Let I ⊂ Zd be an arbitrary frequency index set of finite cardinality. We need
at least M ≥ maxI′⊂Zd{|I ′| : D(I ′) ⊂ D(I)} samples to achieve a Fourier matrix A with
orthogonal columns.

Proof. Let I ′ be a frequency index set such that |I ′| = maxI′′⊂Zd{|I ′′| : D(I ′′) ⊂ D(I)} and
D(I ′) ⊂ D(I). Furthermore let the cardinality M = |X | of the sampling set X and the
elements of X labeled by x0, . . . ,xM−1. The condition A∗A = MI reads as follows

(A∗A)k,h =
M−1∑
j=0

e2πi(h−k)·xj = M
d∏
s=1

δ0(hs − ks)
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for all k,h ∈ I and δ0(x) =

{
1 for x = 0,

0 for x 6= 0.
Since {h− k ∈ Zd : h,k ∈ I} = D(I) ⊃ D(I ′) =

{h− k ∈ Zd : h,k ∈ I ′}, we obtain

(
Ã
∗
Ã
)
k,h

:=
M−1∑
j=0

e2πi(h−k)·xj = M
d∏
s=1

δ0(hs − ks)

for all h,k ∈ I ′ with Ã =
(
e2πihxj

)
j=0,...,M−1,h∈I′ . Obviously the columns of Ã need to be

pairwise orthogonal. According to that, the matrix Ã has full column rank. This implies
that M ≥ |I ′| is necessary.

Another point of view leads us to the following interpretation of orthogonality of the
Fourier matrix A, i.e.,

(A∗A)k1,k2 =
M−1∑
j=0

e2πi(k2−k1)·xj .

The condition A∗A = MI implies that all monomials e2πih·x with frequencies supported on
the difference set of I, i.e., h ∈ D(I), can be exactly integrated using the quasi–Monte Carlo
method

QX [f ] :=
1

M

M−1∑
j=0

f(xj) (2.12)

that is given by the sampling set X := {xj ∈ Td : j = 0, . . . ,M − 1}, i.e., we achieve

QX [p] :=
1

M

M−1∑
j=0

p(xj) =

∫
Td
p(x)dx (2.13)

for all p ∈ ΠD(I). According to this notion, S. M. Ermakov explains in his monograph [Erm75,

Chap. IV] that there exist sampling sets X̃ = {xj ∈ Td : j = 0, . . . , |D(I)| − 1} of cardinality
|X̃ | = |D(I)| such that each of the linear independent monomials e2πih·x, h ∈ D(I), and thus
also all of their linear combinations p ∈ ΠD(I), can be numerically integrated in an exact way
using a weighted cubature formula

QX̃ [p] =

|X̃ |−1∑
j=0

wjp(xj),

where (wj)
|X̃ |−1
j=0 are the weights. In short words, there exist sampling sets X̃ of a cardinality

|X̃ | = |D(I)|, such that we obtain

QX̃ [p] =

∫
Td
p(x)dx

for all p ∈ ΠD(I).
One of the main targets of Chapter 3 is the construction of sampling sets X such that

the quasi–Monte Carlo rule (2.12) is exact for all trigonometric polynomials supported on
the difference set D(I), i.e., (2.13) holds for all p ∈ ΠD(I). To be more precise, we are eagerly
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interested in sampling sets X with additional “rank-1” structure in Chapters 3 and 4. This
additional structure of X allows us to break a multidimensional discrete Fourier transform
down to a one-dimensional discrete Fourier transform. Accordingly, we can compute the
matrix vector products concerning the Fourier matrixA and its (pseudo–)inverse using known
fast algorithms.

2.3 Specific Frequency Index Sets

In this section, we consider different structures of frequency index sets that appear in a
wide variety of applications. More precisely, we consider frequency index sets IN := {k ∈
Zd : ω(k) ≤ N} determined by ω such that functions f ∈ Aω(Td) may be well approximated
by trigonometric polynomials with frequencies supported on the specific index sets IN . The
subsections are named after these index sets. In the following we use dimension-dependent
weight-sequences γ = (γs)

∞
s=1 ∈ [0, 1]N and we assume that the components of the variable

x = (x1, x2, . . . , xd)
> are ordered in their importance, i.e. γ1 ≥ γ2 ≥ . . .. We stress the

fact that the weight sequence γ may moderate the dependence on the different dimensions
and, in addition, the dependencies between different dimensions. In particular, in the field of
information based complexity such weights are used in order to determine tractability results
on the integration problem in different weighted function spaces, see e.g. [SW01, HW01,
NW01]. Furthermore some additional papers also deal with the approximation of functions
that belong to those function spaces, cf. e.g. [HW00, NSW04]. We suggest the monographs
of E. Novak and H. Woźniakowski, see [NW08, NW10, NW12], that give a great overview
about existing tractability results and open questions, and in particular [NW08, Chapter 2]
that greatly motivates the considerations of dimension dependent weights from the point of
view of the experts in information based complexity. We discuss in Chapter 5 the relevance
of the weights γ in concrete applications.

2.3.1 Weighted `p-balls

In this subsection, we consider the weight functions

ωd,γp (k) = max
(

1, ‖k|`d,γp ‖
)

for 0 < p ≤ ∞, (2.14)

where

‖k|`d,γp ‖ =


(

d∑
s=1

(
γ−1
s |ks|

)p)1/p

for 0 < p <∞,

max
s=1,...,d

γ−1
s |ks| for p =∞

and γ = (γs)
∞
s=1 ∈ [0, 1]N. We define 0−1l =

{
0 for l = 0,

∞ for l ∈ N.
As described above we generate

index sets

Id,γp,N := {k ∈ Zd : ωd,γp (k) ≤ N} (2.15)

and call them weighted `p-balls of size N . We prove the following inclusions and a universal

upper bound of the cardinality of Id,γp,N .



2.3 Specific Frequency Index Sets 23

Lemma 2.6. Let 0 < p < q ≤ ∞, the parameter N ∈ R, N ≥ 1, the dimension d ∈ N, and
the weights γ = (γs)

∞
s=1 ∈ [0, 1]N be given. Then the inclusion

Id,γp,N ⊂ I
d,γ
q,N and the estimates |Id,γp,N | ≤ |I

d,γ
q,N | ≤ |I

d,γ
∞,N | ≤ 22N

∑d
s=1 γs

hold.

Proof. Obviously, for N ≥ 1 we obtain 0 ∈ Id,γp,N for all 0 < p ≤ ∞. Consequently, in the

following we only consider elements k ∈ Id,γp,N \{0} and show that k ∈ Id,γq,N holds for all q > p.

Note that for k 6= 0 the equality ωd,γp (k) = ‖k|`d,γp ‖ holds. We start with the special case

q =∞. Let k ∈ Id,γp,N \ {0}. We estimate

N ≥ ωd,γp (k) = ‖k|`d,γp ‖ =

(
d∑
s=1

|γ−1
s ks|p

)1/p

≥
(

max
s=1,...,d

|γ−1
s ks|p

)1/p

= max
s=1,...,d

γ−1
s |ks| = ωd,γ∞ (k).

Hence, we obtain k ∈ Id,γ∞,N for all k ∈ Id,γp,N and we conclude Id,γp,N ⊂ I
d,γ
∞,N . Next, we show the

inclusions for 0 < p < q <∞. We take k ∈ Id,γp,N \ {0} and obtain

1 =
ωd,γq (k)

ωd,γq (k)
=

∥∥∥∥∥ k

‖k|`d,γq ‖

∣∣∣`d,γq
∥∥∥∥∥ =

(
d∑
s=1

(
γ−1
s |ks|
‖k|`d,γq ‖

)q)1/q

≤

(
d∑
s=1

(
γ−1
s |ks|
‖k|`d,γq ‖

)p)1/q

≤ ‖k|`
d,γ
p ‖p/q

‖k|`d,γq ‖p/q
=

(
ωd,γp (k)

ωd,γq (k)

)p/q
.

Since the function tp/q is monotonically increasing for fixed 0 < p
q < 1 and 0 < t < ∞, we

conclude

N ≥ ωd,γp (k) ≥ ωd,γq (k)

for all k ∈ Id,γp,N and get Id,γp,N ⊂ I
d,γ
q,N .

The inclusions from above imply the inequalities |Id,γp,N | ≤ |I
d,γ
q,N | ≤ |I

d,γ
∞,N | for 0 < p < q ≤

∞. Consequently, we only show the upper bound of the cardinality of Id,γ∞,N , N ≥ 1,

|Id,γ∞,N | =
d∏
s=1

(1 + 2 bγsNc) ≤
d∏
s=1

22bγsNc ≤ 22N
∑d
s=1 γs .

Note that this upper bound of the cardinalities of Id,γp,N , 0 < p ≤ ∞, is bounded indepen-
dently of d if

∑∞
s=1 γs <∞.

In order to apply Lemma 2.5 we show some inclusions concerning the difference sets
D(Id,γp,N ), see (2.11), of weighted `p-balls and, in addition, lower and upper bounds on the
cardinality of weighted `p-balls.
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Lemma 2.7. Let the parameter N ∈ R, N ≥ 1, the dimension d ∈ N, and the weights
γ = (γs)

∞
s=1, γ1 ≥ γ2 ≥ . . . ≥ γd > 0, be given. Then for the difference set D(Id,γp,N ) the

inclusions
Id,γ

1,2N−γ−1
d

∪ Id,γp,N ⊂ D(Id,γp,N ) ⊂ Id,γp,2N for 1 ≤ p ≤ ∞,

and
Id,γ

1,d
p−1
p N
⊂ Id,γp,N ⊂ D(Id,γp,N ) ⊂ Id,γ

p,21/pN
for 0 < p < 1

hold.

Proof. At first we consider the case 1 ≤ p ≤ ∞. For arbitrary k, l ∈ Id,γp,N we estimate by the
triangle inequality

‖k − l|`d,γp ‖ ≤ ‖k|`d,γp ‖+ ‖l|`d,γp ‖ ≤ 2N.

Accordingly, we obtain D(Id,γp,N ) ⊂ Id,γp,2N .

In the following we consider the first inclusion from above. Due to 0 ∈ Id,γp,N we obtain

Id,γp,N ⊂ D(Id,γp,N ). Because of Id,γ
1,2N−γ−1

d

= ∅ for 2N−γ−1
d < 1, we consider w.l.o.g. 2N−γ−1

d ≥ 1.

Due to Id,γ1,N ⊂ Id,γp,N and accordingly D(Id,γ1,N ) ⊂ D(Id,γp,N ), 1 ≤ p ≤ ∞, it is sufficient to prove

the inclusion Id,γ
1,2N−γ−1

d

⊂ D(Id,γ1,N ). Considering that, we take an arbitrary h ∈ Id,γ
1,2N−γ−1

d

and

show that there exist l,k ∈ Id,γ1,N such that h = k− l. We split the indices of the components

of h ∈ Id,γ
1,2N−γ−1

d

in two subsets

I1 :=

{
s ∈ N : 1 ≤ s ≤ d, hs

2
∈ Z

}
and I2 :=

{
s ∈ N : 1 ≤ s ≤ d, hs

2
6∈ Z

}
and order the elements of the set I2 following 1 ≤ s1 < . . . < s|I2| ≤ d. We define

ks =


hs
2 for s ∈ I1,

sgn(hs)
|hs|−1

2 for s ∈ I2, s = st, t/2 ∈ Z,
sgn(hs)

|hs|+1
2 for s ∈ I2, s = st, t/2 6∈ Z,

and l = k − h,

where sgn denotes the sign function, and estimate the norms of k and l

‖k|`d,γ1 ‖ =
d∑
s=1

γ−1
s |ks| =

∑
s∈I1

γ−1
s

|hs|
2

+

|I2|∑
t=1

γ−1
st

|hst |+ (−1)t+1

2

=
1

2

d∑
s=1

γ−1
s |hs|+

1

2

|I2|∑
t=1

(−1)t+1γ−1
st ≤

‖h|`d,γ1 ‖+ γ−1
d

2
≤ N,

‖l|`d,γ1 ‖ =
d∑
s=1

γ−1
s |ks − hs| =

∑
s∈I1

γ−1
s

|hs|
2

+

|I2|∑
t=1

γ−1
st

|hst |+ (−1)t

2

=
1

2

d∑
s=1

γ−1
s |hs|+

1

2

|I2|∑
t=1

(−1)tγ−1
st ≤

‖h|`d,γ1 ‖+ γ−1
d

2
≤ N

since the ordered sequence 1 ≥ γ1 ≥ . . . ≥ γd > 0 implies the estimate
∑|I2|

t=1(−1)t+jγ−1
st ≤

γ−1
d , j = 0, 1.
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Considering the case 0 < p < 1, we obtain that the functions tp and t1/p are concave
and convex, respectively. Due to N ≥ 1, we know 0 ∈ Id,γp,N and Id,γp,N ⊂ D(Id,γp,N ). Showing

the third inclusion, we assume h ∈ D(Id,γp,N ). Consequently, we determine k, l′ ∈ Id,γp,N with

h = k − l′. The set Id,γp,N is symmetric to the origin. Accordingly, there exists l = −l′ ∈ Id,γp,N
and we obtain h = k + l. We apply the concaveness of the function tp and obtain

‖h|`d,γp ‖p = ‖k + l|`d,γp ‖p =
d∑
s=1

γ−ps |ks + ls|p ≤
d∑
s=1

γ−ps |ks|p +
d∑
s=1

γ−ps |ls|p.

Using the homogeneity of the p-norm and the convexity of t1/p yields

‖h|`d,γp ‖ ≤
(
‖k|`d,γp ‖p + ‖l|`d,γp ‖p

)1/p
= 21/p

(
1

2

∥∥∥k|`d,γp ∥∥∥p +
1

2

∥∥∥l|`d,γp ∥∥∥p)1/p

≤ 21/p−1(‖k|`d,γp ‖+ ‖l|`d,γp ‖) ≤ 21/pN.

The embedding D(Id,γp,N ) ⊂ Id,γ
p,21/pN

is the best possible one, since

k = (bγ1Nc , 0, . . . , 0)> and l = (0, bγ2Nc , 0, . . . , 0)

implies k, l ∈ Id,γp,N and

‖k − l|`d,γp ‖ = (γ−p1 bγ1Ncp + γ−p2 bγ2Ncp)1/p ≥ (c1N
p + c2N

p)1/p = (c1 + c2)1/pN,

where c1 ≤ 1 and c2 ≤ 1. The constants c1 and c2 can come arbitrarily close to 1 depending
on N , and the values of γ1 and γ2.

In order to show the first inclusion, we assume k ∈ Id,γ
1,d

p−1
p N

and estimate

(
d
p−1
p N

)p
≥ ‖k|`d,γ1 ‖

p =

(
d∑
s=1

γ−1
s |ks|

)p
.

Again, we apply the concaveness of tp, 0 < p < 1, and Jensen’s inequality and obtain

(
d
p−1
p N

)p
≥ dp

(
1

d

d∑
s=1

γ−1
s |ks|

)p
≥ dp

d

d∑
s=1

(γ−1
s |ks|)p = dp−1‖k|`d,γp ‖p,

which implies d
p−1
p N ≥ d

p−1
p ‖k|`d,γp ‖ and k ∈ Id,γp,N .

Lemma 2.8. For fixed dimension d ∈ N, parameter 1 ≤ p ≤ ∞, weights γ with 1 ≥ γ1 ≥
γ2 ≥ . . . ≥ γd > 0, and parameter N ∈ R, γdN ≥ 2d, we estimate the cardinality of Id,γp,N

γddN
d

d!
≤ |Id,γ1,N | ≤ |I

d,γ
p,N | ≤ |I

d,γ
∞,N | =

d∏
s=1

(1 + 2 bγsNc).
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Proof. The inclusions Id,γ1,N ⊂ Id,γp,N ⊂ Id,γ∞,N are shown in Lemma 2.6. We show the inclusion

Id,11,bγdNc ⊂ I
d,γ
1,N and prove a lower bound on the cardinality of Id,11,bγdNc.

Obviously, we obtain 0 ∈ Id,11,bγdNc and 0 ∈ Id,γ1,N for d ∈ N, γd ∈ (0, 1], and N ∈ R,

γdN ≥ 2d. With h ∈ Id,11,bγdNc \ {0} we have

N ≥ γ−1
d bγdNc ≥ γ

−1
d ‖h|`

d,1
1 ‖ =

d∑
s=1

γ−1
d |hs| ≥

d∑
s=1

γ−1
s |hs| = ‖h|`

d,γ
1 ‖

and hence h ∈ Id,γ1,N .
In [Mys01] one finds a detailed proof of the cardinality of unweighted `1-balls, which yields

|Id,11,bγdNc| ≥
min(d,bγdNc)∑

l=0

(
d
l

)(
bγdNc
l

)
2l

=

d∑
l=0

(
d
l

)(
bγdNc
l

)
2l ≥

(
d
d

)(
bγdNc
d

)
2d

≥ 2d(γdN − 1) . . . (γdN − d)

d!
≥ 2d(γdN − d)d

d!
≥ (γdN)d

d!
.

The last lemma motivates the next

Corollary 2.9. Let d ∈ N, 0 < p ≤ ∞, and γ = (γs)
∞
s=1 with 1 ≥ γ1 ≥ . . . ≥ γd > 0 be fixed.

In addition, we assume N ∈ R and γdcd,pN ≥ 2d, where cd,p =

{
1 for 1 ≤ p ≤ ∞,
d(p−1)/p for 0 < p < 1.

In order to obtain orthogonal columns of the Fourier matrix A =
(
e2πih·x)

x∈X ,h∈Id,γp,N
the

cardinality of the sampling set X necessarily fulfills

|X | ≥ Cd,p,γNd.

Proof. We obtain Id,γ1,cd,pN
⊂ Id,γp,N with cd,p =

{
1 for 1 ≤ p ≤ ∞,
d(p−1)/p for 0 < p < 1,

cf. Lemmas 2.6 and

2.7. Obviously, we have D(Id,γ1,cd,pN
) ⊂ D(Id,γp,N ) and Lemmas 2.5 and 2.8 yields that each

sampling set X that entails orthogonal columns of the Fourier matrix A(Id,γp,N ,X ) needs at
least

|Id,γ1,cd,pN
| ≥

γddc
d
d,pN

d

d!

different sampling nodes.

Figures 2.1a – 2.1d show unweighted (i.e., γ = 1) two-dimensional `p-balls for p = 1
2 , 1, 2,

and ∞. Since each d-dimensional `p-ball Id,γp,N , 0 < p ≤ ∞, contains a d-dimensional `1-
ball of appropriate size, cf. Lemma 2.7, we conclude that the cardinality of each `p-ball is

bounded from above and below by cd,p,γN
d ≤ |Id,γp,N | ≤ Cd,p,γN

d. Accordingly, we obtain

that the cardinalities of the frequency index sets Id,γp,N grow like Nd with increasing N and

fixed parameter p, dimension d, and weights (γs)
d
s=1 ∈ (0, 1]d. Due to their fast growing
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Figure 2.1: Two-dimensional `p-balls I2,1
p,16 for p ∈ {1

2 , 1, 2,∞}.

cardinality, the frequency index sets Id,γp,N are unmanageable, at least for dimensions d ≥ 6
and fast growing values of the parameter N .

In principle, the function spaces A
ωd,γp

(Td) are equivalent for fixed dimension d, and

different γ, 1 ≥ γ1 ≥ . . . ≥ γd > 0 and p. Nevertheless, if one considers the approximation
properties within the spaces A

ωd,γp
(Td) for growing dimension d, the particular choice of p

may cause differences in the results, cf. [KSU14] for similar considerations in Hilbert spaces.

However, a lot of numerical applications in higher dimensions d allow for further restric-
tions on the functions that should be approximated. A very popular concept is to consider
function spaces of dominating mixed smoothness, see e.g. the sparse grid sampling results in
[DS89, Zen91, DPT94, SS99a, SS99b, Spr00, BG04, SU07, Ull08, Yse10] for various function
spaces of dominating mixed smoothness and [Tem86] for a specific rank-1 lattice approach.
In detail, one assumes that the mixed partial derivatives decay as fast as the unmixed par-
tial derivatives of the same order. These additional assumptions shrinks the function spaces
enormously and, thus, reduces the number of degrees of freedom of specific approximation
problems. More precisely, trigonometric polynomials with frequencies supported on `p-balls
are ill-suited in order to approximate functions of such function spaces due to their fast grow-
ing cardinality with respect to the parameter N . The naturally well-suited discretizations
in frequency domain are so-called hyperbolic crosses. The cardinalities of these index sets
grow much slower with increasing N and fixed other parameters, which is one of the main
advantages of hyperbolic crosses.

2.3.2 Weighted Hyperbolic Crosses

This subsection treats so-called weighted hyperbolic crosses. Trigonometric polynomials with
frequencies supported on hyperbolic crosses are suitable to approximate functions from spaces
of dominating mixed smoothness. Those spaces are often called Korobov spaces in the field
of information based complexity and applications in numerical integration. We are interested
in frequency index sets I of relatively small cardinality, such that the indices of the most
important frequencies of functions of dominating mixed smoothness are collected in there.
With weights γ = (γs)

∞
s=1, 1 ≥ γs ≥ 0, s ∈ N, we define the weight function

ωd,γhc (k) =
d∏
s=1

max(1, γ−1
s |ks|). (2.16)
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Figure 2.2: Two-dimensional weighted hyperbolic crosses I2,γ
hc,N for different N and γ.

Here, we also set 0−1l =

{
0 for l = 0,

∞ for l ∈ N.
For N ∈ R and fixed weights γ, we consider the

index set

Id,γhc,N := {k ∈ Zd : ωd,γhc (k) ≤ N} (2.17)

and call it weighted hyperbolic cross. Figure 2.2 shows some two-dimensional weighted hy-
perbolic crosses and illustrates the effects of different weights γ. At a first glance on Figures
2.1a and 2.2a the `1/2-ball seems to be more sparse than the unweighted hyperbolic cross

Id,1hc,N . In fact, for larger values of N and, in particular, higher dimensions d > 2 one observes
and proves the contrary.

Specifically, the cardinalities of weighted hyperbolic crosses do not depend on the refine-
ment N to the power of the dimension d in contrast to weighted `p-balls. We denote by

ζ(τ) =
∑∞

k=1 k
−τ the Riemann zeta function and estimate the cardinality of Id,γhc,N in the

following lemma.

Lemma 2.10. Let d ∈ N, N ∈ R, N ≥ 1, and γ = (γs)
∞
s=1 with 1 ≥ γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0.

The cardinality of Id,γhc,N is bounded from above by

|Id,γhc,N | ≤ N
τ

d∏
s=1

(1 + 2ζ(τ)γτs ) for all τ > 1. (2.18)

In addition, we obtain

Id,1hc,N ′ ⊂ I
d,γ
hc,N ⊂ I

d,1
hc,N , where N ′ = N

d∏
s=1

γs,

and, as a consequence, |Id,γhc,N | ∈ Θ
(
N(logN)d−1

)
for fixed dimension d and weights γ with

γd > 0.

Proof. A proof of the inequality in (2.18) can be found in [CKN10, Section 2.5].

The embeddings are proven by the inequalities

d∏
s=1

max(1, |ks|) ≤
d∏
s=1

max(1, γ−1
s |ks|)
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and

d∏
s=1

max(1, γ−1
s |ks|) ≤

d∏
s=1

max(γ−1
s , γ−1

s |ks|) =

(
d∏
s=1

γ−1
s

)(
d∏
s=1

max(1, |ks|)

)
.

for each k ∈ Zd.
Using a simple induction, one shows the cardinality estimates for the index sets Id,1hc,N

cdN max(logN, 1)d−1 ≤ |Id,1hc,N | ≤ CdN max(logN, 1)d−1. (2.19)

Alternatively, one concludes the lower bound in (2.19) using some embedding arguments
for so-called dyadic hyperbolic crosses, cf. [KKP12, Lemma 2.1], and the estimates for the
cardinality of dyadic hyperbolic crosses in [Hal92, Section 5.3]. The upper bound is explicitly
proved in [Käm13a, Remark 4.10]. We apply the estimates in (2.19) and achieve

cd,γN max (logN, 1)d−1 ≤ cdN ′max
(
logN ′, 1

)d−1 ≤ |Id,γhc,N | ≤ CdN max(logN, 1)d−1.

Note that for fixed τ > 1 and a summable γ, i.e.
∑∞

s=1 γs < ∞, the upper bound from

(2.18) of the cardinality of Id,γhc,N is independent of the dimension d, cf. [Kno54, Chapter VII,
Theorem 7].

We apply Lemma 2.5 on weighted hyperbolic crosses and obtain that we have to expect
oversampling to achieve a perfectly stable spatial discretization for trigonometric polynomials
with frequencies supported on weighted hyperbolic crosses. The used proof technique is
illustrated in Figure 2.3.

Lemma 2.11. Let γ = (γs)
∞
s=1 with 1 ≥ γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0, d ≥ 2, and N ∈ R. In order

to obtain orthogonal columns in the Fourier matrix A :=
(
e2πik·x)

x∈X ,k∈Id,γhc,N
the cardinality

M of the sampling set X has to be at least as big as (bγ1Nc+ 1)(bγ2Nc+ 1).

Proof. We define

I ′ = {0, . . . , bγ1Nc} × {0, . . . , bγ2Nc} × {0} × · · · × {0}︸ ︷︷ ︸
d−2−times

⊂ Zd

and obtain

D(I ′) = {− bγ1Nc , . . . , bγ1Nc} × {−bγ2Nc , . . . , bγ2Nc} × {0} × · · · × {0}︸ ︷︷ ︸
d−2−times

⊂ {k − l ∈ Zd : l1 ∈ [−bγ1Nc , bγ1Nc] ∩ Z, l2 = . . . = ld = 0,

k2 ∈ [−bγ2Nc , bγ2Nc] ∩ Z, k1 = k3 = . . . = kd = 0}

⊂ {k − l ∈ Zd : k, l ∈ Id,γhc,N} = D(Id,γhc,N ).

We apply Lemma 2.5 and get that the number M of samples needed to achieve a Fourier
matrix with orthogonal columns is at least as big as the cardinality of I ′. Consequently, we
obtain the necessary condition |X | ≥ (bγ1Nc+ 1)(bγ2Nc+ 1).
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Figure 2.3: Weighted hyperbolic cross I2,γ
hc,40, γ = (1/2, 1/4, 0, . . .), its difference set

D
(
I2,γ

hc,40

)
, a corresponding subset {−20, . . . , 20} × {−10, . . . , 10} ⊂ D

(
I2,γ

hc,40

)
and a two-dimensional tensor product grid {0, . . . , 20} × {0, . . . , 10} with differ-
ence set D ({0, . . . , 20} × {0, . . . , 10}) = {−20, . . . , 20} × {−10, . . . , 10}.

Due to the fact that the cardinality of weighted hyperbolic crosses is bounded by (2.19),
i.e., by terms CdN max(logN, 1)d−1 and perfectly stable sampling schemes need at least
CγN

2 sampling values, we have to expect much more sampling nodes in X than the number

of frequency indices |Id,γhc,N | in order to obtain a perfectly stable Fourier matrix A—at least
for fixed dimension d, fixed weights γ, and large N .

At this point, we stress the fact that the cardinality of the weighted hyperbolic crosses
may not suffer from the curse of dimension if the weight sequence γ is summable, cf. (2.18).
Nevertheless, if we fix the dimension d and increases N the cardinality of the weighted
hyperbolic cross |Id,γhc,N | grows approximately as CdN max(logN, 1)d−1. Regardless of the

factor Cd that does not depend on N , already the terms (logN)d−1 will grow fast for small
N and dimensions d ≥ 10, e.g., (log 150)9 ≥ 59 = 1 953 125.

In specific applications, one can further shrink the frequency index sets to so-called
(weighted) energy-norm based hyperbolic crosses without losing approximation quality. In
particular, the cardinalities of those energy-norm based hyperbolic crosses can be bounded by
terms CdN , i.e., the dependence on the dimension d and the parameter N can be separated
in different factors. We would like to emphasize that the cardinality of energy-norm based
hyperbolic crosses can be bounded by terms that are even linear in N . However, the term
Cd may depend exponentially on the dimension d.

2.3.3 Energy-norm Based Hyperbolic Crosses

In some specific applications, one approximates functions with dominating mixed smoothness
and is interested in approximations that cause small errors with respect to norms that mainly
depends on the isotropic smoothness. The so-called energy norm, which is the (L2-)norm of
the sum of all first partial derivatives of a function, is of particular interest, cf. [BG04].
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Some work [BG99, BG04, Kna00, GH14] published during the last fifteen years treat
different kinds of so-called energy norms and corresponding energy-norm based hyperbolic
crosses. With γ = (γs)

∞
s=1 ∈ [0, 1]N, β ≥ 0, and β > −α, we define the weight function

ωd,γ,α,βehc (k) = max(1, ‖k‖1)
α

α+β

d∏
s=1

max(1, γ−1
s |ks|)

β
α+β . (2.20)

The corresponding frequency index sets are given by

Id,γ,α,βehc,N : = {k ∈ Zd : ωd,γ,α,βehc (k) ≤ N} = {k ∈ Zd : ω
d,γ,α

β
,1

ehc (k) ≤ N1+α
β }, N ≥ 1. (2.21)

Considering the weight function ωd,γ,α,βehc in detail, we obtain the equalities

ωd,γ,0,βehc = ωd,γhc and ωd,γ,α,0ehc = ωd,1p ,

cf. (2.14) and (2.16). Accordingly, the frequency index sets Id,γ,0,βehc,N and Id,γ,α,0ehc,N are weighted
hyperbolic crosses and unweighted `1-balls, respectively. The most interesting frequency
index sets resulting from (2.21) are those, where the parameters α and β fulfill α < 0 and
β > −α, cf. Figure 2.4 for illustrations in dimension 2. These frequency index sets are even
sparser than weighted hyperbolic crosses in some sense—for fixed dimension d, fixed weights
γ ∈ [0, 1]N, and parameters α < 0 and β > −α, we obtain a cardinality |Id,γ,α,βehc,N | ∈ O (N),
cf. [KPV13, Lemma 2.6]. In other words, increasing N causes expanding frequency index

sets Id,γ,α,βehc,N and the cardinality |Id,γ,α,βehc,N | can be bounded by terms that grows linearly in N .

We call the index sets Id,γ,α,βehc,N with α < 0 and β > −α energy-norm based hyperbolic crosses.
Due to the sparsity of energy-norm based hyperbolic crosses, we focus on the parameter
configuration α < 0 and β > −α and recognize, that the quotient of −α and β fulfills
0 < −α

β < 1. This quotient −α
β indicates somehow the sparsity of corresponding weighted

energy-norm based hyperbolic crosses, i.e., for fixed dimension d, fixed weight sequence γ,
and fixed N , Id,γ,α,βehc,N becomes sparser the larger −α

β is, cf. Figure 2.4.

Lemma 2.12. Let the dimension d ∈ N, the parameter N ∈ R, N ≥ 1, the weights γ ∈
[0, 1]N, α ≤ 0 and β > −α be given. The following inclusions hold

d⋃
s=1

{
(0)s−1

j=1

}
× {−

⌊
γ

β
α+β
s N

⌋
, . . . ,

⌊
γ

β
α+β
s N

⌋
} ×

{
(0)dj=s+1

}
⊂ Id,γ,α,βehc,N ⊂ Id,γ

hc,d
− α
α+βN

.

Proof. Due to N ≥ 1, we have 0 included in all three sets from above. Hence, in the

following we consider k 6= 0. We prove the first inclusion. Let 0 6= k ∈
⋃d
s=1

{
(0)s−1

j=1

}
×

{−
⌊
γ

β
α+β
s N

⌋
, . . . ,

⌊
γ

β
α+β
s N

⌋
} ×

{
(0)dj=s+1

}
. Then we determine s0 ∈ {1, . . . , d} with ks = 0

for all s 6= s0. Consequently, we estimate

ωd,γ,α,βehc (k) = |ks0 |
α

α+β max(1, γ−1
s0 |ks0 |)

β
α+β = γ

− β
α+β

s0 |ks0 | ≤ N.

We prove the second inclusion. We calculate ωd,γ,α,βehc (0) = 1. With 0 ∈ Id,γ,α,βehc,N and d ≥ 1 we

have N ≥ 1 and d
− α
α+βN ≥ 1. Due to ωd,γhc (0) = 1, we obtain 0 ∈ Id,γ

hc,d
− α
α+βN

. For arbitrary
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Figure 2.4: Two-dimensional weighted energy-norm based hyperbolic crosses I2,γ
ehc,N for dif-

ferent N , γ, and relations of α and β.

k ∈ Id,γ,α,βehc,N \ {0} we estimate

N ≥ ωd,γ,α,βehc (k) = max(1, ‖k‖1)
α

α+β

d∏
s=1

max(1, γ−1
s |ks|)

β
α+β

≥ d
α

α+β max(1, ‖k‖∞)
α

α+β

d∏
s=1

max(1, γ−1
s |ks|)

β
α+β .

With s0 ∈ {s ∈ N ∩ [1, . . . , d] : ks = ‖k‖∞} we estimate

d
− α
α+βN ≥

(
1

γs0

) β
α+β

|ks0 |
d∏
s=1
s 6=s0

max(1, γ−1
s |ks|)

β
α+β .

Due to β
α+β ≥ 1, 1

γs0
≥ 1 and max(1, γ−1

s |ks|) ≥ 1, s = 1, . . . , d, we obtain

d
− α
α+βN ≥ γ−1

s0 |ks0 |
d∏
s=1
s 6=s0

max(1, γ−1
s |ks|) =

d∏
s=1

max(1, γ−1
s |ks|) = ωd,γhc (k).

Lemma 2.13. Let the weights γ = (γs)
∞
s=1 ∈ [0, 1]N with 1 ≥ γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0, the

dimension d ≥ 2, and the parameters 0 ≤ −α < β and N ∈ R, N ≥ 1 be given. In order to
obtain orthogonal columns in the Fourier matrix A :=

(
e2πik·x)

x∈X ,k∈Id,γ,α,βehc,N
the cardinality

M of the sampling set X has to be at least as big as

(⌊
γ

β
α+β

1 N

⌋
+ 1

)(⌊
γ

β
α+β

2 N

⌋
+ 1

)
.
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Proof. Similar to the proof of Lemma 2.11, we define

I ′ =
{

0, . . . ,

⌊
γ

β
α+β

1 N

⌋}
×
{

0, . . . ,

⌊
γ

β
α+β

2 N

⌋}
× {0} × · · · × {0}︸ ︷︷ ︸

d−2-times

⊂ Zd

and obtain

D(I ′) =

{
−
⌊
γ

β
α+β

1 N

⌋
, . . . ,

⌊
γ

β
α+β

1 N

⌋}
×
{
−
⌊
γ

β
α+β

2 N

⌋
, . . . ,

⌊
γ

β
α+β

2 N

⌋}
× {0} × · · · × {0}︸ ︷︷ ︸

d−2-times

⊂ {k − l ∈ Zd : l1 ∈ [−
⌊
γ

β
α+β

1 N

⌋
,

⌊
γ

β
α+β

1 N

⌋
] ∩ Z, l2 = . . . = ld = 0;

k2 ∈ [−
⌊
γ

β
α+β

2 N

⌋
,

⌊
γ

β
α+β

2 N

⌋
] ∩ Z, k1 = k3 = . . . = kd = 0}

⊂ {k − l : k, l ∈ Id,γ,α,βehc,N } = D(Id,γ,α,βehc,N ).

We apply Lemma 2.5 and get that the number M of samples needed to achieve a Fourier
matrix with orthogonal columns is at least as big as the cardinality of I ′. Consequently, we

obtain the necessary condition |X | ≥
(⌊

γ
β

α+β

1 N

⌋
+ 1

)(⌊
γ

β
α+β

2 N

⌋
+ 1

)
.

The last lemma shows that perfectly stable sampling schemes for energy-norm based
hyperbolic cross trigonometric polynomials suffers from an oversampling that depends on N ,
in general. In detail, we need Ω(N2) sampling values at different nodes in X in order to

reconstruct a trigonometric polynomial with frequencies supported on the index set Id,γ,α,βehc,N ,

|Id,γ,α,βehc,N | ∈ O (N), in a perfectly stable way.

At the end, we would like to stress that the weight function ωd,γ,α,βehc may takes values that
are smaller than one. However, for fixed dimension d, weights γ and smoothness parameters
α and β, the range of ωd,γ,α,βehc is contained in [cd,γ,α,β,∞), where the term cd,γ,α,β fulfills
cd,γ,α,β > 0. Accordingly, we also obtain the embedding A

ωd,γ,α,βehc
(Td) ⊂ A(Td).

2.3.4 Arbitrary Sparse Frequency Index Sets

In this section, we assume that the frequency index set I is a sparse one and given. Since
we consider only frequency index sets of finite cardinality, it is quite natural that the fre-
quency index set is contained in a d-dimensional box of a certain edge length. We assume
no structure on the frequency index set I. Applying the more or less nonconstructive re-
sults of S. M. Ermakov [Erm75, Chapter IV], we know that there exist sampling sets X of a
cardinality |X | ≤ |D(I)| such that the matrix A∗WA,

(A∗WA)k1,k2
=

|X |−1∑
j=0

wje
2πi(k2−k1)·xj =

{
1 for k1 = k2,

0 else,
(2.22)

is the identity matrix, cf. Section 2.2 on page 21. The matrix W is a diagonal matrix that
contains the weights wj as its diagonal entries.

Due to the non-existing structure of the frequency index set, the best possible estimate
of the cardinality of the difference set D(I) is given by |D(I)| ≤ |I|(|I| − 1) + 1.
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At a first glance, the assumption that one knows an arbitrary sparse frequency index set I
is not quite natural. But under certain circumstances, such an arbitrary frequency index set
I may be identified using for example an orthogonal matching pursuit as described in [KR08]
or [Xu11]. Specifically, if one has to treat the identified trigonometric polynomial p ∈ ΠI

further, a suitable sampling scheme allowing fast computations may be of quite particular
interest. Since we cannot assume structure on the resulting frequency index set I ⊂ Zd, we
have to deal with arbitrary frequency index sets and need strategies in order to construct
corresponding suitable sampling schemes.

In Chapter 3, some weak additional assumptions on I will allow us to determine sampling
sets X that fulfills |X | ≤ |D(I)| and (2.22). Particularly, the sampling sets X are rank-1
lattices and the matrices W scaled identity matrices, i.e., W = 1

|X |I. In other words,
we determine quasi-Monte Carlo rules that allow for the perfectly stable reconstruction of
trigonometric polynomials with frequencies supported on given frequency index sets I.

2.4 Summary

At the beginning of this chapter, we introduced the function spaces Aω(Td) that we will
treat during the whole work. We showed that the functions f that belongs to those function
spaces can be well approximated using the Fourier partial sums SIN f , where SIN f ∈ ΠIN are
trigonometric polynomials with frequencies supported on the index sets IN ⊂ Zd, cf. Lemma
2.2. The frequency index sets IN crucially depend on the weight function ω.

We brought in mind that it is easily possible to sample trigonometric polynomials with fre-
quencies supported on d-dimensional full grids in a perfectly stable and unique way. One may
uses the corresponding sampling schemes, i.e., full grids in the spatial domain, as sampling
schemes for approximation problems, which yields perfectly stable approximation algorithms.

Subsequently, we considered the same approaches for arbitrary frequency index sets I
and determined a lower bound on the number of sampling values that are necessary in order
to uniquely sample trigonometric polynomials f ∈ ΠI in a perfectly stable way, cf. Lemma
2.5. The corresponding lower bound mainly depends on the structure of the frequency index
set I. Specifically, the largest possible cardinality of all frequency index sets I ′ such that
the difference sets fulfill D(I ′) ⊂ D(I) bounds the necessary number of sampling values of a
perfectly stable sampling scheme for I from below.

Additionally, we applied the findings on specific structures of frequency index sets, i.e.,
`p-balls, weighted hyperbolic crosses and weighted energy-norm based hyperbolic crosses.
Thereby, we were interested in the dependence on the parameter N of the lower bound of the
necessary number of sampling values. In particular, the lower bound is of optimal order in
N with respect to the cardinality of the corresponding frequency index set I for `p-balls, cf.
Corollary 2.9. Furthermore, we determined that weighted (energy-norm) based hyperbolic
cross trigonometric polynomials can not be uniquely sampled in a perfectly stable way using
the optimal number of sampling values with respect to N , cf. Lemmas 2.11 and 2.13.

Finally, we applied our results on arbitrary sparse frequency index sets and discussed
the relations to already known results in the field of numerical integration. In particular,
the interest in arbitrary sparse frequency index sets is caused by already existing adaptive
methods that determines the concrete support of trigonometric polynomials in frequency
domain.
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Rank-1 Lattices

At first, we give the central definition of this chapter. For a given vector z ∈ Zd and a number
M ∈ N we define the rank-1 lattice

Λ(z,M) := {xj :=
j

M
z mod 1 ∈ Td : j = 0, . . . ,M − 1} (3.1)

as spatial discretization in the d-dimensional torus Td. We name the vector z the generating
vector and the number M the lattice size of the rank-1 lattice Λ(z,M). Figure 3.1 sketches
the construction of a two-dimensional rank-1 lattice.

Initially, rank-1 lattices were introduced as sampling schemes for (equally weighted) cu-
bature rules in the late 1950s and 1960s. In [Nie78], one finds a summary and an extensive
reference list of the early work on so-called lattice rules, i.e., cubature rules based on (rank-1)
lattice sampling.

The increased interest in rank-1 lattices during the last years is caused by the seminal
result of I. H. Sloan and A. V. Reztsov, see [SR02], where a component–by–component

z/M

z = (1, 3)>

M = 11

0 1/3 2/3 1
0

1/3

2/3

1

Figure 3.1: Rank-1 lattice construction sketch.
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approach is described that constructs good lattice rules, which are cubature formulas that
guarantee somehow optimal theoretical error estimates for functions of specific classes. In
detail, the theoretical error estimates are optimal with respect to the number of used sampling
values up to some logarithmic factors. The expression component–by–component refers to
the construction of the generating vector z, i.e., for a given lattice size M one determines the
components of the vector z one after another and builds up good lattice rules in dimension
s from a good lattice rule in dimension s− 1, s = 2, . . . , d.

The presented construction method in [SR02] allows to determine good lattice rules in very
high dimensions due to computational costs of O

(
dM2

)
, where d is the spatial dimension, M

is the number of used sampling values, and one uses O (M) memory. The additional findings
of R. Cools and D. Nuyens, cf. [CN04], allow for a fast construction of such good lattice rules,
which enormously improves the applicability of these cubature rules in practice. Specifically,
the so-called fast component–by–component construction of (almost) optimal rank-1 lattice
rules improves the computational costs to O (dM logM) and uses O (M) memory. Thus, this
construction method provides the user with good lattice rules in large dimensions d with a
high accuracy due to the huge number, i.e., up to several millions, of sampling values.

The book of I. H. Sloan and S. Joe, [SJ94], offers a great introduction to lattice meth-
ods for numerical integration. Furthermore, we would like to recommend the survey paper
[DKS13] that presents recent developments in quasi-Monte Carlo cubature methods and fo-
cuses, among others, on lattice methods.

The idea to approximate whole functions—and not only the integrals of the functions—
from sampling values along a specific type of rank-1 lattices was considered in the 1980s by
V. N. Temlyakov, cf. [Tem86]. Only much later, i.e., after 2000, researchers considered the
approximation properties of rank-1 lattices in general, cf. [LH03, ZLH06, KSW06, KSW08,
KWW09, MS12]. Specifically, the outstanding properties of rank-1 lattices are investigated in
the fields of information based complexity as well as applied analysis. None of these papers
gave universally applicable construction methods for rank-1 lattices that are suitable for
approximation. Either there are nonconstructive existence results, cf. [Tem86, LH03, ZLH06],
or the corresponding construction methods are heavily adapted to the considered function
spaces, cf. [KSW06, KSW08, KWW09].

In this chapter, we present a component–by–component construction of rank-1 lattices
that allows the unique reconstruction of trigonometric polynomials f ∈ ΠI . We name a
rank-1 lattice that allows the unique reconstruction of all trigonometric polynomials with
frequencies supported on the index set I reconstructing rank-1 lattice for I. We would like
to point out that I ⊂ Zd may be an arbitrary frequency index set, e.g., I is without any
structure or with gaps.

Furthermore, we prove that our method determines such so-called reconstructing rank-1
lattices for the frequency index set I with a number of sampling nodes M that is bounded
by terms

|I| ≤M ≤ max

{
2|I|2

3
,max{3‖k‖∞ : k ∈ I}

}
, |I| ≥ 8, (3.2)

where the right hand side is already simplified, see Corollary 3.4 for the details. We stress on
the fact that it mainly depends on the structure of the frequency index set I whether there
exists rank-1 lattices of a size M that is close to |I| or not, but in all cases M is bounded
from above by the term on the right hand side in (3.2). In particular for I ⊂ [−|I|, |I|]d,
|I| ≥ 8, the number of needed sampling values M is not larger than 2

3 |I|
2 independent of the

dimension d and the structure of I.
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In Section 3.4, we consider the approximation properties of these reconstructing rank-1
lattices. Certainly, one may sample a sufficiently smooth function f along a reconstructing
rank-1 lattice and compute an approximation of the Fourier partial sum SIf from the sam-
pling values of f . We show, that for suitably chosen frequency index sets I the approximated
Fourier partial sum S̃If is close to the exact Fourier partial sum SIf . In detail, we prove the
error estimate

‖f − S̃IN f |L∞(Td)‖ ≤ 2N−1‖f |Aω(Td)‖, (3.3)

where we assume that the frequency index set IN = {k ∈ Zd : ω(k) ≤ N} is of finite cardi-
nality and S̃IN f is the approximated Fourier partial sum computed from the sampling values
of a reconstructing rank-1 lattice for IN . The function spaces Aω(Td) consist of multivariate
continuous periodic functions of a certain smoothness that belongs to the Wiener algebra
A(Td), cf. (2.9). We stress on the fact that the right hand side of (3.3) is only two times
the worst case L∞(Td) error of f approximated by the exact Fourier partial sum SIN f , cf.
Lemma 2.2.

The main advantage of using rank-1 lattices as sampling schemes for the reconstruction of
trigonometric polynomials f ∈ ΠI and the approximation of functions f ∈ Aω(Td) by S̃IN f is
the simplicity of the corresponding computation and its independence on the structure of the
frequency index set I and IN , respectively. In detail, the corresponding discrete Fourier trans-
form simplifies to some easily realizable post-computations subsequent to a one-dimensional
equispaced discrete Fourier transform. Clearly, we apply the one-dimensional fast Fourier
transform, in order to compute the discrete Fourier transform that is needed for the recon-
struction or the approximation. If one uses reconstructing rank-1 lattices for the frequency
index set I (or IN ) as sampling schemes, all the computations are extremely stable, since
the post-computations consists of (perfectly stable) permutations and the one-dimensional
equispaced fast Fourier transform is also known to be stable, cf. [Sch96, PST03]. We stress on
the fact, that our approximation strategy can also be extended to an interpolation strategy
as described in Section 3.5.

In Section 3.8, we apply our findings on rank-1 lattices to specific frequency index sets
that occur in various numerical applications. To this end, we analyze the structures of the
specific frequency index sets I that are introduced in Chapter 2 and estimate the number of
sampling values that are needed in order to uniquely sample the trigonometric polynomials
f ∈ ΠI along a rank-1 lattice. We show, that we can uniquely reconstruct trigonometric
polynomials with frequencies supported on weighted `p-balls Id,γp,N with the asymptotically
optimal number of sampling values with respect to N . In addition, we consider trigonomet-
ric polynomials with frequencies supported on energy-norm based hyperbolic crosses Id,γehc,N .
Under the assumption that the Fourier matrix A, cf. (2.7), shall consist of pairwise or-
thogonal columns, our findings allow us to determine sampling schemes, i.e., reconstructing
rank-1 lattices for Id,γehc,N , that are asymptotically optimal with respect to the parameter N .
Furthermore, rank-1 lattices can also be used in order to sample weighted hyperbolic cross
trigonometric polynomials f ∈ Π

Id,γhc,N
in a perfectly stable way. The corresponding number of

used sampling values is also asymptotically optimal with respect to N up to some logarithmic
factors logN , provided that we require pairwise orthogonal columns within the Fourier matri-
ces A. Additionally, we discuss some numerical experiments for randomly chosen frequency
index sets I ⊂ [−128, 128]d, |I| ≥ 750, which demonstrates that the number of sampling
values of reconstructing rank-1 lattices for the frequency index set I does not depend on the
dimension d, but on the cardinality |I| and is bounded by O

(
|I|2
)

in general.
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Algorithm 3.1 Evaluation at rank-1 lattice

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of rank-1 lattice Λ(z,M)
I ⊂ Zd frequency index set

f̂ =
(
f̂k

)
k∈I

Fourier coefficients of f ∈ ΠI

ĝ = (0)M−1
l=0

for each k ∈ I do
ĝk·z mod M = ĝk·z mod M + f̂k

end for
f = iFFT 1D(ĝ)
f = Mf

Output: f = Af̂ =
(
f
(
jz
M mod 1

))M−1

j=0
function values of f ∈ ΠI

3.1 Evaluation of Multivariate Trigonometric Polynomials

We consider the trigonometric polynomial f ∈ ΠI , f(x) =
∑
k∈I f̂ke2πikx, where the Fourier

coefficients f̂k, k ∈ I, are given. Following [LH03], the simultaneous evaluation of a trigono-
metric polynomial f ∈ ΠI at all nodes of the rank-1 lattice Λ(z,M) simplifies to a one-
dimensional discrete Fourier transform, i.e.,

f(xj) =
∑
k∈I

f̂ke2πik·xj =
∑
k∈I

f̂ke2πi jk·z
M =

M−1∑
l=0

 ∑
k∈I

k·z≡l (mod M)

f̂k

 e2πi jl
M

=
M−1∑
l=0

ĝle
2πi jl

M , where ĝl =
∑
k∈I

k·z≡l (mod M)

f̂k.

We pre-compute the sequence (ĝl)
M−1
l=0 and apply a one-dimensional inverse fast Fourier trans-

form to evaluate f at all nodes of the rank-1 lattice Λ(z,M), cf. [CT65]. We obtain a com-
plexity of O (d|I|) to compute all values k · z mod M , k ∈ I, and the vector (ĝl)

M−1
l=0 and

further a complexity of O (M logM) to evaluate all values f(xj), j = 0, . . . ,M−1, using a sin-
gle one-dimensional fast Fourier transform. Thus the total complexity is O (M logM + d|I|),
cf. Algorithm 3.1. In the case of multiple using Λ(z,M) in combination with the index set I
one has to compute all values of k · z mod M only once. Thus we obtain a lower complexity
of O (M logM + |I|) for one evaluation here. Note that the complexity only depends linearly
on the maximum of the cardinality of the frequency index set I and the cardinality of the
sampling set Λ(z,M) up to some logarithmic factor logM .

3.2 Reconstruction of Multivariate Trigonometric Polynomials

As the fast evaluation of trigonometric polynomials at all sampling nodes of xj of the rank-1
lattice Λ(z,M) is guaranteed, see Algorithm 3.1, we draw our attention to the reconstruction
of a trigonometric polynomial f ∈ ΠI with frequencies supported on I using function values
at the nodes xj of a rank-1 lattice Λ(z,M). We consider the corresponding Fourier matrix
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A and its adjoint A∗,

A :=
(

e2πik·x
)
x∈Λ(z,M), k∈I

∈ CM×|I| and A∗ :=
(

e−2πik·x
)
k∈I, x∈Λ(z,M)

∈ C|I|×M ,

in order to determine necessary and sufficient conditions on rank-1 lattices Λ(z,M) that
allow for a unique reconstruction of all Fourier coefficients of f ∈ ΠI . The reconstruction of
the Fourier coefficients f̂ = (f̂k)k∈I ∈ C|I| from sampling values f = (f(x))x∈Λ(z,M) ∈ CM

can be realized by solving the normal equation A∗Af̂ = A∗f , which is equivalent to solve
the least squares problem

find f̂ ∈ C|I| such that ‖Af̂ − f‖2 → min,

cf. [Bjö96]. Assuming f = (f(x))x∈Λ(z,M) being a vector of sampling values of the trigono-
metric polynomial f ∈ ΠI , the vector f belongs to the range of A and we can find a possibly
non-unique solution f̂ of Af̂ = f . We compute a unique solution of the normal equation, iff
the Fourier matrix A has full column rank.

Lemma 3.1. Let a frequency index set I ⊂ Zd of finite cardinality and a rank-1 lattice
Λ(z,M) be given. Then two distinct columns of the corresponding Fourier matrix A are
orthogonal or equal, i.e., (A∗A)h,k ∈ {0,M} for h,k ∈ I.

Proof. The matrix A∗A contains all scalar products of two columns of the Fourier matrix
A, i.e., (A∗A)h,k is the scalar product of column k with column h of the Fourier matrix A.
We obtain

(A∗A)h,k =

M−1∑
j=0

(
e2πi

(k−h)·z
M

)j
=

M for k · z ≡ h · z (mod M),
e2πi(k−h)·z−1

e2πi
(k−h)·z

M −1
= 0 else.

According to Lemma 3.1 the matrix A has full column rank, iff

k · z 6≡ h · z (mod M) for all k 6= h; k,h ∈ I, (3.4)

or, equivalent,

k · z 6≡ 0 (mod M) for all k ∈ D(I) \ {0}, (3.5)

where D(I) is the difference set of the frequency index set I as defined in (2.11). We call a
rank-1 lattice Λ(z,M) ensuring (3.4) or equivalently (3.5) reconstructing rank-1 lattice for the
index set I. In particular, condition (3.5) ensures the exact integration of all trigonometric
polynomials g ∈ ΠD(I) applying the lattice rule given by the rank-1 lattice Λ(z,M), i.e., the

identity
∫
Td g(x)dx = 1

M

∑M−1
j=0 g(xj) holds for all g ∈ ΠD(I), cf. [SK87]. Certainly, f ∈ ΠI

and k ∈ I implies that f(◦)e−2πik·◦ ∈ ΠD(I) and we obtain

1

M

M−1∑
j=0

f

(
jz

M
mod 1

)
e−2πij k·z

M =

∫
Td
f(x)e−2πik·xdx =: f̂k,

where the right equality is the usual definition of the Fourier coefficients. We symbolize the
reconstruction property of the rank-1 lattice Λ(z,M) with respect to I using the notation
Λ(z,M, I).
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Algorithm 3.2 Reconstruction from sampling values along a reconstructing rank-1 lattice

Input: I ⊂ Zd frequency index set of finite cardinality
M ∈ N lattice size of rank-1 lattice Λ(z,M, I)
z ∈ Zd generating vector of rank-1 lattice Λ(z,M, I)

f =
(
f
(
jz
M mod 1

))M−1

j=0
function values of f ∈ ΠI

ĝ = FFT 1D(f)
for each k ∈ I do
f̂k = 1

M ĝk·z mod M

end for

Output: f̂ = M−1A∗f =
(
f̂k

)
k∈I

Fourier coefficients supported on I

Another fact, which comes out of Lemma 3.1, is that the matrix A fulfills A∗A = MI
in the case of Λ(z,M) being a reconstructing rank-1 lattice for I. The normalized normal
equation simplifies to

f̂ =
1

M
A∗Af̂ =

1

M
A∗f ,

and in fact we reconstruct the Fourier coefficients of f ∈ ΠI applying the lattice rule

f̂k =
1

M

M−1∑
j=0

f(xj)e
−2πi jk·z

M =
1

M

M−1∑
j=0

f(xj)e
−2πi jl

M

for all k ∈ I and l = k · z mod M . In particular, one computes all Fourier coefficients using
one one-dimensional FFT and the unique inverse mapping of k 7→ k ·z mod M , cf. Algorithm
3.2. The corresponding complexity is given by O (M logM + d|I|).

A reconstructing rank-1 lattice for the frequency index set I is characterized by (3.4) and
(3.5), respectively. Similar to the construction of rank-1 lattices for the exact integration of
trigonometric polynomials of specific trigonometric degrees, see [CKN10], we are interested
in existence results and suitable construction algorithms for reconstructing rank-1 lattices.
In order to prepare the main theorem of this section, we define the projection of an index set
I ⊂ Zd on Zs, d ≥ s ∈ N,

I↓s := {(kj)sj=1 ∈ Zs : k = (kj)
d
j=1 ∈ I}. (3.6)

Furthermore, we name a frequency index set I ⊂ Zd symmetric to the origin iff I = {−k : k ∈
I}, i.e., k ∈ I implies −k ∈ I for all k ∈ I.

Theorem 3.2. Let s ∈ N, d ≥ s ≥ 2, Ĩ ⊂ Zd be an arbitrary d-dimensional set of finite
cardinality that is symmetric to the origin, and M be a prime number satisfying

M ≥
|{k ∈ Ĩ↓s : k = (h, hs),h ∈ Ĩ↓s−1 \ {0} and hs ∈ Z \ {0}}|

2
+ 2.

Additionally, we assume that each nonzero element of the set of the sth component of Ĩ↓s and

M are coprime, i.e., M - l for all l ∈ {hs ∈ Z \ {0} : k = (h, hs) ∈ Ĩ↓s,h ∈ Ĩ↓s−1}, and that
there exists a generating vector z∗ ∈ Ns−1 that guarantees

h · z∗ 6≡ 0 (mod M) for all h ∈ Ĩ↓s−1 \ {0}.
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Then, there exists at least one z∗s ∈ {1, . . . ,M − 1} such that

(h, hs) · (z∗, z∗s ) 6≡ 0 (mod M) for all (h, hs) ∈ Ĩ↓s \ {0}.

Proof. We adapt the proof of [CKN10, Theorem 1]. Let us assume that

h · z∗ 6≡ 0 (mod M) for all h ∈ Ĩ↓s−1 \ {0}.

Basically, we determine an upper bound on the number of elements zs ∈ {1, . . . ,M − 1} with

(h, hs) · (z∗, zs) ≡ 0 (mod M) for at least one (h, hs) ∈ Ĩ↓s \ {0}

or, equivalent,

h · z∗ ≡ −hszs (mod M) for at least one (h, hs) ∈ Ĩ↓s \ {0}.

Similar to [CKN10] we consider three cases:

hs = 0: With (h, hs) ∈ Ĩ↓s \ {0} we have 0 6= h ∈ Ĩ↓s−1 \ {0}. Consequently,
h · z∗ ≡ −0zs (mod M) never holds because of h · z∗ 6≡ 0 (mod M) for all h ∈
Ĩ↓s−1 \ {0}.

h = 0: We consider zs ∈ {1, . . . ,M − 1}. We required M being prime, so zs and M are
coprime. Due to (h, hs) ∈ Ĩ↓s \ {0}, we obtain hs 6= 0 and we assumed M and hs 6= 0
are coprime. Consequently, we realize zshs 6= 0 and zshs and M are relatively prime.
So 0z∗ ≡ −hszs (mod M) never holds for (0, hs) ∈ Ĩ↓s \{0} and zs ∈ {1, . . . ,M−1}.

else: Since 0 6= hs and M are coprime and h · z∗ 6≡ 0 (mod M), there is at most one
zs ∈ {1, . . . ,M − 1} that fulfills h · z∗ ≡ −hszs (mod M). Due to the symmetry of
the considered index set {(h, hs) ∈ Ĩ↓s \ {0} : h ∈ Ĩ↓s−1 \ {0} and hs ∈ Z \ {0}} we
have to count at most one zs for the two elements (h, hs) and −(h, hs).

Hence, we have at most

|{(h, hs) ∈ Ĩ↓s \ {0} : h ∈ Ĩ↓s−1 \ {0} and hs ∈ Z \ {0}}|
2

(3.7)

elements of {1, . . . ,M − 1} with

h · z∗ ≡ −hszs (mod M) for at least one (h, hs) ∈ Ĩ↓s \ {0}.

If the candidate set {1, . . . ,M−1} for z∗s contains more elements than (3.7), we can determine
at least one z∗s with

h · z∗ 6≡ −hsz∗s (mod M) for all (h, hs) ∈ Ĩ↓s \ {0}.

Consequently, the number of elements in {1, . . . ,M − 1} with

|{1, . . . ,M − 1}| ≥
|{(h, hs) ∈ Ĩ↓s \ {0} : h ∈ Ĩ↓s−1 \ {0} and hs ∈ Z \ {0}}|

2
+ 1

and M is prime guarantees that there exists such a z∗s . Since we assumed M being prime and

M = |{1, . . . ,M − 1}|+ 1

≥
|{(h, hs) ∈ Ĩ↓s \ {0} : h ∈ Ĩ↓s−1 \ {0} and hs ∈ Z \ {0}}|

2
+ 2

we can find at least one zs by testing out all possible candidates {1, 2, . . . ,M − 1}.
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Theorem 3.2 outlines one step of a component-by-component construction of a rank-
1 lattice, guaranteeing the exact integration of trigonometric polynomials with frequencies
supported on index sets Ĩ which are symmetric to the origin.

We obtain this symmetry of the difference sets D(I)↓s

h ∈ D(I)↓s ⇒ ∃k1,k2 ∈ I↓s : h = k1 − k2 ⇒ −h = k2 − k1 ∈ D(I)↓s.

So, our strategy is to apply Theorem 3.2 to the difference set D(I)↓s of the frequency index
set I↓s for all 2 ≤ s ≤ d. In order to use Theorem 3.2, we have to find sufficient conditions on
rank-1 lattices of dimension d = 1 guaranteeing that hz1 6≡ 0 (mod M) for all h ∈ D(I)↓1\{0}.

Lemma 3.3. Let I ⊂ Z be a one-dimensional frequency index set of finite cardinality and
M be a prime number satisfying M ≥ |I|. Additionally, we assume M and h being coprime
for all h ∈ D(I)\{0}. Then we can uniquely reconstruct the Fourier coefficients of all f ∈ ΠI

applying the one-dimensional lattice rule given by Λ(1,M).

Proof. Applying the lattice rule given by Λ(1,M) to the integrands of the integrals computing
the Fourier coefficient f̂k, k ∈ I, of f ∈ ΠI , we obtain

1

M

M−1∑
j=0

f

(
j

M

)
e−2πi kj

M =
1

M

M−1∑
j=0

∑
h∈I

f̂he2πihj
M e−2πi kj

M

=
1

M

∑
h∈I

f̂h

M−1∑
j=0

e2πi
(h−k)j
M = f̂k =

∫ 1

0
f(x)e−2πikxdx

due to h− k ∈ D(I) \ {0} and M are coprime.

We summarize the results of Theorem 3.2 and Lemma 3.3 and figure out the following

Corollary 3.4. Let I ⊂ Zd be an arbitrary d-dimensional index set of finite cardinality and
M be a prime number satisfying M ≥Mlb with a lower bound

Mlb := max

(
|I↓1|, max

s=2,...,d

|{k ∈ D(I)↓s : k = (h, hs),h ∈ D(I)↓s−1 \ {0} and hs ∈ Z \ {0}}|
2

+ 2

)
.

In addition, we assume that M - l for all l ∈ {k = es · h : h ∈ D(I), s = 1, . . . , d} \ {0},

where es ∈ Nd is a d-dimensional unit vector with es,j =

{
0 for j 6= s

1 for j = s.
. Then, there exists a

rank-1 lattice of cardinality M that allows the reconstruction of all trigonometric polynomials
with frequencies supported on I by sampling along the rank-1 lattice. Furthermore, once
we determined a suitable M the proof of Theorem 3.2 verifies that we can find at least
one appropriate generating vector component-by-component. Algorithm 3.3 indicates the
corresponding strategy.

The essential part of the last corollary is the lower bound Mlb of the prime number M .
In order to estimate M from above, we apply some results about the distribution of primes.
Thus, the existence of a prime number M with

Mlb ≤M ≤
4

3
(Mlb + 2) ≤ 2

3
(|D(I)|+ 7) ≤ 2

3
(|I|2 − |I|+ 8), cf. [Loo11, Cor. 2.2], (3.8)
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Algorithm 3.3 Component-by-component lattice search

Input: M ∈ N cardinality of rank-1 lattice
I ⊂ Zd frequency index set

z = ∅
for s = 1, . . . , d do

form the set I↓s as defined in (3.6)
search for one zs ∈ [1,M − 1] ∩ Z with |{(z, zs) · k mod M : k ∈ I↓s}| = |I↓s|
z = (z, zs)

end for

Output: z ∈ Zd generating vector

and for Mlb ≥ 396 738

Mlb ≤M ≤
(

1 +
1

25 log2Mlb

)
Mlb ≤ 1.00025Mlb ≤

4 001

8 000
(|D(I)|+ 3) ≤ 4 001

8 000
|I|2, (3.9)

cf. [Dus10, Prop. 6.8], is guaranteed. For most specific high-dimensional frequency index
sets I, the condition that M is coprime to all components of the elements of the difference
set D(I) is fulfilled a priori, since the embedding I ⊂ k+ [0,Mlb− 1]d often holds for at least
one k ∈ Zd. In particular, let us assume that I ⊂ {k+h : h ∈ [0,M−1]d} holds for a specific
k ∈ Zd. Obviously the difference set D(I) is covered by [−M + 1,M − 1]d. Accordingly,
all prime factors of the absolute value |l| of each number l ∈ {k = es · h : h ∈ D(I), s =
1, . . . , d} \ {0} ⊂ [−M + 1,M − 1] \ {0} is smaller than the prime number M .

Remark 3.5. Since M is a prime number, we note that each frequency index set I ⊂ Zd
which is contained in a d-dimensional cube of edge length M−1 a priori fulfills the assumption
M - l for all l ∈ {k = es · h ∈ Z : h ∈ D(I), s = 1, . . . , d} \ {0}.

In the following, we focus on the coprimality condition of M and the components of the
difference set D(I) that we have specified in Theorem 3.2 and Corollary 3.4. The next remark
verifies that this sufficient condition on M can not be dropped in general.

Remark 3.6. For arbitrary d ∈ N and arbitrary M ′ ∈ N there exist index sets I ⊂ Zd with
|I| = 2, such that there exists no rank-1 lattice of size M ≤ M ′ allowing a reconstruction of
trigonometric polynomials f ∈ ΠI .

Proof. We fix d ∈ N and M ′ ∈ N, define c :=
∏

p≤M ′
p prime

pblogpM
′c, and indicate for arbitrary

a ∈ Zd and b ∈ Zd \ {0} the concrete index set I = {a,a+ cb} ⊂ Zd.
Now, we reconstruct the Fourier coefficients of f(x) =

∑
h∈I f̂he2πih·x by numerically

integrating the function fk = f(◦)e−2πik·◦ by a lattice rule of M ≤ M ′ lattice nodes. We
obtain

Qfa =
1

M

M−1∑
j=0

f

(
jz

M

)
e−2πij a·z

M =
1

M

M−1∑
j=0

∑
h∈I

f̂h

d∏
s=1

e2πij
(hs−as)zs

M

= f̂a + f̂a+cb
1

M

M−1∑
j=0

d∏
s=1

e2πijbszs
c
M .
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Steps worst case arithmetic complexity

1. Compute the difference sets D(I)↓s, s = 1, . . . , d O
(
|I|2(d+ log |I|)

)
2. Compute Mlb as given in Corollary 3.4 O (d|D(I)|)
3. Determine the smallest prime M ≥Mlb O (Mlb/ log logMlb)

4. Increase the prime number M as long as M | l for at
least one l ∈ {k = es ·h : h ∈ D(I), s = 1, . . . , d}\{0} O (d|D(I)|+ L logL)

5. Search for a suitable generating vector z component–
by–component by Algorithm 3.3

O (d|I|M)

Total: O (d|I|(M + |I| log |I|) + L logL)

Table 3.1: The five steps of determining reconstructing rank-1 lattices and their arithmetic
complexities.

Due to all prime factors of M are also prime factors of c =
∏

p≤M ′
p prime

pblogpM
′c, we know

c
M ∈ Z \ {0}. This yields

Qfa = f̂a + f̂a+cb = Qfa+cb

and we cannot reconstruct the Fourier coefficients of f ∈ ΠI uniquely.

Nevertheless, we indicate a strategy that determines reconstructing rank-1 lattices for
arbitrary frequency index sets I ⊂ Zd of finite cardinality and analyze the arithmetical
complexities of each step in the following. To this end, we additionally determine the numbers

kmax
s = max{k · es : k ∈ I} and kmin

s = min{k · es : k ∈ I} for s = 1, . . . , d,

and

L = max
s=1,...,d

(kmax
s − kmin

s ). (3.10)

Hence, we obtain the embeddings I ⊂ {kmin + h : : h ∈ [0, L]d ∩ Zd} and D(I) ⊂ [−L,L]d.
We give a short explanation on the complexities given in the listing of Table 3.1.

The first step is the computation of the difference sets D(I)↓s. In detail, we compute the
difference set D(I) = D(I)↓d using Algorithm 3.4 in a naive way. The computation of all
elements h = kj−kl has a complexity bounded by Cd|I|2. Since the D(I) is a set, duplicates
must be recognized and eliminated. In principle, one uses a sorted list in order to store
the set D(I). In addition one can store a whole bunch of h’s in a sorted block and insert
them in one go. The computation of D(I)↓s, s < d, is then a simple projection on the first
s variables, i.e., we drop the last d − s components of all elements h ∈ D(I) and eliminate
all duplicates. This approach can be done for s = d − 1 down to 1 using the recurrence
D(I)↓s =

{
(h)sl=1 : h ∈ D(I)↓s+1

}
. Consequently, the arithmetic complexity of the first step

is bounded by O
(
|I|2(d+ log |I|)

)
.

In order to compute Mlb as given in Corollary 3.4, we have to count the elements of I↓1,
which is in principle the projection of the frequency index set I on its first dimension and one
of the inexpensive computations here. Furthermore, we have to take a look at each vector
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Algorithm 3.4 Computation of the difference set

Input: I ⊂ Zd frequency index set

D(I) = {0}
for j = 1, . . . , |I| do
for l = j + 1, . . . , |I| do
h = kj − kl
D(I) = D(I) ∪ {h,−h}

end for
end for

Output: D(I) difference set of the frequency index set I

of integers h ∈ D(I)↓s, s = 2, . . . , d and have to count all these vectors having the special
property h ∈ {k ∈ D(I)↓s : k = (l, ls), l ∈ D(I)↓s−1 \ {0} and ls ∈ Z \ {0}}. In the worst case,
we obtain D(I)↓2 . D(I)↓3 . . . . . D(I)↓d. Accordingly, the upper bound on the arithmetic
complexity of the second step is O (d|D(I)|).

Due to Bertrand’s postulate or Equations (3.8) and (3.9), the smallest prime number not
smaller than Mlb is smaller than 2Mlb. Using one of the prime sieves presented in [AB04],
one determines the smallest prime M not smaller than Mlb in O (Mlb/ log logMlb) arithmetic
operations in the third step.

The computational effort of step four mainly depends on the structure of the frequency
index set I. Next, we determine the set K(I) := {k = es ·h : h ∈ D(I), s = 1, . . . , d} \ {0} ⊂
{−L, . . . , L}, cf. (3.10). All elements k ∈ K(I) with |k| < M are not of our interest since
those k fulfill M ′ - k for all numbers M ′ > M , M ′ ∈ N, a priori. Accordingly, we sort all
elements of K(I,M) := {k = |es · h| : h ∈ D(I), s = 1, . . . , d} \ {0, . . . ,M − 1} and compute
a sorted list of all prime numbers starting with M up to the smallest prime number larger
than L. Now, we pass sequentially through these two sorted lists and determine the smallest
prime that is not contained in K(I,M). The corresponding arithmetic complexity is bounded
by the complexity of the computation of K(I), which is in O (d|D(I)|), and the sorting of the
list containing the elements of K(I,M) and the list of the prime numbers from M up to L,
which is in O (L logL).

Once, we determined an M fulfilling all requirements of Corollary 3.4, we proved that
Algorithm 3.3 determines a generating vector z, such that Λ(z,M) is a reconstructing rank-
1 lattice for the frequency index set I, i.e., Λ(z,M) = Λ(z,M, I). For each dimension
s = 2, . . . , d, we search for a number zs within the set {1, . . . ,M − 1}. Using the buffered
scalar products (hl)

s
l=1 · (zl)sl=1, the computational costs for each s is bounded by C|I|M ,

and, hence, the fifth step of our strategy has an arithmetic complexity of O (d|I|M).

The total complexity of all steps together is bounded byO (d|I|(M + |I| log |I|) + L logL),
where M mainly depends on the structure of the frequency index set I and its difference set
D(I) and on L, which itself depends on the expansion of the frequency index set I. In higher
dimensions, one often considers frequency index sets I, that are contained in a d-dimensional
box of edge length |I|, i.e., L ≤ |I|. In that cases, we know a priori that L ≤ |I| ≤ M
and the fourth step is not needed. The corresponding arithmetic complexity reduces to
O (d|I|(M + |I| log |I|)), where M is bounded by the terms given in (3.8) or (3.9). Thus, we
estimate d|I|2 log |I| . d|I|(M + |I| log |I|) . d|I|3.

Anyway, once one has discovered a reconstructing rank-1 lattice Λ(z,M, I) for the fre-
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Algorithm 3.5 Lattice size decreasing

Input: I ⊂ Zd frequency index set
M ∈ N cardinality of rank-1 lattice
z ∈ Nd Λ(z,M, I) is reconstructing rank-1 lattice for I

for j = |I|, . . . ,M do
if |{z · k mod j : k ∈ I}| = |I| then
Mmin = j
break

end if
end for

Output: Mmin reduced lattice size

quency index set I, the condition

k · z 6= h · z for all k 6= h; k,h ∈ I,

holds and one can ask for M ′ < M fulfilling

k · z 6≡ h · z (mod M ′) for all k 6= h; k,h ∈ I.

For a fixed frequency index set I and a fixed generating vector z we assume the rank-1 lattice
Λ(z,M, I) being a reconstructing rank-1 lattice. Then, Algorithm 3.5 computes the smallest
lattice size Mmin guaranteeing the reconstruction property of the rank-1 lattice Λ(z,Mmin, I).
We obtain an arithmetic complexity of Algorithm 3.5 in the order of |I|(d+M) in the worst
case.

Relationship to Lattice Rules Used for Numerical Integration

The final point in this section connects our results in Theorem 3.2 and Corollary 3.4 to known
results for numerical integration. In particular, one is mainly interested in lattice rules that
exactly integrates all trigonometric polynomials f ∈ ΠI of a specific trigonometric degree, cf.
[Zar72, CR97, CKN10], i.e., the frequency index set I has a specific structure. The paper
of R. Cools, F. Kuo, and D. Nuyens [CKN10] treats the most popular definitions of even

weighted trigonometric degrees, namely the weighted trigonometric degree (I = Id,γ1,N ), the

weighted product trigonometric degree (I = Id,γ∞,N ), and the weighted Zaremba cross degree

(I = Id,γhc,N ). Theorem 3.2 and Corollary 3.4 are essentially based on the ideas that they used
in order to determine rank-1 lattices that exactly integrates the trigonometric polynomials
of the mentioned trigonometric degrees.

Our considerations allow us to extend their results for more general frequency index sets
I. To this end, we take Theorem 3.2 and Corollary 3.4 into account and formulate some facts
about lattice rules that have a generalized trigonometric degree of exactness in the following
sense. We consider the space of trigonometric polynomials ΠI , where the frequency index
set I has finite cardinality. By definition, the rank-1 lattice Λ(z,M) has the generalized
trigonometric degree of exactness I, iff the lattice rule given by Λ(z,M) integrates exactly all
trigonometric polynomials supported on I. Then, Theorem 3.2, Corollary 3.4, and Equations
(3.8) and (3.9) verify the next
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Remark 3.7. Let the frequency index set I ⊂ Zd be a frequency index set that is symmetric
to the origin and contained in [−|I|/4, |I|/4]d. Then, there exists a rank-1 lattice of size
M ≤ C|I| that has a trigonometric degree of exactness I and the generating vector can be
determined using a component–by–component approach. In detail, the constant C is less
than 1 for |I| > 14 and is close to 1

2 for large cardinalities |I|.

Due to the results of S. M. Ermakov, see [Erm75, Chapter IV], for each frequency index
set I ⊂ Zd, |I| < ∞, there exist sampling sets X ⊂ Td, |X | ≤ |ΠI | = |I|, such that a
corresponding suitable cubature formula is exact for all trigonometric polynomials from ΠI .
Actually, at least for frequency index sets I that are symmetric to the origin and contained
in a suitably small box, we can find rank-1 lattices of a size M smaller or equal |I| and use
the corresponding lattice rules in order to integrate exactly all elements of ΠI . We stress
the fact that these rank-1 lattices can be found by adapting our component–by–component
approach. In detail, we have to search generating vectors z in Algorithm 3.3 such that the
equivalences of the scalar products k · z 6≡ 0 (mod M) hold for all k ∈ I \ {0}.

3.3 Stability

In this section, we analyze the stability of our sampling method. In other words, we determine
the condition number

cond2(A∗A) =
λmax(A∗A)

λmin(A∗A)

of the matrices A∗A, where A =
(

e2πij k·z
M

)
j=0,...,M−1; k∈I

is the Fourier matrix given by the

frequency index set I and the rank-1 lattice Λ(z,M), and λmax(A∗A) and λmin(A∗A) are the
maximal and minimal eigenvalues of the matrix A∗A. The condition number of the matrix
A∗A is finite iff the matrix A has full column rank, i.e., all singular values of the matrix A
are positive real numbers and, in other words, all eigenvalues of the self-adjoint matrix A∗A
are positive real numbers. The next theorem determines eigenvalues of the matrix A∗A.
In principle, we obtain two different cases depending on the reconstruction property of the
rank-1 lattice Λ(z,M) with respect to I. On the one hand, all eigenvalues of A∗A are equal
to M iff Λ(z,M) is a reconstructing rank-1 lattice for I, i.e., Λ(z,M, I) = Λ(z,M). On the
other hand, there exist zero valued eigenvalues of A∗A iff Λ(z,M) is not a reconstructing
rank-1 lattice for I and, thus, the matrix A∗A is not of full rank, the condition number is
infinite, and we call the Fourier transform given by the matrix A unstable.

Theorem 3.8. Let the dimension d ∈ N, I ⊂ Zd be an arbitrary frequency index set of finite

cardinality, and Λ(z,M) be a rank-1 lattice. Then the matrix A =
(

e2πij k·z
M

)
j=0,...,M−1; k∈I

has either

• orthogonal columns, i.e., we obtain A∗A = MI and Λ(z,M) is a reconstructing rank-1
lattice,

or

• the matrix A∗A is not of full rank, i.e., the smallest eigenvalue λmin(A∗A) of A∗A is
zero.
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Proof. Analogous to the proof of Lemma 3.1, we consider the elements of the matrix A∗A
and obtain

(A∗A)l,k =

M−1∑
j=0

e2πij
(k−l)·z
M =

{
M for k · z ≡ l · z (mod M),

0 else.

We obtain k · z 6≡ l · z (mod M) for all k, l ∈ I, k 6= l, iff Λ(z,M) is a reconstructing rank-1
lattice.

On the other hand, let us assume that there exists a pair k1,k2 ∈ I, k1 6= k2, that fulfills
k1 ·z ≡ k2 ·z (mod M). Then, the rank-1 lattice Λ(z,M) is no reconstructing rank-1 lattice
for I and we determine equality of the k1th and the k2th rows and, hence, the smallest
eigenvalue of A∗A is zero.

The last theorem justified, that we have to deal with reconstructing rank-1 lattices in order
to obtain stable discrete Fourier transforms that use rank-1 lattices as spatial discretizations.
In detail, the corresponding discrete Fourier transforms have the minimal condition number
1 and we call the transforms perfectly stable.

Corollary 3.9. Let the dimension d ∈ N, I ⊂ Zd an arbitrary frequency index set of finite
cardinality, and Λ(z,M, I) a reconstructing rank-1 lattice for I. The corresponding discrete
Fourier transform is well-conditioned, in particular the condition number cond2(A) of the

Fourier matrix A =
(

e2πij k·z
M

)
j=0,...,M−1; k∈I

fulfills

cond2(A) =
σmax(A)

σmin(A)
= 1.

In this sense the problem is perfectly stable. Here, σmin(A) and σmax(A) denotes the minimal
and the maximal singular value of A, respectively.

Proof. Due to

σmax(A) =
√
λmax(A∗A) =

√
λmax(MI) =

√
M =

√
λmin(A∗A) = σmin(A)

with λmin(A∗A) and λmax(A∗A) the minimal and maximal eigenvalue of A∗A, we obtain
the assertion from above.

We showed in Section 3.1, that the evaluation of multivariate trigonometric polynomials
along rank-1 lattices leads to a one-dimensional discrete Fourier transform of the length of
the used rank-1 lattice. In advance of this one-dimensional DFT we have to compute the
corresponding Fourier coefficients using the formula ĝl =

∑
k∈I

k·z≡l mod M
f̂k, l = 0, . . . ,M − 1.

Due to this aliasing formula, we may not be able to reconstruct trigonometric polynomials
supported on the frequency index set I. In detail, if we consider a rank-1 lattice Λ(z,M)
that has not the reconstruction property with respect to the considered frequency index set
I, we obtain at least one l0 ∈ {0, . . . ,M − 1} such that |k ∈ I : k · z ≡ l0 mod M | > 1 and we
cannot reconstruct the summands of ĝl =

∑
k∈I

k·z≡l mod M
f̂k. Hence, we have a Fourier matrix

A that is not of full column rank, the condition number is given by cond2(A) = ∞, and a
unique reconstruction of all f ∈ ΠI is impossible.

Using reconstructing rank-1 lattices, we guarantee that the mapping I → {0, . . . ,M − 1},
k 7→ k · z (mod M) is an injective one. As a consequence, the computation of the one-
dimensional Fourier coefficients ĝl, l = 0, . . . ,M − 1, is in principle a permutation of the
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multi-dimensional Fourier coefficients f̂k, k ∈ I, which is perfectly stable. Accordingly,
this permutation and a subsequently applied one-dimensional equispaced discrete Fourier
transform yield a perfectly stable strategy in order to compute the multi-dimensional discrete
Fourier transform.

We would like to stress that sampling multivariate trigonometric polynomials along recon-
structing rank- 1 lattices leads to a perfectly stable Fourier transform similar to the discrete
Fourier transform on full multi-dimensional grids, cf. Lemma 2.4.

3.4 Approximation of Multivariate Periodic Functions

For M ∈ N we consider the rank-1 lattice Λ(z,M) with generating vector z ∈ Zd. We call
the set

Λ⊥(z,M) := {k ∈ Zd : k · z ≡ 0 (mod M)} (3.11)

the integer dual lattice of Λ(z,M).
Approximating functions using trigonometric polynomials computed from sampling values

along a rank-1 lattice is closely connected with the integer dual lattice and a corresponding
aliasing of the Fourier coefficients of the approximated function. So, let us approximate the
kth Fourier coefficient f̂k of an arbitrary continuous function f ∈ A(Td)∩C(Td) that belongs
to the Wiener algebra from the sampling values at a rank-1 lattice Λ(z,M). We compute
the approximation of the Fourier coefficients f̂k using the lattice rule given by Λ(z,M) in the
following way:

ˆ̃
fk :=

1

M

M−1∑
j=0

f

(
jz

M

)
e−2πij k·z

M =
1

M

M−1∑
j=0

∑
h∈Zd

f̂he2πij
(h−k)·z

M

=
∑
h∈Zd

f̂k+h
1

M

M−1∑
j=0

e2πij h·z
M =

∑
h∈Λ⊥(z,M)

f̂k+h.

Obviously we obtain 0 ∈ Λ⊥(z,M) and, accordingly,

ˆ̃
fk = f̂k +

∑
h∈Λ⊥(z,M)\{0}

f̂k+h. (3.12)

The absolute convergence of the series of the Fourier coefficients of f allows for the calculations

of the last lines. We call
ˆ̃
fk the approximated Fourier coefficients of f . Furthermore, we

name equation (3.12) aliasing formula for the rank-1 lattice Λ(z,M). The corresponding fast

computation of all
ˆ̃
fk, k ∈ I, can be realized using Algorithm 3.2 where we input the lattice

size M , the generating vector z, the frequency index set I, and the vector of sampling values

f =
(
f
(
jz
M mod 1

))M−1

j=0
. We emphasize that the vector f contains function values of a

function f that may not be a trigonometric polynomial supported on the frequency index set
I, i.e., f 6∈ ΠI . In fact, Algorithm 3.2 expects function values from trigonometric polynomials
with frequencies supported on the index set I. Nevertheless, Algorithm 3.2 computes the

approximated Fourier coefficients
ˆ̃
fk, k ∈ I, as given in (3.12). In particular, Algorithm 3.2

calculates the unique solution
ˆ̃
f =

(
ˆ̃
fk

)
k∈I

of the normal equation A∗A ˆ̃
f = A∗f if Λ(z,M)

is a reconstructing rank-1 lattice for I.
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An error analysis, which is based on a given rank-1 lattice Λ(z,M) and a given weight
function ω, has been presented by D. Li and F. J. Hickernell in [LH03]. They gave an
approximation error, depending on the aliasing formula, cf. (3.12), for the given rank-1 lattice
Λ(z,M), i.e., one can measure the quality of a given rank-1 lattice but has no constructive
way in order to determine rank-1 lattices of high quality. In contrast to their approach, we fix
an arbitrary weight function ω construct the frequency index set IN := {k ∈ Zd : ω(k) ≤ N},
|IN | <∞, and a suitable reconstructing rank-1 lattice Λ(z,M, IN ) which is well adapted for
the frequency index set IN . The resulting approximation property of our strategy depends
mainly on the frequency index set IN and the reconstruction property of the rank-1 lattice
Λ(z,M, IN ) and not on the concrete generating vector z and the lattice size M .

We prepare the theorem that discusses the approximation properties of our method and
show the relation between the frequency index set I and the dual lattice Λ⊥(z,M, I) of a
reconstructing rank-1 lattice Λ(z,M, I).

Lemma 3.10. Let I ⊂ Zd be an arbitrary index set of finite cardinality and Λ(z,M, I) a
corresponding reconstructing rank-1 lattice. Then the following inclusion holds

{k + h : k ∈ I,h ∈ Λ⊥(z,M, I) \ {0}} ⊂ Zd \ I.

Proof. Let us assume that there exist k ∈ I and h ∈ Λ⊥(z,M, I) \ {0} such that k + h ∈ I.
Due to Λ(z,M, I) is a reconstructing rank-1 lattice for I and 0 6= h = (k + h) − k ∈
D(I)∩Λ⊥(z,M, I) \ {0} we are in contradiction with l ·z 6≡ 0 mod M for all l ∈ D(I) \ {0}.
Accordingly the assertion holds.

A first approximation result is given in the next theorem.

Theorem 3.11. Let the function f belonging to the weighted function space Aω(Td), i.e.,
f ∈ Aω(Td), cf. (2.9), and the frequency index set IN = {k ∈ Zd : ω(k) ≤ N} of finite
cardinality be given. Additionally, we assume that Λ(z,M, IN ) is a reconstructing rank-1
lattice for IN . Then we estimate the error of the approximation

S̃IN f(x) =
∑
k∈IN

ˆ̃
fke2πikx,

ˆ̃
fk =

M−1∑
j=0

f

(
jz

M

)
e−2πij k·z

M ,k ∈ IN , , (3.13)

of f by

‖f − S̃IN f |L∞(Td)‖ ≤ 2N−1‖f |Aω(Td)‖. (3.14)

Proof. We split up the estimation in two parts using the triangle inequality

‖f − S̃IN f |L∞(Td)‖ ≤ ‖f − SIN f |L∞(Td)‖+ ‖S̃IN f − SIN f |L∞(Td)‖.

Lemma 2.2 yields

‖f − SIN f |L∞(Td)‖ ≤ N−1‖f |Aω(Td)‖

and we only have to treat the second summand using (3.12)

‖S̃IN f − SIN f |L∞(Td)‖ = ess supx∈Td

∣∣∣∣∣∣
∑
k∈IN

(
ˆ̃
fk − f̂k)e2πik·x

∣∣∣∣∣∣
≤
∑
k∈IN

∣∣∣∣∣∣
∑

h∈Λ⊥(z,M)\{0}
f̂k+h

∣∣∣∣∣∣ ≤
∑
k∈IN

∑
h∈Λ⊥(z,M)\{0}

∣∣∣f̂k+h

∣∣∣ .
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Due to Lemma 3.10 we estimate

‖S̃IN f − SIN f |L∞(Td)‖ ≤
∑

k∈Zd\IN

∣∣∣f̂k∣∣∣ ≤ 1

infh∈Zd\IN ω(h)

∑
k∈Zd

ω(k)
∣∣∣f̂k∣∣∣

≤ N−1‖f |Aω(Td)‖

and obtain the assertion.

Theorem 3.11 states, that the worst case error of an approximation S̃IN f of the function
f , which is the Fourier partial sum given by the approximated Fourier coefficients that are
computed from samples along a reconstructing rank-1 lattice Λ(z,M, IN ), is almost as good
as the worst case error of the approximation SIN f , which is the exact Fourier partial sum.

We stress the fact that the approximation properties mainly depends on the norms one
considers. In particular, we focus on the L∞(Td)-norm on the left hand side and the weighted
`1-norm of the Fourier coefficients on the right hand side.

Remark 3.12. Some more specific results, additionally concerning a Hilbert space setting
of particular interest, cf. [GH14], can be found in [KPV13] and [KPV14]. In [KPV13] we
focussed on the approximation of functions belonging to the subspace of the Wiener algebra
A(Td)

Aα,β,γ(Td) := A
ωd,γ,α,βehc

(Td) :=f ∈ A(Td) ∩ C(Td) : ‖f |A
ωd,γ,α,βehc

(Td)‖ :=
∑
k∈Zd

(ωd,γ,α,βehc (k))α+β|f̂k| <∞


or the Hilbert space

Hα,β,γ(Td) := H
ωd,γ,α,βehc

(Td) :=f ∈ L1(Td) : ‖f |H
ωd,γ,α,βehc

(Td)‖ :=

√∑
k∈Zd

(ωd,γ,α,βehc (k))2(α+β)|f̂k|2 <∞


and consider the approximation error caused by sampling continuous functions f ∈ Aα,β,γ(Td)
or f ∈ Hα,β,γ(Td) along reconstructing rank-1 lattices Λ(z,M, Id,γ,α,βehc,N ) for the frequency

index set Id,γ,α,βehc,N . The weights ωd,γ,α,βehc are given in (2.20). A similar Hilbert space setting has
been studied by M. Griebel and J. Hamaekers in [GH14]. This paper deals with sparse grids
and energy-norm based sparse grids as sampling schemes. Their impressive approximation
estimates encouraged us to consider the properties of the rank-1 lattice sampling method
used for approximating functions from the function spaces Aα,β,γ(Td) and Hα,β,γ(Td) defined
above.

In detail, we proved the following error estimates

‖f − S̃Id,γ,α,βehc,N
f |L∞(Td)‖ ≤ 2N−(α+β) ‖f |Aα,β,γ(Td)‖ (3.15)

≤
(

1 + (1 + 2ζ(2λ))
d
2

)
N−(α+β) ‖f |Hα,β+λ,γ(Td)‖, (3.16)

see [KPV13, Theorem 3.4], where the parameters have to fulfill N ≥ 1, β ≥ 0, α + β > 0,
γ ∈ (0, 1]d, λ > 1/2, and ζ is the Riemann zeta function.
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The result in (3.15) is given by Theorem 3.11 and of optimal order. In our estimate
(3.16), we could not prove the optimal order of convergence. Our proof technique does not
allow to get better results. Nevertheless, the paper [KPV13] contains extensive numerical
tests that indicates that the optimal order of convergence can be reached by sampling along
reconstructing rank-1 lattices.

Based on this work, we have been pointed on the work of V. N. Temlyakov [Tem86], who
treats a similar approximation problem. He considered the L2(Td) error of the approximation
in the Hilbert space H0,β,1(Td) and used rank-1 lattice sampling along specific rank-1 lattices
of Korobov type. These are rank-1 lattices Λ(z,M) with a generating vector of the form
z = (1, a, a2, a3, . . . , ad−1). The additional structure of the generating vector allowed him to
prove that there exist rank-1 lattices of this specific structure, such that the approximation
S̃Id,γ,0,βehc,N

f computed from samples of f along these rank-1 lattices is optimal with respect to

the order in N , i.e.,

‖f − S̃Id,γ
hc,N1/β

f |L2(Td)‖ ≤ Cd,γN−β ‖f |H0,β,γ(Td)‖.

Based on his ideas, we extended the results of V. N. Temlyakov to more general function
spaces Hα,β,1(Td) in [KPV14], where we had to deal with the additional parameter α which
describes some additional isotropic smoothness. We would like to mention our most inter-
esting innovative finding, i.e., the error estimate for the parameters α < 0, β > 1 − α. We
showed that there exist prime numbers M , M ≤ cd,α,βN2 and generating vectors of Korobov
type such that the error of the corresponding approximation S̃Id,1,α,βehc,N

f is given by

‖f − S̃Id,1,α,βehc,N
f |L2(Td)‖ ≤ Cd,α,βN−(α+β) ‖f |Hα,β,1(Td)‖,

see [KPV14, Lemma 4.4 & Theorem 4.10], which is optimal with respect to the order in N

and the frequency index set Id,1,α,βehc,N . Unfortunately, this existence proof is not constructive
and, even worse, the corresponding reconstructing rank-1 lattice with a generating vector of
Korobov type has to fulfill an infinite number of conditions in order to guarantee the error
bounds. Consequently, we are not able to test all necessary requirements on a given generating
vector of Korobov type and, thus, cannot determine such a vector. In our paper [KPV14],
there are also some numerical tests, that uses generating vectors that we have found by our
component–by–component approach. In particular, these results emphasize the outstanding
properties of the reconstructing rank-1 lattices determined by our component–by–component
strategies. All mentioned error estimates deals with terms C and c that only depend on the
parameters that are given as indices. Unfortunately, these constants grow exponentially with
the dimension d.

In addition, our paper [KPV13] contains approximation results about the approximation
used sampling along perturbed rank-1 lattice nodes. The idea there is to use Taylor approxi-
mation in order to compute the function values at the perturbed rank-1 lattice nodes. Under
additional assumptions, we are also able to approximate functions from sampling values at
perturbed rank-1 lattice nodes, for details see [KPV13, Sec. 3.3]. The corresponding error
estimates are quite similar to the estimates in (3.15) and (3.16) up to the constants.

Furthermore, our paper [KPV13] contains error estimates for approximations SIf , where
the structure of the frequency index set I does not fit exactly to the norms of the estimates
in some specific kind.
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Algorithm 3.6 Construction of interpolating frequency index set

Input: I ⊂ Zd frequency index set
z ∈ Nd generating vector of reconstructing rank-1 lattice Λ(z,M, I)
M ∈ N rank-1 lattice size of reconstructing rank-1 lattice Λ(z,M, I)

l = 1
Ĩ = I
ĨSP = {k · z mod M : k ∈ I}
while |ĨSP| < M do

construct the set Kl := {k ∈ Zd : l − 1 < ω(k) <= l}
order the elements in Kl with respect to ω, i.e., ω(k1) ≤ ω(k2) ≤ . . . ≤ ω(k|Kl|)
for j = 1, . . . , |Kl| do
if kj · z mod M 6∈ ĨSP then
Ĩ = Ĩ ∪ {kj}
ĨSP = ĨSP ∪ {kj · z mod M}

end if
end for
l = l + 1

end while

Output: Ĩ interpolating frequency index set for Λ(z,M)

3.5 Interpolation of Multivariate Periodic Functions

Up to now, we treated approximation problems. In general, we computed the approximated
Fourier coefficients with frequencies supported on the frequency index set IN from M ≥ |IN |
function values along the reconstructing rank-1 lattice Λ(z,M, IN ). Some of the theoretical
findings, cf. Lemmas 2.11 and 2.13, verify that there exist frequency index sets IN , such that
we cannot find a reconstructing rank-1 lattice Λ(z, |IN |, IN ). Consequently, the approxima-
tion S̃IN f , cf. (3.13), may not be an interpolation on the rank-1 lattice nodes for f 6∈ ΠIN .
In [MS12], H. Munthe-Kaas and T. Sørevik describe a constructive strategy in order to find
suitable frequency indices k ∈ Zd with respect to a given weight function ω : Zd → [0,∞)
such that the union of all these frequency indices is a space of trigonometric polynomials ΠĨ
that allow a unique interpolation on a given rank-1 lattice Λ(z,M). In detail, the strategy
indicated by Algorithm 3.6 with input z, M , and I = ∅ lead us to the, maybe non-unique,
frequency index set Ĩ. The idea in [MS12] is to take a rank-1 lattice Λ(z,M) that is optimized
for some kind of an integration error, compute the frequency index set Ĩ, and approximate
the function f by S̃Ĩf . Clearly, the rank-1 lattice Λ(z,M) = Λ(z,M, Ĩ) is a reconstructing

rank-1 lattice for Ĩ. Unfortunately, the strategy to construct Ĩ may discard frequencies k
that have a low value ω(k) and thus the approximation error may be of a high order in the
worst case.

In order to avoid these problems, we advice to plug in reconstructing rank-1 lattices
Λ(z,M, I) and, additionally, the frequency index set I in Algorithm 3.6. The strategy is as
follows. For a fixed weight function ω, we determine the frequency index set IN := {k ∈
Zd : ω(k) ≤ N} and a corresponding reconstructing rank-1 lattice Λ(z,M, IN ) using the

approach mentioned in Table 3.1 or Algorithms 3.7 or 3.8. Then, we determine Ĩ as sketched
in Algorithm 3.6. Due to the reconstruction property of Λ(z,M, IN ), we obtain IN ⊂ Ĩ =: ĨN ,
|ĨN | = M , and Λ(z,M, IN ) = Λ(z, |ĨN |, ĨN ). Now, we are able to compute an interpolation
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SĨN f of f ∈ Aω(Td) and, in addition, we get an error estimate similar to Theorem 3.11.

Theorem 3.13. Let the function f ∈ Aω(Td) and the frequency index set IN = {k ∈ Zd :
ω(k) ≤ N} of finite cardinality be given. Additionally, we assume that the frequency index
set ĨN fulfills IN ⊂ ĨN and there exists a reconstructing rank-1 lattice Λ(z, |ĨN |, ĨN ) for the
frequency index set ĨN . Then, the approximation S̃ĨN f of f is in fact an interpolation of f

at all rank-1 lattice nodes of Λ(z, |ĨN |, ĨN ) and we estimate

‖f − S̃ĨN f |L∞(Td)‖ ≤ 2N−1‖f |Aω(Td)‖. (3.17)

Proof. The reconstruction property of Λ(z, |ĨN |, ĨN ) for ĨN and the equality of the lattice
size and the number of frequencies, that are contained in ĨN , yield that the Fourier matrix

A =
(

e2πij k·z
M

)
j=0,...,|ĨN |−1,k∈ĨN

is a regular squared matrix and, thus, directly invertible. The

corresponding solution
ˆ̃
f = A−1f interpolates f at all rank-1 lattice nodes of Λ(z, |ĨN |, ĨN ),

since we obtain A ˆ̃f = f . The proof of the error estimate follows the proof of Theorem
3.11.

Remark 3.14. Besides the general result presented here, there can be found some error
estimates for specific weight functions in [KPV13]. In particular, we treat an interpolation
problem in a Hilbert space setting therein, that is similar to the approximation problems
explained in Remark 3.12. The corresponding error estimates are also of the same type and
quality.

We discuss the advantages of the interpolation approach in Chapter 5. In particular,
the numerical examples in Section 5.1 and 5.3 demonstrate the advantages of interpolating
frequency index sets ĨN . At this point, we should mention that the computation of a suitable
interpolating frequency index set ĨN may take a lot of memory and in addition computational
time, cf. Algorithm 3.6.

3.6 Tractability

In the last sections, we showed that there exists a rank-1 lattice of size M , |IN | ≤M . |IN |2,
with IN = {k ∈ Zd : ω(k) ≤ N}, IN ⊂ {k + [0,M ]d}, k ∈ Zd, that allows for the
approximation of f ∈ Aω(Td) with a relative error not larger than 2N−1. In other words,
assuming the frequency index set IN contained in a d-dimensional cube of edge length smaller
than |IN |2, we need not more than |IN |2 samples to approximate f with an error not larger
than 2N−1, cf. Remark 3.5 and Corollary 3.4. Depending on ω, the cardinality of IN possibly
depends on N and d.

Regarding the tractability of our approximation problem we consider the cardinality of
IN . We can determine different types of tractability, see, e.g. [NW08]. We call the problem
polynomial tractable if the number of information we need to achieve an approximation error
not larger than ε depends only polynomial on ε−1 and d. If we have additional independence
of d the problem is called strongly tractable. Furthermore, we call the problem weakly tractable
iff the information complexity is not exponential in ε−1 and not exponential in d. Obviously,
we can reduce these conditions to conditions on the number M ≤ |IN |2 of samples we need
to achieve the approximation error not larger than 2N−1. In order to obtain tractability the
cardinality of IN has to be polynomial in N and d. Moreover, the cardinality of IN has to be
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independent of d in order to obtain strong tractability. Finally, we prove weak tractability, if
limd+N→∞

2 ln |IN |
d+N = 0 holds. In the following we consider some of the examples from Section

2.3.

Lemma 3.15. Let γ = (γs)
∞
s=1 ∈ [0, 1]N, 0 < ε ∈ R, 0 < c ∈ R, γs ≤ c

s1+ε and 0 < p ≤ ∞
be given. The approximation of the function f ∈ A

ωd,γp
(Td) using trigonometric polynomials

with frequencies supported on weighted `p-balls Id,γp,N := {k ∈ Zd : ωd,γp (k) ≤ N}, see (2.15),
is at least weakly tractable.

Proof. Following Lemma 2.6, we estimate

2 ln |Id,γp,N |
d+N

≤
2 ln |Id,γ∞,N |
d+N

=
2
∑d

s=1 ln(1 + 2 bγsNc)
d+N

≤
2
∑

s∈N
s1+ε≤cN

ln(1 + 2cs−1−εN)

d+N

≤
4
∑

s∈N
s1+ε≤cN

ln(2cs−1−εN)

d+N
≤ 4sN ln 2 + 4(1 + ε)sN ln sN

d+ c−1s1+ε
N

with sN = (cN)
1

1+ε and N =
s1+ε
N
c . We conclude

lim
d+c−1s1+ε

N →∞

4sN ln 2 + 4(1 + ε)sN ln sN

d+ c−1s1+ε
N

= 0.

Lemma 3.16. With
∑∞

s=1 γs <∞ the cardinality of the weighted hyperbolic cross Id,γhc,N , cf.

(2.17), is bounded from above by |Id,γhc,N | ≤ CγN
2 where Cγ is independent of the dimension

d. Consequently |Id,γhc,N |
2 is independent of d and polynomial in N . The corresponding

approximation problem in A
ωd,γp

(Td) is strongly tractable.

Proof. We refer to [CKN10, Equation (6)]. There, one finds the estimate

|Id,γhc,N | ≤ N
τ

d∏
s=1

(1 + 2ζ(τ)γτs )

for all τ > 1. The product converges for all τ > 1 and d→∞. So, we achieve

|Id,γhc,N | ≤ Cγ,τN
τ .

We plug in τ = 2 and obtain the assertion from above.

The last two lemmas treat different kinds of weights ω and determines positive tractabil-
ity results of the corresponding approximation problem from the number of frequency indices
given by IN . In a similar way, one can analyze other weight functions and the corresponding
cardinalities of the arising frequency index sets IN . In detail, the positive tractability results
concerning the cardinalities of IN directly causes positive tractability result on the approxi-
mation method that computes approximated Fourier partial sums S̃IN f from sampling values
of f along reconstructing rank-1 lattices for IN .
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3.7 Improvements on the Construction of Reconstructing Rank-1
Lattices

In Table 3.1, we listed the basic steps that we determined from our theoretical results in
Corollary 3.4 in order to construct reconstructing rank-1 lattices. Even if we additionally
assume that the frequency index set I is contained in a d-dimensional cube of edge length |I|,
we may have to expect a computational complexity of Ω

(
d|I|3

)
and a memory requirement

in Ω
(
d|I|2

)
in the worst case.

According to the usual practice, we are interested in improvements on the deterministic
way, cf. Table 3.1, for finding reconstructing rank-1 lattices.

One can consider modifications that reduce the arithmetic complexity or the memory
requirements of the costly steps. In general, this may be successful if one restricts the
frequency index I to a specific structure. In detail, convexity of I may be helpful or the
embedding of the difference set D(I) into a frequency index set that is often considered in
numerical integration, e.g., `1-balls or hyperbolic crosses which are often called Zaremba
crosses in numerical integration. In particular, the famous fast component–by–component
construction of rank-1 lattices for numerical integration developed by R. Cools and D. Nuyens,
cf. [CN04, CN06, CN07, CN08, CKN10], offers a possibility in order to improve step 5 of our
strategy, see Table 3.1. In short words, the fast component–by–component construction is
a component–by–component construction, which computes for a fixed rank-1 lattice size M
and a fixed generating vector (z1, . . . , zs−1)> a specific integration error in dimension s for
each zs = 1, . . . ,M − 1 using a fast Fourier transform. Consequently, we can try to improve
the fifth step of our strategy, cf. Table 3.1, in the following way. We assume, that we have
an integration error functional that somehow fits to the structure of the difference set D(I)
and fulfills the assumptions of the fast component–by–component construction, cf. [CN07].
Then, we order the candidates l = {1, . . . ,M − 1} for zs with respect to the integration error
of the rank-1 lattice Λ((z1, . . . , zs−1, l)

>,M), ascendingly. Subsequently, we test the rank-1
lattices Λ((z1, . . . , zs−1, l)

>,M) for the reconstruction property for the frequency index set I
starting with the generating vectors (z1, . . . , zs−1, l)

> bringing the smallest integration errors.
The explained approach is based on the following necessity. Due to the assumption that the
integration error functional fits to the structure of the difference set, we obtain that for rank-1
lattices that have a large worst case integration error the integer dual lattice, cf. (3.11), may
touches the difference set D(I) with high probability. Thus, we pass through all candidates
l ∈ {1, . . . ,M − 1} in a way, such that, hopefully, only a few tests are necessary in order
to find a reconstructing rank-1 lattice. There are at least two crucial disadvantages on that
approach:

1. The approach is severely limited to specific structures of difference sets D(I), cf. [CN07].

2. We have to analyze the structure of the difference set D(I) in order to find (or may not
find) a suitable error functional.

Besides these two disadvantages, we usually observe that the fifth step of our strategy, cf.
Table 3.1, is not as costly as the worst case arithmetic complexity promises.

Hence, we focus on another improvement. In detail, the first step of our strategy, i.e.,
the computation of the difference sets D(I)↓s, requires high computational costs and, in
addition, a lot of memory. Thus, we are interested in deterministic strategies in order to
determine reconstructing rank-1 lattices that avoid the computation of the difference set D(I).
Moreover, further simplifications of the search strategy can mainly improve the practicability
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of our sampling method. In particular, we have in mind applications, that identify the
frequency index set I dimension–by–dimension. Consequently, the assumption of Corollary
3.4 cannot be fulfilled, since we do not know all s-dimensional difference sets D(I)↓s a priori.

Algorithms determining generating vectors z and lattice sizes M

One of the main disadvantages of Algorithm 3.3 arises from the necessity of the input of a
suitable rank-1 lattice size M . In this section we introduce a strategy to compute generating
vectors z and corresponding lattice sizes M for fixed frequency index sets I. In particular,
the specified algorithms seems to be useful for higher dimensions d and frequency index
sets I ⊂ k + [0,a], k ∈ Zd, a ∈ Nd, contained in boxes of relatively small edge lengths
a1, a2, . . . , ad.

Lemma 3.17. Let the dimension d ∈ N, d ≥ 2, and the frequency index set I ⊂ Zd of finite
cardinality, |I| ≥ 2, be given. We assume that Λ(z,M, I↓d−1) with z = (z1, . . . , zd−1)> is a

reconstructing rank-1 lattice for the frequency index set I↓d−1 := {(hs)d−1
s=1 : h ∈ I}. With

S = min {m ∈ N : |{hd mod m : h ∈ I}| = |{hd : h ∈ I}|}, we create a reconstructing rank-1
lattice Λ((z1, . . . , zd−1,M)>,MS, I) for the frequency index set I.

Proof. We assume the rank-1 lattice Λ((z1, . . . , zd−1)>,M) is a reconstructing rank-1 lattice
for I↓d−1 and Λ((z1, . . . , zd−1,M)>,MS) is not a reconstructing rank-1 lattice for I, i.e., there
exist at least two different elements (h, hd), (k, kd) ∈ I, (h, hd) 6= (k, kd), such that

h · z + hdM ≡ k · z + kdM (mod MS).

We distinguish three different possible cases of (h, hd), (k, kd) ∈ I, (h, hd) 6= (k, kd):

• h = k and hd 6= kd
We consider the corresponding residue classes

0 ≡ k · z + kdM − h · z − hdM ≡ (kd − hd)M (mod MS)

and obtain S | (kd − hd), i.e., kd ≡ hd (mod S). Thus, we estimate |{hd mod S : h ∈
I}| < |{hd : h ∈ I}|, which is in contradiction to the definition of S.

• h 6= k and hd = kd
Accordingly, we calculate

0 ≡ k · z + kdM − h · z − hdM ≡ (k − h) · z (mod MS)

and obtain MS | (k − h) · z and M | (k − h) · z as well. According to that, we
obtain h · z ≡ k · z (mod M), which is in contradiction to the assumption Λ(z,M) is
a reconstructing rank-1 lattice for I↓d−1.

• h 6= k and hd 6= kd
Due to Λ(z,M) is a reconstructing rank-1 lattice for I↓d−1 we have

0 6≡ k · z − h · z (mod M).

Thus, we can find uniquely specified ak,h ∈ Z and bk,h ∈ {1, . . . ,M − 1} such that
k · z − h · z = ak,hM + bk,h. We calculate

0 ≡ k · z + kdM − h · z − hdM ≡ (ak,h + kd − hd)M + bk,h (mod MS)

and obtain MS | (ak,h + kd − hd)M + bk,h. As a consequence, we deduce M | bk,h,
which is in conflict with bk,h ∈ {1, . . . ,M − 1}.
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Algorithm 3.7 Component-by-component lattice search (unknown lattice size M)

Input: I ⊂ Zd frequency index set

M1 = min {m ∈ N : |{h1 mod m : h ∈ I}| = |{h1 : h ∈ I}|}
z1 = 1
for s = 2, . . . , d do
S = min {m ∈ N : |{hs mod m : h ∈ I}| = |{hs : h ∈ I}|}
zs = Ms−1

z = (z, zs)
form the set I↓s
Ms = min

{
m ∈ N : |{z · h mod m : h ∈ I↓s}| = |I↓s|

}
≤ SMs−1 (Algorithm 3.5)

end for

Output: z ∈ Zd generating vector
M ∈ Nd rank-1 lattice sizes for dimension s = 1, . . . , d

of reconstructing rank-1 lattices
Λ((1,M1, . . . ,Ms−1)>,Ms, I↓s), s = 1, . . . , d

Extending the reconstructing rank-1 lattice Λ(z,M, I↓d−1) for I↓d−1 to Λ((z>,M)>,MS) with
S as defined above, we actually get a reconstructing rank-1 lattice for the frequency index
set I ⊂ Zd.

Lemma 3.17 lead us directly to the specification of Algorithm 3.7. We stress the fact
that the corresponding output of Algorithm 3.7 is a vector M and a generating vector z =
(1,M1, . . . ,Md−1)> that specify reconstructing rank-1 lattices Λ((z1, . . . , zs)

>,Ms) for the
index sets I↓s, s = 1, . . . , d.

In addition, Algorithm 3.8 extends this strategy. In contrast to Algorithm 3.7, knowing
Ms−1 we do not fix zs = Ms−1. We search for a suitable component zs ∈ [0,Ms−1] of the
generating vector z. In that way, Algorithm 3.8 may find even smaller rank-1 lattices than
Algorithm 3.7 does. Please note, that the determination of a rank-1 lattice is also guaranteed
due to Ms−1 is one of the candidates for zs. Furthermore, we allow zs = 0. A generating
vector z that is returned by Algorithm 3.8 and has a zero component in dimension s states
that the information of the sth component of the integer vectors k contained in the frequency
index set I is not necessary in order to find a reconstructing rank-1 lattice. In other words,
all vectors k ∈ I↓s are uniquely determined by its first s−1 components and the trigonometric
polynomial f ∈ ΠI↓s

can be uniquely reconstructed from sampling values that depends only
on the first s− 1 dimensions.

3.8 Specific Frequency Index Sets

In this section, we treat the same frequency index sets I as considered in Section 2.3. In
particular, we use the introduced frequency index sets in order to demonstrate different
features of the corresponding reconstructing rank-1 lattices, cf. Section 3.2. In the following
discussions we focus on fixed dimensions d and apply the existence results from Corollary
3.4 to the different structures of frequency index sets that are defined in Section 2.3, i.e., we
estimate lattice sizesM guaranteeing the existence of reconstructing rank-1 lattices Λ(z,M, I)
for the frequency index sets I. In particular, we are interested in the relations of the lattice
size M and the cardinality |I|, where the frequency index sets I are weighed `p-balls Id,γp,N ,
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Algorithm 3.8 Component-by-component lattice search (unknown lattice size M , extended)

Input: I ⊂ Zd frequency index set

M1 = min {m ∈ N : |{h1 mod m : h ∈ I}| = |{h1 : h ∈ I}|}
z1 = 1
for s = 2, . . . , d do
S = min {m ∈ N : |{hs mod m : h ∈ I}| = |{hs : h ∈ I}|}
form the set I↓s
search for the smallest zs ∈ [0,Ms−1]∩Z with |{(z, zs) ·h mod SMs−1 : h ∈ I↓s}| = |I↓s|
z = (z, zs)
Ms = min

{
m ∈ N : |{z · h mod m : h ∈ I↓s}| = |I↓s|

}
≤ SMs−1 (Algorithm 3.5)

end for

Output: z ∈ Zd generating vector
M ∈ Nd rank-1 lattice sizes for dimension s = 1, . . . , d

of reconstructing rank-1 lattices
Λ((z1, z2, . . . , zs)

>,Ms, I↓s), s = 1, . . . , d

weighted hyperbolic crosses Id,γhc,N , energy-norm based hyperbolic crosses Id,γ,α,βehc,N and arbitrary
sparse frequency index sets.

We demonstrate that reconstructing rank-1 lattices are a good choice in order to sample
multivariate trigonometric polynomials. At least for weighted `p-balls and energy-norm based
hyperbolic crosses, we use Corollary 3.4 in order to show that reconstructing rank-1 lattices
are perfectly stable sampling schemes of optimal order with respect to the parameter N and
the stability.

The numerical examples of this section are presented in tables, that have all a similar
structure. The most left columns contain the parameters determining the frequency index
set I and the cardinality |I| of the corresponding frequency index set. The following four
columns present lattice sizes MCor3.4, MAlg3.3+Alg3.5, MAlg3.7, and MAlg3.8 of reconstructing
rank-1 lattices, where

• MCor3.4 is the lattice size that we found using the strategy indicated in Table 3.1 applied
on the frequency index set I, i.e., the lattice size for which we proved the existence of
a generating vector z that can be determined component–by–component such that the
rank-1 lattice Λ(z,MCor3.4, I) is a reconstructing one for I,

• MAlg3.3+Alg3.5 is the lattice size that we determined by applying Algorithm 3.5 on the
rank-1 lattice we determined by the strategy from Table 3.1,

• MAlg3.7 is the size of the reconstructing rank-1 lattice that we computed using Algorithm
3.7, and

• MAlg3.8 is the cardinality of the reconstructing rank-1 lattice that is found by Algorithm
3.8 for the input I.

In appropriate cases, we specified the generating vector zAlg3.8 that is determined by Algo-
rithm 3.8 in the last column. Again, we stress on the fact that the strategy shown in Table
3.1 suffers from huge memory requirements. According to this, several values of MCor3.4 and
MAlg3.3+Alg3.5 are not listed in the tables of this section.
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3.8.1 Weighted `p-balls

In this section we consider weighted `p-balls Id,γp,N , defined in (2.15), as frequency index sets.

We apply Corollary 3.4 and show that the relation M/|Id,γp,N | of the lattice size M of a suitable

reconstructing rank-1 lattice Λ(z,M, Id,γp,N ) and the cardinality |Id,γp,N | of the weighted `p-ball
is bounded independently of N .

Corollary 3.18. Let the fixed dimension d ∈ N, the parameter p ∈ (0,∞], the weights
γ ∈ [0, 1]N with γ1 ≥ . . . ≥ γd > 0, and N ∈ R, dmin(0,(p−1)/p)γdN ≥ 2d, be given. Then, there

exists a reconstructing rank-1 lattice Λ(z,M, Id,γp,N ) of size M . |Id,γp,N |, i.e., the oversampling

factor M

|Id,γp,N |
is bounded from above by a number Cp,d,γ depending only on the dimension

d, the parameter p, and the weights γ1, . . . , γd. The constant Cp,d,γ can be bounded by

C̃p,d,γ = 16
3 γ
−d
d ddmax(0,−(p−1)/p)d!

∏d
s=1(1 + γs2

max(2,1+1/p)) roughly.

Proof. We proved the embeddings

Id,γ
1,dmin(0,(p−1)/p)N

⊂ Id,γp,N ⊂ D(Id,γp,N ) ⊂ Id,γ
p,2max(1,1/p)N

⊂ Id,γ∞,2max(1,1/p)N

in Lemmas 2.6 and 2.7. We take Corollary 3.4, Remark 3.5, and (3.8) into account and de-

termine a prime number M ≤ 2
3(|D(Id,γp,N )|+ 7) ≤ 16

3 |I
d,γ

∞,2max(1,1/p)N
| fulfilling the assumptions

of Corollary 3.4, i.e., we find a generating vector z such that the resulting rank-1 lattice is a

reconstructing rank-1 lattice Λ(z,M, Id,γp,N ) for the frequency index set Id,γp,N . We use Lemma
2.8 and estimate

M

|Id,γp,N |
≤ 16

3

|Id,γ∞,2max(1,1/p)N
|

|Id,γ
1,dmin(0,(p−1)/p)N

|
≤ 16

3

∏d
s=1(1 + 2

⌊
γs2

max(1,1/p)N
⌋
)

γd
dd

dmin(0,(p−1)/p)Nd

d!

≤ 16

3
γ−dd ddmax(0,−(p−1)/p)d!

d∏
s=1

(1 + γs2
max(2,1+1/p)) =: C̃p,d,γ .

We stress the fact that the order in N is the best possible in the asymptotic with respect
to N , since we proved that there exist reconstructing rank-1 lattices Λ(z,M, |Id,γp,N |) of size M

such that the oversampling factor M/|Id,γp,N | is bounded independently of N , provided that N

is large enough. Nevertheless, we have to expect lattice sizes M ∼ Nd due to the fact that the
cardinalities of the frequency index sets fulfill |Id,γp,N | ∼ Nd for large enough parameters N , cf.
Lemma 2.7 and Corollary 2.9. Anyway, the upper bound on the constant Cp,d,γ may be huge.
Certainly, we did not take care on the best possible estimates with respect to the weights γ
and the parameter p in order to calculate C̃p,d,γ . Thus, for specific parameter constellations,
we will not observe constants that are as big as C̃p,d,γ from Corollary 3.18.

In the following we consider weighted `p-balls of a specific structure in detail. We start
with `∞-balls, which are in principle so-called (weighted) full frequency index sets. In addi-
tion, we treat weighted `1-balls that are convex subsets of the `∞-balls. Appropriate weighted
`1-balls may severely decrease the number of frequencies compared to `∞-balls. Furthermore,
we consider `1/2-balls, that have cardinalities that are even smaller than those of the corre-
sponding `1-balls. The non-convexity of `p-balls, p < 1, is of our particular interest.
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Example 3.19. As a first example, we treat weighted `∞-balls and determine a rank-1 lat-
tice size M ≤ 16

3 |I
d,γ
∞,2N | such that we can find a reconstructing rank-1 lattices Λ(z,M, Id,γ∞,N )

for the weighted l∞-balls Id,γ∞,N , cf. Corollary 3.4, Remark 3.5, Lemma 2.7 and (3.8). Conse-

quently, we can estimate the oversampling factor M/|Id,γ∞,N | by

M

|Id,γ∞,N |
≤ 16

3

∏d
s=1(1 + 2 bγs2Nc)∏d
s=1(1 + 2 bγsNc)

≤ 16

3

∏d
s=1(3 + 4 bγsNc)∏d
s=1(1 + 2 bγsNc)

≤ 16 · 3d,

which is much better than the upper bound given in Corollary 3.18.
Since the `∞-ball is the classical frequency index set in higher dimensions d which one

obtains by the tensor product of one-dimensional discrete Fourier transforms, this type
of frequency index sets is well investigated. In particular, the paper of G. Steidl and
M. Tasche, [ST89], deals with so-called index transforms, where they transform the in-
dices of s-dimensional full frequency index sets, i.e., s-dimensional `∞-balls, to d-dimensional
`∞-balls, d > s. In principle, we consider a similar but inverse transform to those index
transforms. In detail, we have a transform of a d-dimensional `∞-ball Id,γ∞,N to a (shifted)

one-dimensional `∞-ball [0,M −1]∩Z given by the mapping k 7→ k ·z mod M , k ∈ Id,γ∞,N . In

order to find a reconstructing rank-1 lattice for Id,γ∞,N our index mapping has to be injective.
In particular, we can apply the results of G. Steidl and M. Tasche, cf. [ST89], in the

following way. We embed the frequency index set Id,γ∞,N in a suitable `∞-ball Id,γ∞,N ⊂
×d

s=1

[
−as−1

2 , as−1
2

]
where the integers as are one or pairwise coprime. Then there exists

a bijective index transform from×d
s=1

[
−as−1

2 , as−1
2

]
to [0,

∏d
s=1 as−1]∩Z due to the results

of [ST89]. In detail, we can give such an index transform using rank-1 lattices. We define
the generating vector z with components

zs :=

d∏
t=1
t6=s

as

and a rank-1 lattice size M :=
∏d
s=1 as. Then, the corresponding mapping k 7→ k · z mod M

is bijective between ×d
s=1

[
−as−1

2 , as−1
2

]
and [0,M − 1] ∩ Z and consequently, we have found

a generating vector z and lattice size M such that the mapping k 7→ k ·z mod M is injective
for all k ∈ Id,γ∞,N . Thus, we gain a reconstructing rank-1 lattice Λ(z,M, Id,γ∞,N ) for Id,γ∞,N .

Now, we estimate the cardinality of the found reconstructing rank-1 lattice Λ(z,M, Id,γ∞,N ),

i.e., we would like to determine a close bound on M :=
∏d
s=1 as. Clearly, the d coprime

numbers as, s = 1, . . . , d, should be chosen very carefully. For specific frequency index sets
Id,γ∞,N and suitable chosen as, s = 1, . . . , d, we obtain Id,γ∞,N =×d

s=1

[
−as−1

2 , as−1
2

]
and, thus,

we do not observe oversampling, i.e., the oversampling factor M/|Id,γ∞,N | is determined by one.
In particular for a constant sequence γ, we may find sequences as, s = 1, . . . , d, that are d
successive coprime numbers and its product is much larger than |Id,γ∞,N |. In fact, the quotient∏d
s=1 as/|I

d,γ
∞,N | may grow exponentially in d.

Example 3.20. Our second example also deals with convex frequency index sets. We con-
sider weighted `1-balls Id,γ1,N . The theoretical findings in Corollary 3.18 verify that we can find

reconstructing rank-1 lattices Λ(z,M, Id,γ1,N ) of sizes M that are not greater than Cp,d,γ |Id,γ1,N |.
Certainly, the constant Cp,d,γ is an asymptotic bound and we cannot expect to observe fixed
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Weighted convex `p-balls Id,γ1,N , Id,11,N , Id,γ∞,N – Comparison of Cardinalities

N

d 2 4 6 8 10

|I
d
,γ

1
,N
| 3 9 65 227 515 983

6 15 241 1 567 6 955 23 431
9 17 333 3 121 19 671 94 693

10 17 351 3 433 23 193 120 251

|I
d
,1

1
,N
| 3 25 129 377 833 1 561

6 85 1 289 8 989 40 081 134 245
9 181 5 641 75 517 598 417 3 317 445

10 221 8 361 134 245 1 256 465 8 097 453

|I
d
,γ ∞
,N
| 3 45 441 1 287 3 315 6 783

6 1 215 55 125 567 567 3 610 035 14 549 535
9 3 645 2 480 625 99 324 225 1 592 025 435 12 963 635 685

10 3 645 7 441 875 496 621 125 11 144 178 045 90 745 449 795

Table 3.2: Cardinalities of `p-ball frequency index sets Id,γ1,N , Id,11,N , and Id,γ∞,N for comparison,

γ =
(
0.9s−1

)
s∈N.

oversampling factors in specific numerical examples. In particular, for fixed dimension d, the
cardinalities of the `1-ball Id,γ1,N grows very fast and we showed in Lemma 2.8 that |Id,γ1,N | & Nd.

Thus, we expect large cardinalities |Id,γ1,N | for even moderate dimensions d > 3 and moderate
parameters N .

On the other hand, we can choose suitable weights γ in order to consider `1-balls of
reasonable cardinalities in higher dimensions. Decreasing weights γ, that tends to zero, cause
decreasing expansions of the frequency index sets in higher dimensions, i.e., the absolute value
of the sth component of the integer vector k ∈ Id,γ1,N is bounded by bγsNc.

For our numerical example, we fixed the weights γ =
(
0.9s−1

)
s∈N and the parameter

p = 1. Table 3.2 presents the cardinalities of some frequency index sets Id,γ1,N of specific
dimensions d = 3, 6, 9, 10 and parameters N = 2, 4, 6, 8, 10.

Often, one uses embeddings of the frequency index sets in order to reconstruct trigono-
metric polynomials (or approximate functions). We explain this strategy in a few words:
One considers the trigonometric polynomial f ∈ Π

Id,γ1,N
as a trigonometric polynomial that

has its frequency support on a superset of Id,γ1,N . Then, one reconstructs all frequencies of
f supported on this superset using sampling values along a known sampling scheme and a
corresponding fast algorithm that matches with the superset. Subsequently, one can project
the solution f onto the space of trigonometric polynomials Π

Id,γ1,N
. Clearly, the supersets of

Id,γ1,N should not cause huge additional costs for the reconstruction of f . The costs mainly
depend on the cardinality of the superset. We consider two different approaches.

The first is the embedding of the weighted `1-ball Id,γ1,N in an unweighted `1-ball Id,11,N , which
is as close as possible. We also specified the corresponding cardinalities of these frequency
index sets in Table 3.2. According to those cardinalities, we have to expect large additional
costs in order to reconstruct trigonometric polynomials supported on Id,11,N instead of Id,γ1,N
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Weighted `1-balls Id,γ1,2 – Reconstructing Rank-1 Lattices Λ(z,M, Id,γ1,2 )

d |Id,γ1,2 | MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8 zAlg3.8,d

1 5 5 5 5 5 1
2 7 7 7 8 7 3
3 9 11 9 11 9 4
4 11 11 11 14 11 5
5 13 13 13 17 13 6
6 15 17 15 20 15 7
7 17 17 17 23 17 8
8 17 17 17 23 17 0

Table 3.3: Cardinalities of reconstructing rank-1 lattices for weighted `1-ball frequency index
sets Id,γ1,2 found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7,

and Algorithm 3.8, γ =
(
0.9s−1

)
s∈N. Last column: generating vector zAlg3.8 =

(zAlg3.8,s)
d
s=1 returned by Algorithm 3.8.

since we expect a large number of samples M ≥ |Id,11,N | compared to the cardinality of the
weighted `1-ball.

On the other hand, we can also embed the weighted `1-ball Id,γ1,N to the weighted `∞-ball

Id,γ∞,N . The main advantage of this embedding is that there are fast algorithms available
in order to compute the d-dimensional discrete Fourier transform and we know, that we
need exactly |Id,γ∞,N | many sampling values in order to uniquely and stably reconstruct all

trigonometric polynomials with frequencies supported on Id,γ∞,N . Anyway, Table 3.2 shows

corresponding cardinalities of the closest supersets of Id,γ1,N of the weighted `∞-type. Obvi-
ously, this approach cannot be very successful even for dimensions d ≥ 6. We would need
a huge number of samples in order to reconstruct the trigonometric polynomial supported
on the frequency index set Id,γ1,N . Consequently, the embedding approach fails unless the
corresponding embedding is really close.

As a consequence, we would like to give specific sampling schemes that allows the unique
and stable direct reconstruction of all trigonometric polynomials with frequency supported
on the weighted `1-ball Id,γ1,N . In particular, we shift our attention to reconstructing rank-1
lattices for weighted `1-balls.

Since the weights γ decrease monotonically, we specify the effective dimension deff of the
frequency index set Id,γ1,N by

deff := max{s ∈ N : 0.9s−1N ≥ 1} =

⌊
logN

log(10/9)

⌋
+ 1. (3.18)

Accordingly, the frequency index set Id,γ1,N has a maximal effective dimension deff depending

on N , i.e., Id,γ1,N = Ideff,γ
1,N ×

{
(0)ds=deff+1

}
for d > deff.

We computed reconstructing rank-1 lattices of sizes MCor3.4, MAlg3.3+Alg3.5, MAlg3.7, and

MAlg3.8 for the weighted `1-balls Id,γ1,N having different parameter N = 2, 6, 10 and dimensions
d up to the effective dimension deff, cf. Tables 3.3, 3.4, and 3.5.

The theoretical results MCor3.4 are much smaller than the very pessimistic right hand
sides of (3.8) and (3.9), that bounds the number MCor3.4 by the term c|Id,γ1,N |2, where c is not
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Weighted `1-balls Id,γ1,6 – Reconstructing Rank-1 Lattices Λ(z,M, Id,γ1,6 )

d |Id,γ1,6 | MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8 zAlg3.8,d

1 13 13 13 13 13 1
2 63 103 71 72 71 11
3 227 701 317 367 317 60
4 551 2 857 918 1 192 918 256
5 997 8 461 1 964 2 559 1 964 601
6 1 567 19 163 3 699 5 612 3 699 1 363
7 2 169 34 511 6 238 9 456 6 238 2 324
8 2 697 49 169 7 902 13 009 7 902 3 139
9 3 121 59 281 9 634 19 097 9 634 4 011

10 3 433 62 533 9 881 25 249 9 881 4 373
11 3 653 62 533 11 666 29 397 11 666 4 486
12 3 799 62 533 12 180 31 436 11 666 2 513
13 3 877 62 533 12 319 34 061 11 666 1 258
14 3 911 62 533 12 319 38 790 11 666 678
15 3 933 62 533 12 721 39 342 11 666 309
16 3 943 62 533 12 721 40 236 11 666 155
17 3 945 62 533 12 721 42 512 11 666 17
18 3 947 62 533 12 721 42 975 11 666 18
19 3 947 62 533 12 721 42 975 11 666 0

Table 3.4: Cardinalities of reconstructing rank-1 lattices for weighted `1-ball frequency index
sets Id,γ1,6 found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7,

and Algorithm 3.8, γ =
(
0.9s−1

)
s∈N. Last column: generating vector zAlg3.8 =

(zAlg3.8,s)
d
s=1 returned by Algorithm 3.8.

smaller than 1
2 . This behavior is caused by the convexity of the frequency index sets Id,γ1,N .

Since the frequency index sets Id,γ1,N are convex, a lot of differences k−h, k,h ∈ Id,γ1,N coincides

and the cardinalities of the corresponding difference sets D(Id,γ1,N ) are much smaller than the

upper bound |Id,γ1,N |(|I
d,γ
1,N | − 1) + 1 ≥ D(Id,γ1,N ). We go into detail and observe fast growing

oversampling factors MCor3.4/|Id,γ1,N | for growing parameters N , even though we know that
this factor is universally bounded for fixed dimension d, parameter p, and weight sequence
γ. In principle, even for N = 10, we are in some kind of a start-up. That means that the
oversampling factors grow up to a specific bound. Since the cardinalities of the frequency
index sets Id,γ1,N grow very fast, we may not be able to observe the upper bound by numerical
tests, at least for larger dimensions d.

Anyway, the reconstructing rank-1 lattices Λ(z,M, Id,γ1,N ) of practical interest, i.e., M =
MAlg3.3+Alg3.5, M = MAlg3.7, or M = MAlg3.8, are of moderately smaller size M than MCor3.4.
Nevertheless, we also observe oversampling factors that grow with respect to N . In our
examples, these oversampling factors are bounded by a constant smaller than eleven and,
thus, are of moderate size.

Again, we take the embedding approaches from above into account and recognize that
well adapted reconstructing rank-1 lattices offers a much more suitable possibility in order
to reconstruct trigonometric polynomials supported on specific frequency index sets than the
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Weighted `1-balls Id,γ1,10 – Reconstructing Rank-1 Lattices Λ(z,M, Id,γ1,10)

d |Id,γ1,10| MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8 zAlg3.8,d

1 21 23 21 21 21 1
2 183 331 199 200 199 19
3 983 3 491 1 326 1 611 1 326 162
4 3 741 24 473 6 387 7 135 6 387 1 164
5 10 569 123 973 24 322 30 606 24 322 5 205
6 23 431 468 527 64 015 80 243 64 015 18 175
7 43 081 1 371 301 165 954 225 421 165 954 45 840
8 67 857 3 197 449 358 751 490 560 358 751 116 926
9 94 693 6 057 319 561 453 806 439 561 453 182 295

10 120 251 – – 1 395 338 806 670 310 294
11 142 261 – – 2 006 409 1 021 007 387 494
12 159 611 – – 2 988 396 1 228 093 510 199
13 172 079 – – 3 555 604 1 409 797 541 049
14 180 383 – – 3 908 777 1 517 004 571 769
15 185 551 – – 4 652 512 1 553 233 227 367
16 188 531 – – 4 757 505 1 553 253 148 906
17 190 085 – – 5 259 209 1 553 253 79 117
18 190 819 – – 5 536 902 1 578 919 27 290
19 191 105 – – 5 650 176 1 578 919 3 503
20 191 207 – – 5 857 071 1 578 919 1 600
21 191 233 – – 5 905 635 1 578 919 414
22 191 235 – – 5 922 089 1 578 919 28
23 191 235 – – 5 922 089 1 578 919 0

Table 3.5: Cardinalities of reconstructing rank-1 lattices for weighted `1-ball frequency index
sets Id,γ1,10 found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7,

and Algorithm 3.8, γ =
(
0.9s−1

)
s∈N. Last column: generating vector zAlg3.8 =

(zAlg3.8,s)
d
s=1 returned by Algorithm 3.8.

discussed embedding approaches.

Example 3.21. The first non-convex frequency index set under consideration are weighted
`p-balls, where p is less than one. In particular, we focus on `1/2-balls |Id,γ1

2
,N
| and even

summable γ =
(
0.9s−1

)
s∈N. Due to Lemma 2.6, we know that the cardinality of Id,γ1

2
,N

can be

bounded from above by terms that are independent of the dimension d. However, we expect

a fast growing sequence

(
|Id,γ1

2
,N
|
)
N∈N

even for fixed moderate dimension d ≥ 3, since there

exists a weighted `1-ball Id,γ
1,d−1/2N

of appropriate size that is embedded within the `1/2-ball

|Id,γ1
2
,N
|.

In particular for parameters p < 1, the upper bound C̃p,d,γ on the oversampling factors

MCor3.4/|Id,γp,N | from Corollary 3.18 is very huge, i.e., for p = 1/2 we calculate C̃1/2,d,γ ≥
16
3 d

d/2d!, where we uniformly estimated the terms depending on γ.
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Since we found small reconstructing rank-1 lattices for the weighted `1-balls, cf. Example
3.20, and we showed the embeddings Id,γ1

2
,N
⊂ Id,γ1,N in Lemma 2.6, we conjecture that there

exist reasonable reconstructing rank-1 lattices Λ(z,M, Id,γ1
2
,N

) for reasonable parameters N and

moderate dimensions d. In Tables 3.6 and 3.7, we present rank-1 lattice sizes of reconstructing
rank-1 lattices Λ(z,M, Id,γ1

2
,N

), N = 16, 35. We applied the strategy mentioned in Table 3.1

only on the frequency index sets Id,γ1
2
,35

that have a cardinality smaller than 100 000 since the

computation of the difference sets D(Id,γ1
2
,35

) takes a lot of computational time and memory.

Clearly, the `1/2-balls are much smaller than the `1-balls for fixed parameters. However,

we compare the reconstructing rank-1 lattice sizes |Λ(z,M, Id,γ1
2
,N

)| with those |Λ(z,M, Id,γ1,N )|
of weighted `1-balls of a similar cardinality, cf. Tables 3.4 and 3.5.

We observe that the theoretical lattice size MCor3.4 for the `1/2-balls is much larger than
those for the convex `1-balls of a similar cardinality. The reason for this observation is the
non-convexity of the `1/2-balls, that implies that the difference sets D(Id,γ1

2
,N

) are much larger

than those for the convex `1-balls. In detail, the number of coinciding differences k − h,
k,h ∈ Id,γ1

2
,N

, is significantly smaller.

We call back to our mind that each lattice rule given by a reconstructing rank-1 lattice
for a frequency index set I exactly integrates all trigonometric polynomials with frequencies
supported on the corresponding difference set D(I). Thus, we expect larger reconstructing
rank-1 lattice sizes with higher cardinalities of the difference set.

In accordance to that, we observe larger reconstructing rank-1 lattice sizes MAlg3.3+Alg3.5,
MAlg3.7, MAlg3.8 for `1/2-balls compared to the reconstructing rank-1 lattice sizes for `1-balls
of a similar cardinality. The two improvements, presented in Algorithms 3.7 and 3.8, allow
for the faster computation of reconstructing rank-1 lattices even for frequency index sets Id,γ1

2
,35

of higher cardinalities and, thus, higher dimensions.

We obtain that almost all reconstructing rank-1 lattice sizes MAlg3.3+Alg3.5 and MAlg3.8

are the same, in Table 3.7 at least for dimensions d up to ten. Algorithm 3.7 determines
reconstructing rank-1 lattices for the frequency index sets Id,γ1

2
,35

of larger sizes MAlg3.7 in most

cases. This observation is very probably caused by the inflexible choice of the generating vec-
tor. However, the determined rank-1 lattice sizes MAlg3.8 of practical interest yield moderate

oversampling factors MAlg3.8/|Id,γ1
2
,35
| smaller than 40.

We stress on the fact that the embedding approach mentioned in Example 3.20, now using
the embedding Id,γ1

2
,N
⊂ Id,γ1,N , is also not successfully applicable in general. In particular, we

observe huge differences in the cardinalities of the `1/2 and `1-balls that fulfills the closest

embedding, already for dimension d = 4. For example, we determine |I4,γ
1,35| = 534 055 whereas

the 8 835 frequencies of a trigonometric polynomial supported on the `1/2-ball Id,γ1
2
,35

can be

uniquely reconstructed from 66 851 samples along the well adapted reconstructing rank-1
lattice Λ((1, 59, 1264, 9300)>, 66 851, Id,γ1

2
,35

), cf. Table 3.7.

3.8.2 Weighted Hyperbolic Crosses

Since the cardinality of all `p-balls grows approximately like Nd, the use of even sparser
frequency grids has become very popular. In particular, one is interested in frequency index
sets that relax the curse of dimension. One of the most famous strategy is to use so-called
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Weighted ` 1
2
-balls Id,γ1

2
,16

– Reconstructing Rank-1 Lattices Λ(z,M, Id,γ1
2
,16

)

d |Id,γ1
2
,16
| MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8 zAlg3.8,d

1 33 37 33 33 33 1
2 169 563 384 479 384 25
3 429 4 177 1 381 1 559 1 381 210
4 783 15 581 3 498 4 894 3 498 564
5 1 219 37 463 6 141 8 651 6 141 1 374
6 1 661 67 537 9 956 18 691 9 956 2 446
7 2 105 99 679 14 175 21 888 14 175 3 302
8 2 527 128 311 17 579 39 373 17 579 4 275
9 2 895 143 413 19 908 47 312 19 908 4 317

10 3 195 149 341 21 655 61 844 20 598 3 391
11 3 453 152 183 23 445 69 700 23 336 4 622
12 3 639 152 183 23 986 83 264 24 558 5 146
13 3 791 152 183 24 894 87 259 24 843 5 872
14 3 911 152 183 24 894 88 446 24 894 5 055
15 4 005 152 183 24 894 96 737 24 894 2 222
16 4 083 152 183 24 894 99 017 24 894 1 706
17 4 143 152 183 24 894 108 846 24 894 1 036
18 4 191 152 183 24 894 111 341 24 894 341
19 4 227 152 183 24 894 119 421 24 894 670
20 4 251 152 183 24 894 125 520 24 894 172
21 4 265 152 183 24 894 128 878 24 894 141
22 4 267 152 183 24 894 129 819 24 894 34
23 4 269 152 183 24 894 130 488 24 894 36
24 4 271 152 183 24 894 133 701 24 894 37
25 4 273 152 183 24 894 133 915 24 894 39
26 4 275 152 183 24 894 137 272 24 894 40
27 4 277 152 183 24 894 138 021 24 894 57
28 4 277 152 183 24 894 138 021 24 894 0

Table 3.6: Cardinalities of reconstructing rank-1 lattices for weighted ` 1
2
-ball frequency index

sets Id,γ1/2,16 found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7,

and Algorithm 3.8, γ =
(
0.9s−1

)
s∈N. Last column: generating vector zAlg3.8 =

(zAlg3.8,s)
d
s=1 returned by Algorithm 3.8.

hyperbolic crosses in the frequency domain in order to reduce the number of degrees of
freedom for different basis functions.

Certainly, we treat trigonometric polynomials with frequencies supported on weighted
hyperbolic crosses Id,γhc,N as defined in (2.17). In some sense, one uses the weights in order to
describe the interactions between the different spatial variables.

We would like to apply Corollary 3.4. For that reason, we estimate the cardinality of the
difference sets D(Id,γhc,N ), cf. (2.11), of weighted hyperbolic crosses Id,γhc,N .

Lemma 3.22. Let the dimension d ∈ N, the parameter N ∈ R, N ≥ 1, and the weights γ
with 1 ≥ γ1 ≥ . . . ≥ γd > 0 be given. Then, there exists a constant Cd,γ ∈ R, Cd,γ < ∞,
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Weighted ` 1
2
-balls Id,γ1

2
,35

– Reconstructing Rank-1 Lattices Λ(z,M, Id,γ1
2
,35

)

d |Id,γ1
2
,35
| MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8 zAlg3.8,d

1 0 71 71 71 71 1
2 749 2 789 1 912 2 237 1 912 59
3 3 285 47 111 14 797 14 228 14 797 1 264
4 8 835 379 273 66 851 82 447 66 851 9 300
5 18 019 1 757 221 210 991 269 545 210 991 32 239
6 30 263 5 456 317 493 713 818 346 493 713 84 684
7 44 867 12 521 473 919 065 1 740 252 919 065 199 329
8 60 479 22 765 229 1 668 126 2 954 608 1 668 126 369 750
9 76 109 35 109 583 2 423 987 4 860 233 2 423 987 544 787

10 90 983 47 048 609 3 168 384 7 174 048 3 168 384 835 846
11 104 615 – – 9 967 618 3 947 025 675 582
12 116 571 – – 12 767 667 4 315 244 947 574
13 126 761 – – 14 897 553 5 021 560 1 124 837
14 135 105 – – 18 605 649 5 535 857 1 158 645
15 141 877 – – 20 634 382 5 753 575 1 130 537
16 147 195 – – 23 862 830 5 991 436 1 185 121
17 151 371 – – 25 975 777 6 001 930 776 496
18 154 569 – – 27 269 873 6 001 930 303 222
19 156 955 – – 28 281 941 6 001 930 243 504
20 158 715 – – 31 061 843 6 001 930 127 198
21 159 999 – – 31 195 936 6 001 930 53 173
22 160 917 – – 31 284 480 6 001 930 8 602
23 161 551 – – 32 151 152 6 001 930 10 878
24 161 965 – – 32 506 567 6 001 930 4 745
25 162 221 – – 32 763 537 6 140 573 1 846
26 162 381 – – 33 034 181 6 140 573 2 045
27 162 477 – – 33 080 498 6 140 573 271
28 162 549 – – 33 180 624 6 140 573 257
29 162 595 – – 33 484 046 6 140 573 207
30 162 621 – – 33 778 321 6 140 573 145
31 162 631 – – 33 941 110 6 140 573 151
32 162 633 – – 34 012 574 6 140 573 83
33 162 635 – – 34 121 356 6 140 573 85
34 162 637 – – 34 322 520 6 140 573 87
35 162 637 – – 34 322 520 6 140 573 0

Table 3.7: Cardinalities of reconstructing rank-1 lattices for weighted ` 1
2
-ball frequency index

sets Id,γ1/2,35 found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7,

and Algorithm 3.8, γ =
(
0.9s−1

)
s∈N. Last column: generating vector zAlg3.8 =

(zAlg3.8,s)
d
s=1 returned by Algorithm 3.8.
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which is independent of N , such that the cardinality of the difference set D(Id,γhc,N ) is bounded
by

D(Id,γhc,N ) ≤ Cd,γN2 max(logN, 1)d−2.

Proof. The technical proof of this lemma can be found in [Käm13a, Sec. 4].

A cheaper but less sharper upper bound of the cardinality |D(Id,γhc,N )| of the difference set

D(Id,γhc,N ) can be achieved using embedding arguments. In detail, we use Lemma 2.10, follow
the arguments of [Käm13a, Lemma 4.1 and Remark 4.10], and estimate

D(Id,γhc,N ) ⊂ D(Id,1hc,N ) ⊂ Id,1
hc,2dN2

|D(Id,γhc,N )| ≤ |Id,1
hc,2dN2 | ≤ CdN2 max(logN, 1)d−1.

However, we use the result of Lemma 3.22 in order to bound the oversampling factor
M/|Id,γhc,N |, where M is the size of a reconstructing rank-1 lattice Λ(z,M, Id,γhc,N ) determined
by Corollary 3.4.

Corollary 3.23. Let the dimension d ∈ N, the parameter N ∈ R, N ≥ 1, and the weights
γ ∈ [0, 1]N with γ1 ≥ . . . ≥ γd > 0 be given. There exists a reconstructing rank-1 lattice

Λ(z,M, Id,γhc,N ) of size M . N
max(logN,1) |I

d,γ
hc,N |, i.e., the oversampling factor M

|Id,γhc,N |
can be

bounded by a term Cd,γ
N

max(logN,1) , where the term Cd,γ is independent of N .

Proof. We treat the case d = 1 separately. The frequency index set I1,γ
hc,N is the set

{− bγ1Nc , . . . , bγ1Nc}. The rank-1 lattice Λ(1, 2 bγ1Nc + 1, I1,γ
hc,N ) is a reconstructing one

for this frequency index set. Accordingly, the condition 1 = M

|I1,γ
hc,N |

≤ C1,γ
N

max(logN,1) holds

for all C1,γ ≥ 1.
We consider higher dimensional cases, i.e., d > 1. Assuming bγ2Nc = 0, the frequency

index set Id,γhc,N is in fact I1,γ
hc,N×

{
(0)ds=2

}
and we refer to the one-dimensional case. So, w.l.o.g.,

we require γ1N ≥ γ2N ≥ 1 and obtain that Id,γhc,N ⊂ I
d,γ
∞,N the hyperbolic cross is contained in

the d-dimensional box of edge length 2 bγ1Nc+ 1. On the other hand, M is a prime number

that necessarily satisfies the inequality M ≥ |Id,γhc,N | ≥ 2 bγ1Nc+ 2 bγ2Nc+ 1 > 2 bγ1Nc+ 1.

Accordingly, each prime number M with M ≥ |Id,γhc,N | is coprime to all components of the

elements of the difference set D(Id,γhc,N ), cf. Remark 3.5. The condition M ≥ |Id,γhc,N | is already
necessary, due to the fact that we need at least as many sampling nodes as the number of
frequency indices contained in Id,γhc,N .

Taking Lemma 2.10, 3.22, and equations (3.8) and (3.9) into account, we estimate

M

|Id,γhc,N |
≤
C̃d,γ |D(Id,γhc,N )|

|Id,γhc,N |
≤
C̃ ′d,γN

2 max(logN, 1)d−2

cd,γN max(logN, 1)d−1
≤ Cd,γ

N

max(logN, 1)
.

According to Lemma 2.11 each sampling set X guaranteeing that the corresponding
Fourier matrix A =

(
e2πik·x)

x∈X ,k∈Id,γhc,N
has orthogonal columns needs not less than |X | ≥

γ1γ2N
2 many sampling nodes. Since the reconstruction property of a rank-1 lattice X =

Λ(z,M, Id,γhc,N ) implies the pairwise orthogonality of all columns of the corresponding Fourier

matrix A, we conclude M ≥ γ1γ2N
2. Consequently, we determine an oversampling factor
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M

|Id,γhc,N |
& N

max(logN,1)d−1 in the asymptotic with respect to the parameter N , i.e., in general, we

have to expect an oversampling factor M

|Id,γhc,N |
that depends on the dimension d, the weights

γ, and in particular N if we uniquely reconstruct hyperbolic cross trigonometric polynomials
from sampling values along rank-1 lattices. Corollary 3.23 bounds this asymptotic oversam-
pling factor from above. Thus, we estimate

N

max(logN, 1)d−1
.

M

|Id,γhc,N |
.

N

max(logN, 1)
. (3.19)

Example 3.24. In order to illustrate the oversampling factors that we expect for reconstruct-
ing rank-1 lattices for weighted hyperbolic crosses, we fixed the weights γ =

(
1
2

)
s∈N and

computed corresponding reconstructing rank-1 lattices for the weighted hyperbolic crosses
Id,γhc,N , d = 2, . . . , 5, N = 21, 22, . . . , 210. Due to Lemma 2.11 and Corollary 3.23 we are

sure that there exist reconstructing rank-1 lattice sizes M for Id,γhc,N such that N2/4 ≤ M ≤
Cd,γN

2(logN)d−2. We are interested in the asymptotic behavior on the dimension d. Thus
we calculate

1

4
≤M/N2 ≤ Cd,γ(logN)d−2

and

log 1/4 ≤ log(M/N2) ≤ logCd,γ + (d− 2) log logN.

Accordingly, for fixed dimension d the slope of the graphs of M/N2 on a log-log scale may
illustrate the number a of the log factors, i.e., M/N2 ∼ (logN)a. Corresponding plots are
presented in Figure 3.2 for dimensions d = 2, 3, 4, 5. In particular, we see that the slopes
of 2(logN)d−2 and MCor3.4/N

2 are very close to each other. Since the lattice sizes MCor3.4

mainly depends on the cardinality of the difference sets D(Id,γhc,N ), all the figures indicate that

the upper bound on the cardinality of D(Id,γhc,N ), cf. Lemma 3.22, is of the right order even
in the log terms. Thus, we cannot achieve better theoretical results applying Corollary 3.4
in order to estimate sufficient oversampling factors of reconstructing rank-1 lattices.

Furthermore, the slopes of the log-log scaled plots of MAlg3.7/N
2 and MAlg3.8/N

2 can be
found in the plots of Figures 3.2. We observe even smaller slopes than those obtained from
the theoretical results. Thus, the oversampling factors MAlg3.7/|Id,γhc,N | and MAlg3.8/|Id,γhc,N | for
these reconstructing rank-1 lattices might not grow as fast as the upper bounds. Nevertheless,
Figures 3.2c and 3.2d suggest that also the lower bound on the oversampling factor in (3.19)
is not sharp.

Example 3.25. This example treat so-called symmetric weighted hyperbolic crosses Id,γhc,N

of different dimensions d and parameters N = 4, 22.5. We fixed the weights γs =(
108972864000
2122061π10

)1/10 ≈ 0.941686, s = 1, . . . , d and determined reconstructing rank-1 lattices

for weighted hyperbolic crosses Id,γhc,N , d = 1, . . . , 10.
Since the parameters N are relatively small, we do not observe the asymptotic behavior

but we realize mildly increasing oversampling factors MCor3.4/|Id,γhc,N |, MAlg3.3+Alg3.5/|Id,γhc,N |,
MAlg3.7/|Id,γhc,N |, and MAlg3.8/|Id,γhc,N | with growing dimension d and/or growing parameter N ,
cf. Table 3.8.

A lot of additional details and numerical examples on rank-1 lattices used for sampling
hyperbolic cross trigonometric polynomials can be found in [Käm13a].
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Figure 3.2: Cardinalities of reconstructing rank-1 lattices for weighted hyperbolic crosses
Id,γhc,N of different dimensions d for comparison. Upper dashed: 2(log2N)d−2,

lower dashed: 1/4, thick dashed: MCor3.4/N
2, thick dotted: MAlg3.7/N

2, thick
solid: MAlg3.8/N

2, γ =
(

1
2

)
s∈N.

3.8.3 Energy-norm Based Hyperbolic Crosses

We consider the last structured frequency index set from Section 2.3, the so-called energy-
norm based hyperbolic crosses |Id,γ,α,βehc,N |, cf. (2.21). In particular, we fix the dimension d,
the weights γ, and the smoothness parameters 0 < −α < β and consider the cardinali-
ties of the frequency index sets |Id,γ,α,βehc,N | and corresponding reconstructing rank-1 lattices

Λ(z,M, Id,γ,α,βehc,N ) as a function of the parameter N .

Corollary 3.26. Let the fixed dimension d ∈ N, the parameter N ∈ R, N ≥ 1, the smooth-
ness parameters 0 < −α < β and the weights γ ∈ [0, 1]N with γ1 ≥ . . . ≥ γd > 0 be given.

Then, there exists a reconstructing rank-1 lattice Λ(z,M, Id,γ,α,βehc,N ) of size M . N |Id,γ,α,βehc,N |,
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Weighted hyperbolic crosses Id,γhc,N – Reconstructing Rank-1 Lattices Λ(z,M, Id,γhc,N )

d |Id,γhc,N | MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8 zAlg3.8,d

N
=

4

1 7 7 7 7 7 1
2 33 53 38 38 38 7
3 135 419 186 186 186 38
4 513 3 037 875 875 875 186
5 1 703 19 121 4 037 4 037 4 037 875
6 5 217 108 413 17 060 14 836 17 060 3 937
7 15 655 589 187 61 334 57 150 61 334 17 060
8 47 617 – – 238 087 238 682 61 334
9 148 167 – – 930 406 1 001 977 237 807

10 469 409 – – 3 934 421 3 458 502 898 550

N
=

25
/
2

1 11 11 11 11 11 1
2 61 113 73 73 73 11
3 255 977 449 402 449 72
4 1 001 7 451 2 497 2 185 2 497 449
5 3 843 53 569 11 144 11 941 11 144 2 497
6 13 125 344 423 45 393 53 048 45 393 11 059
7 40 407 2 022 481 218 084 232 368 218 084 42 896
8 117 905 – – 1 020 265 916 888 199 813
9 341 307 – – 4 473 854 3 979 598 914 534

10 1 007 629 – – 19 632 641 17 436 325 3 979 598

Table 3.8: Cardinalities of reconstructing rank-1 lattices for equally weighted hyperbolic cross
frequency index sets Id,γhc,N found by applying Corollary 3.4, Algorithm 3.3 and

3.5, Algorithm 3.7, and Algorithm 3.8, γ =
(

108972864000
2122061π10

)1/10
1. Last column:

generating vector zAlg3.8 = (zAlg3.8,s)
d
s=1 returned by Algorithm 3.8.

i.e., the oversampling factor M

|Id,γ,α,βehc,N | can be bounded by a term Cd,γ,α,βN , where the term

Cd,γ,α,β is independent of N .

Proof. According to [KPV13, Lemma 2.6], the cardinality of Id,γ,α,βehc,N is bounded from above by

|Id,γ,α,βehc,N | ≤ Čd,γ,α,βN , where Čd,γ,α,β is a term that may depend on its subscripted parameters

but not on N . W.l.o.g., we only consider frequency index sets Id,γ,α,βehc,N , where |Id,γ,α,βehc,N | ≥ 4.

Otherwise, i.e., |Id,γ,α,βehc,N | < 4, the frequency index set Id,γ,α,βehc,N is in fact a one-dimensional
frequency index set on the first axis and we refer to the first lines of the proof of Corollary
3.23.

So, we assume |Id,γ,α,βehc,N | ≥ 4, apply equations (3.8) and (3.9), and determine a prime
number M1 ≥Mlb, cf. Corollary 3.4, with

Mlb ≤M1 ≤ |Id,γ,α,βehc,N |
2 ≤ Čd,γ,α,βN |Id,γ,α,βehc,N |.

On the other hand the frequency index set Id,γ,α,βehc,N is contained in a d-dimensional box of

edge length 2d−α/(α+β)N + 1, in detail, Id,γ,α,βehc,N ⊂ Id,1∞,d−α/(α+β)N
, cf. [KPV13, Lemma 2.2].
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Applying Bertrand’s postulate, we determine a prime number M2 fulfilling

2d−α/(α+β)N + 1 ≤ 3d−α/(α+β)N |Id,γ,α,βehc,N | ≤M2 ≤ 6d−α/(α+β)N |Id,γ,α,βehc,N |.

Clearly, the prime number M = max(M1,M2) ≥ Mlb is coprime to all components of the

elements of the difference set D(Id,γ,α,βehc,N ). Consequently, according to Corollary 3.4, we use a

component–by–component strategy in order to find a generating vector z ∈ [1,M − 1]d such
that the arising rank-1 lattice Λ(z,M) is a reconstructing one for the frequency index set

Id,γ,α,βehc,N . At the end we estimate M and obtain

max(Mlb, 2d
−α/(α+β)N + 1) ≤M ≤ max(Čd,γ,α,β, 6d

−α/(α+β))︸ ︷︷ ︸
=:Cd,γ,α,β

N |Id,γ,α,βehc,N |.

Due to the fact that the cardinality of energy-norm based hyperbolic crosses Id,γ,α,βehc,N , i.e.,
−β < α < 0, can be bounded by

čd,γ,α,βN ≤ |Id,γ,α,βehc,N | ≤ Čd,γ,α,βN,

where 0 < čd,γ,α,β < Čd,γ,α,β <∞, Corollary 3.26 gives us a constructive method in order to

determine a reconstructing rank-1 lattice Λ(z,M, Id,γ,α,βehc,N ) of size M . Cd,γ,α,βN
2. In general,

the sampling scheme Λ(z,M, Id,γ,α,βehc,N ) suffers from an oversampling factor M/|Id,γ,α,βehc,N | that
depends linearly on N .

The following point of view shows in some sense the optimality of rank-1 lattices used for
sampling trigonometric polynomials contained in Π

Id,γ,α,βehc,N
. Considering only perfectly stable

sampling schemes X , i.e., the Fourier matrix A =
(
e2πik·x)

x∈X ,k∈Id,γ,α,βehc,N
has orthogonal

columns, then rank-1 lattices are asymptotically optimal in the number of sampling nodes
with respect to the parameter N . In detail, on the one hand, a perfectly stable sampling
scheme for trigonometric polynomials in Π

Id,γ,α,βehc,N
needs at least a cardinality of Ω

(
N2
)
, cf.

Lemma 2.13. On the other hand, there exist reconstructing rank-1 lattices Λ(z,M, Id,γ,α,βehc,N )
that allow the perfectly stable reconstruction of all trigonometric polynomials f ∈ Π

Id,γ,α,βehc,N
,

where the lattice size M ∈ O
(
N2
)

is bounded by terms depending on N in the optimal
order. We stress on the fact, that Algorithm 3.3 and Corollary 3.26 present a deterministic
component–by-component strategy in order to determine such reconstructing rank-1 lattices
Λ(z,M, Id,γ,α,βehc,N ) of size M matching M ≤ |Id,γ,α,βehc,N |

2.
At this point, we would like to mention that generalized sparse grids and, in particular,

so-called energy-norm based sparse grids, cf. [BG99, BG04, Kna00, GH14], offer a suitable
possibility to reconstruct trigonometric polynomials f ∈ Π

Id,γ,α,βehc,N
with a lower number of

sampling values and an asymptotically lower number of arithmetical operations. In partic-

ular, O
(
|Id,γ,α,βehc,N |

)
sampling values and O

(
|Id,γ,α,βehc,N | log(|Id,γ,α,βehc,N |)

)
arithmetical operations

are needed in order to reconstruct trigonometric polynomials with frequencies supported on
energy-norm based hyperbolic crosses Id,γ,α,βehc,N using a sparse grid approach. Due to Lemma
2.13, we cannot expect a perfectly stable Fourier transform using energy-norm based sparse
grids as sampling scheme in general. However, we demonstrate the asymptotic behavior of
reconstructing rank-1 lattice sizes in N on subsets of weighted energy-norm based hyperbolic
crosses.
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Axis crosses I2
ac,K – Reconstructing Rank-1 Lattices Λ(z,M, I2

ac,K)

K |I2
ac,K | MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8

2 9 11 10 13 10
4 17 37 26 41 26
8 33 131 82 145 82

16 65 521 290 545 290
32 129 2 053 1 090 2 113 1 090
64 257 8 209 4 226 8 321 4 226

128 513 32 771 16 642 33 025 16 642
256 1 025 131 101 66 050 131 585 66 050
512 2 049 524 309 263 170 525 313 263 170

1 024 4 097 2 097 169 1 050 626 2 099 201 1 050 626

Table 3.9: Cardinalities of reconstructing rank-1 lattices for axis cross frequency index sets
I2

ac,2l
found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7, and

Algorithm 3.8.

Example 3.27. Since the sparsity of an energy-norm based hyperbolic cross Id,γ,α,βehc,N mainly
depends on the parameters α and β, more precise on the quotient α/β, we would like to focus
on even sparser frequency index sets, so-called d-dimensional axis crosses

Idac,K :=

d⋃
s=1

{{
(0)s−1

j=1

}
× {−bKc , . . . , bKc} ×

{
(0)dj=s+1

}}
. (3.20)

In general, weighted energy-norm based hyperbolic crosses are supersets of axis crosses of
appropriate size, cf. Lemma 2.12. In particular, for a fixed dimension d and fixed weights
γ, 1 ≥ γ1 ≥ γ2 ≥ . . . ≥ γd > 0, we determine the size K of the axis cross, that is contained

in Id,γ,α,βehc,N by K =

⌊
γ

β
α+β

d N

⌋
. Accordingly, the size K of the largest axis cross Idac,K that is

embedded in the weighted energy-norm based hyperbolic cross Id,γ,α,βehc,N depends linearly on
N .

Taking Lemma 2.13 into account, a perfectly stable sampling scheme for the energy-norm

based hyperbolic cross Id,γ,α,βehc,N needs at least

(⌊
γ

β
α+β

1 N

⌋
+ 1

)(⌊
γ

β
α+β

2 N

⌋
+ 1

)
≥ (K + 1)2

sampling nodes. In fact, we expose this using axis crosses of an appropriate size.

Our numerical test demonstrate this behavior for rank-1 lattices as perfectly stable spatial
discretizations, see Tables 3.9 and 3.10. In particular, we determined reconstructing rank-1
lattices for axis crosses Idac,K of different dimensions d and sizes K. Since the embeddings

Idac,K ⊂ I
d,γ,α,β
ehc,N hold we have to expect reconstructing rank-1 lattices for Id,γ,α,βehc,N which are of

at least the same size as the reconstructing rank-1 lattices we determined for Idac,K . Table 3.9
presents lattice sizes M for reconstructing rank-1 lattices for two-dimensional axis crosses,
which are of particular interest. Even these two-dimensional frequency index sets needs at
least reconstructing rank-1 lattice sizes, that are approximately K2. More specific, we observe

MCor3.4 = min{M prime: M > 2K2 + 2}
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Axis crosses Idac,1024 – Reconstructing Rank-1 Lattices Λ(z,M, Idac,1024)

d |Idac,1024| MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8

2 4 097 2 097 169 1 050 626 2 099 201 1 050 626
3 6 145 4 194 319 1 051 651 2 100 229 1 051 651
4 8 193 6 291 469 1 052 677 2 101 479 1 052 677
5 10 241 8 388 617 1 477 439 2 104 685 1 477 439

10 20 481 18 874 379 1 897 299 5 467 793 1 897 299
15 30 721 29 360 147 1 995 677 10 999 396 1 995 677
20 40 961 39 845 899 2 108 463 18 558 909 2 108 463

Table 3.10: Cardinalities of reconstructing rank-1 lattices for axis cross frequency index sets
Idac,1024 found by applying Corollary 3.4, Algorithm 3.3 and 3.5, Algorithm 3.7,
and Algorithm 3.8.

and

MAlg3.3+Alg3.5 = MAlg3.8 = (K + 1)2 + 1.

Surprisingly, the resulting reconstructing rank-1 lattice sizes MAlg3.7 of Algorithm 3.7 are even
larger than the theoretical lattice sizes MCor3.4 determined by Corollary 3.4 for dimension
d = 2.

However, the equality MCor3.4 = min{M prime: M > 2(d − 1)K2 + 2} can be proved
by counting the elements of the difference sets D(Idac,K) for arbitrary K and dimensions

d. Table 3.10 presents the reconstructing rank-1 lattice sizes for axis crosses Idac,1024. We
computed such tables for all dimensions d up to 20 and different K that are powers of 2.
In all our numerical experiments, we observed big gaps between the rank-1 lattice sizes of
MAlg3.3+Alg3.5 = MAlg3.8 for dimensions d = 4 and d = 5, cf. Table 3.10. Perhaps, this is
caused by the structure of the found generating vectors z. In particular, the generating vectors
z are given by z = (1,K + 1,K + 2,K + 3, . . .), where the components zs0 are the smallest
positive integers that are relatively prime to all previous components zs, s = 2, . . . , s0 − 1.

Nevertheless, we observe a slowly increasing sequence of reconstructing rank-1 lattice sizes
for fixed K and growing dimension d in particular with respect to the fast growing sequence
of the cardinalities of the difference sets D(Idac,K).

In contrast to the investigated axis crosses, we have to expect faster growing reconstruct-
ing rank-1 lattice sizes for weighted energy-norm based hyperbolic crosses Id,γ,α,βehc,N for specific
smoothness parameters α and β, weights γ, and parameters N , since the corresponding dif-
ference sets may be of much higher cardinality and more complicated structure. In particular,
the structure of the difference set D(Id,γ,α,βehc,N ) mainly affects the reconstruction property of
a rank-1 lattice, since the corresponding integer dual lattice, see (3.11), must not touch the
difference set.

3.8.4 Arbitrary Sparse Frequency Index Sets

In a various number of applications, one assumes that all frequencies that are large in the
order of magnitude of their absolute values have frequency indices that are contained in a
d-dimensional cube of a fixed edge length. Certainly, one is interested in the frequency index
set I and, in addition, the value of the corresponding frequencies. We will not discuss the
identification problem here.
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However, once one has identified a potentially unstructured frequency index set I ⊂ Zd,
one is usually interested in a stable sampling scheme of a suitable cardinality. Certainly, rank-
1 lattices offer a suitable possibility in order to sample trigonometric polynomials supported
on an arbitrary frequency index set I.

In detail, we assume that the frequency index set I is a set of d-dimensional integer vectors
that are contained in a box [a, b]d, a < b, of an edge length b− a < |I| − 1. Then there exists
a reconstructing rank-1 lattice Λ(z,M, I) of size M , |I| ≤ M . |I|2, cf. Corollary 3.4, such

that the corresponding Fourier matrixA =
(

e2πi j
M
k·z
)
j=0,...,M−1,k∈I

has orthogonal columns,

i.e., A is perfectly stable.

Naturally, the difference set D(I) of a completely unstructured frequency index set I has
a cardinality near the upper bound |D(I)| ≤ |I|(|I| − 1) + 1. Accordingly, we expect that the
lower bound Mlb in Corollary 3.4 is of the same order in the cardinality of I. Consequently,
our theoretical result guarantees the existence of a rank-1 lattice of the size 2

3(|D(I)|+ 7) ≤
2
3(|I|2 − |I| + 8) that guarantees the unique reconstruction of all trigonometric polynomials
supported on the frequency index set I. Moreover, the strategy mentioned in Table 3.1
determines reconstructing rank-1 lattices of a cardinality M , |I| ≤M ≤ 2

3(|I|2 − |I|+ 8).

The frequency index sets I, that we use for determining the results of Table 3.11, are sets of
integer vectors that are taken randomly from the uniformly distributed set [−128, 128]d∩Zd,
d = 2, 4, 8, 16, 32, 64, 128, 256 and d = 512, 1024 only for small cardinalities of I due to
the huge memory requirements of the computation of the difference set D(I). Except for
dimension d = 2, where the difference sets are not as unstructured as in higher dimensions, we
obtain that the number MCor3.4 is very close to the number |I|(|I|−1)+1

2 , which verifies in some
sense that the cardinality of the difference set D(I) is indeed almost as big as |I|2 as expected.
The corresponding rank-1 lattice sizes MAlg3.3+Alg3.5, MAlg3.7, and MAlg3.8 are much smaller
and in the same order of magnitude. However, we also recognize that all determined lattice
sizes M seem to depend quadratically on the cardinality |I| of the frequency index set I since
doubling the cardinality of I yields approximately fourfold reconstructing rank-1 lattice sizes.
Anyway, the most important observation on the numerical examples in Table 3.11 is that the
rank-1 lattice sizes M of the reconstructing rank-1 lattices Λ(z,M, I) for frequency index sets
I of a specific cardinality do not depend on the dimension d—at least for higher dimensions
d ≥ 4. In fact, we observed that the cardinalities of D(I)↓4 and D(I)↓s, s > 4, hardly differ
and, in addition, that the lattice sizes M and a suitable generating vector z is (almost)
completely determined after the component–by–component step in the fourth dimension of
our approaches.

3.9 Summary

In this chapter we considered rank-1 lattices as spatial discretizations in the d-dimensional
torus Td. The evaluation of multivariate trigonometric polynomials f =

∑
k∈I f̂ke2πik·◦ ∈ ΠI ,

where the Fourier coefficients f̂k, k ∈ I, are given, at all nodes of a rank-1 lattice Λ(z,M)
simplifies to a rearrangement and accumulations of the multivariate Fourier coefficients f̂k,
k ∈ I, and a subsequent one-dimensional fast Fourier transform. The complexity of this
evaluation is in O (M logM + d|I|), see Section 3.1 for the details.

A corresponding unique reconstruction of multivariate trigonometric polynomials f ∈ ΠI

from sampling values along a rank-1 lattice Λ(z,M) is only possible if the corresponding
Fourier matrix A, cf. (2.7), consists of pairwise orthogonal columns, i.e., the matrix A∗A =
MI holds and, thus, the condition number of A is one. We called a rank-1 lattice that
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Sparse frequency index sets I – Reconstructing Rank-1 Lattices Λ(z,M, I)

d MCor3.4 MAlg3.3+Alg3.5 MAlg3.7 MAlg3.8

|I
|=

75
0

2 87 211 16 906 24 968 16 906
4 279 817 24 708 33 759 24 278
8 279 847 23 930 35 965 22 055

16 279 863 27 672 39 781 24 028
32 279 847 24 207 35 622 23 367
64 279 857 23 965 34 913 21 977

128 279 847 26 723 30 252 19 975
256 279 883 27 449 31 933 20 457
512 279 913 27 674 33 997 26 087

1 024 279 883 27 081 40 654 26 965

|I
|=

15
00

2 114 259 51 767 54 029 51 767
4 1 119 857 74 689 109 860 67 121
8 1 120 001 86 680 100 149 85 882

16 1 120 019 83 642 99 885 68 893
32 1 119 949 68 515 105 304 79 440
64 1 120 001 87 263 94 786 91 600

128 1 120 019 101 866 88 794 82 731
256 1 120 073 80 428 124 532 75 873
512 1 120 051 100 146 122 559 83 723

|I
|=

30
00

2 126 713 62 819 62 819 62 819
4 4 480 261 273 432 484 353 273 432
8 4 481 137 311 380 364 226 250 617

16 4 481 189 247 178 392 284 270 578
32 4 481 311 306 413 378 129 286 970
64 4 481 311 319 451 396 427 323 385

128 4 481 369 312 365 411 125 319 329
256 4 481 311 313 037 411 137 301 271

|I
|=

60
00

2 130 073 65 455 65 455 65 455
4 17 912 899 1 026 554 1 366 076 1 026 554
8 17 927 237 1 117 781 1 513 793 903 149

16 17 927 807 1 042 108 1 483 023 1 048 182
32 17 927 449 1 075 536 1 411 194 972 288
64 17 927 509 1 058 443 1 462 364 1 048 111

128 17 927 729 980 062 1 324 691 855 800
256 17 927 587 1 089 369 1 540 621 1 030 930

Table 3.11: Cardinalities of reconstructing rank-1 lattices for arbitrary frequency index sets
I that are chosen uniformly distributed from [−128, 128]d.
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entails such a Fourier matrix A for a fixed frequency index set I reconstructing rank-1
lattice Λ(z,M, I) for the frequency index set I. In addition, we stress on the fact that the
reconstruction can be done using a one-dimensional fast Fourier transform and a subsequent
rearrangement of the corresponding result. We specified the details on the computations in
Algorithm 3.2. The corresponding complexity of the fast reconstruction is also bounded by
O (M logM + d|I|).

We determine sufficient conditions on the lattice size M such that there exists a re-
constructing rank-1 lattice Λ(z,M, I) for the frequency index set I, cf. Corollary 3.4. In
particular, this lattice size crucially depends on the structure of the difference set D(I) of the
frequency index set I. Additionally, the found conditions on M allow for the component–by–
component construction of a generating vector z of a reconstructing rank-1 lattice Λ(z,M, I),
which enables us to give a deterministic suitable construction method for reconstructing rank-
1 lattices, cf. Algorithm 3.3.

Due to the fact that A∗A = MI necessarily holds for a reconstructing rank-1 lattice
Λ(z,M, I) for the frequency index set I, we get an extremely stable and fast algorithm for
the reconstruction of multivariate trigonometric polynomials. Furthermore, we use the same

algorithm, i.e., Algorithm 3.2, in order to compute approximations S̃If =
∑
k∈I

ˆ̃
fke2πik·◦ ∈

ΠI of functions f ∈ Aω(Td) and proved concrete error estimates in Theorem 3.11. In detail,
the approximation S̃If ∈ ΠI is a suitable approximation of f , if the exact Fourier partial sum

SIf ∈ ΠI approximates f well and the approximated Fourier coefficients
ˆ̃
fk, k ∈ I, of f are

computed using a lattice rule based on a reconstructing rank-1 lattice for I. In addition to the
general approximation results, we discussed the extension of the approximation algorithm to
an interpolation algorithm. More precisely, if a reconstructing rank-1 lattice Λ(z,M, I) for the
frequency index set I is already determined, one extends the frequency index set I to Ĩ such
that |Ĩ| = M holds and the reconstruction property is preserved, i.e., Λ(z,M, Ĩ) = Λ(z,M, I),
cf. Algorithm 3.6. The corresponding error estimates for S̃If spread to S̃Ĩf , see Theorem
3.13.

By means of some examples, we illustrate that tractability properties of an approximation
problem may be determined using our rank-1 lattice approach. In detail, the dependence of
the cardinality of the frequency index set IN = {k ∈ Zd : ω(k) ≤ N} on the parameter N
and the dimension d may allow for explicit statements on the tractability of approximation
problems in spaces Aω(Td), cf. Section 3.6.

Moreover, we discuss some improvements of our search algorithms for reconstructing
rank-1 lattices. Specifically, we present two basic deterministic component–by–component
algorithms that constructs reconstructing rank-1 lattices for a given frequency index set I
and has only low memory requirements. The main advantage of Algorithms 3.7 and 3.8 is
that we determine whole reconstructing rank-1 lattices, i.e., the generating vectors z and in
particular the lattice sizes M , by means of a component–by–component construction.

Finally, we treated the specific frequency index sets that are introduced in Chapter 2.
We showed that reconstructing rank-1 lattices are suitable spatial discretizations in order
to uniquely reconstruct trigonometric polynomials with frequencies supported on `p-balls,
weighted hyperbolic crosses and weighted energy-norm based hyperbolic crosses. In partic-
ular, we applied our theoretical findings from this chapter and Chapter 2 and proved the
following statements.

• There exist reconstructing rank-1 lattices Λ(z,M, Id,γp,N ) for `p-balls, where the number

M of sampling values is optimal with respect to N , i.e., M . Nd, cf. Corollary 3.18.

• There exist reconstructing rank-1 lattices Λ(z,M, Id,γ,α,βehc,N ) for weighted energy-norm
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based hyperbolic crosses, where the number M of sampling values is optimal with
respect to N , i.e., M . N2, and the additional assumption that the condition number
cond2(A) of the corresponding Fourier matrix A is one, cf. Corollary 3.26.

• There exist reconstructing rank-1 lattices Λ(z,M, Id,γhc,N ) for weighted hyperbolic crosses,
where the number M of sampling values is optimal with respect to the assumption
cond2(A) = 1 and N up to logarithmic factors logN , i.e., M . N2(logN)d−2, cf.
Corollary 3.23.

Additionally, we constructed reconstructing rank-1 lattices for specific frequency index
sets and demonstrated the proved properties.
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Generated Sets

The most important advantage of sampling along rank-1 lattice nodes is the rank-1 structure
of the sampling set and the associated simplification of the evaluation and reconstruction of
multidimensional trigonometric polynomials, cf. Chapter 3. In detail, we use simple pre- or
post-computations and only one one-dimensional (inverse) fast Fourier transform in order to
evaluate or reconstruct multivariate trigonometric polynomials.

The stated advantages of rank-1 lattices and the availability of efficient algorithms and
corresponding implementations for nonequispaced discrete Fourier transforms lead us to a
generalization of this concept. In contrast to the definition of rank-1 lattices, we will allow
real valued vectors as generating vectors in this chapter, cf. (3.1). Consequently, we define
for a generating vector r ∈ Rd and for a size M ∈ N the sampling set

Λ(r,M) := {xj := jr mod 1 ∈ Td : j = 0, . . . ,M − 1} (4.1)

and call it a generated set . A two-dimensional sketch of the construction of a generated set
is illustrated in Figure 4.1. Note that we change our definition comparing to rank-1 lattices.
Nevertheless, for a fixed M and with r ∈M−1Zd we also obtain rank-1 lattices. Accordingly,
each rank-1 lattice is also a generated set. In contrast to rank-1 lattices, we lose the group
structure by allowing r ∈ Rd.

Specifically, a sequence
(
j(r1, . . . , rd)

> mod 1
)
j∈N0

is uniformly distributed in the d-di-

mensional torus if and only if rs ∈ R\Q, s = 1, . . . , d, and r1, . . . , rd are linearly independent
over Q, cf. [Wey16]. In [Ost82, Lar88], the authors determine upper bounds on discrepancies,
which are quality measures for integration errors, for sampling sets Λ(r,M), rs ∈ R \ Q,
s = 1, . . . , d, and r1, . . . , rd linearly independent over Q.

Certainly, we are interested in reconstruction and approximation problems and, thus, take
the results of K. Gröchenig, B. M. Pötscher, and H. Rauhut, cf. [GPR10], into account. Due
to their results, with high probability we expect Fourier matrices A, cf. (2.7), that have a
small condition number, where the frequency index set I is given and fixed and the sampling
set X ⊂ Td consists of sufficiently many independent and identically uniformly distributed
sampling nodes x ∈ Td. In particular, the number of sampling nodes |X | is bounded by terms
C|I| log |I|, where the term C does not depend on I but moderately on the target condition
number of A and slightly on the probability.

Since the sequence
(
j(r1, . . . , rd)

> mod 1
)
j=0,...,M−1

may tend to the uniform distribution
on the d-dimensional torus as M tends to infinity, we may get Fourier matrices A of full
column rank and, in addition, a small condition number of A for large enough M .

81
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r mod1

r = (e3, 9π)>

M = 11

0 1/3 2/3 1
0

1/3

2/3

1

Figure 4.1: Generated set construction sketch.

On the other hand, we cannot treat irrational numbers in numerical applications due to
the finite number representations on the used machines. Consequently, we shift our interest
to sampling sets that are spanned by one real valued vector and use a suitable rational valued
vector that is representable as usual floating point numbers in concrete applications.

However, the rank-1 structure of generated sets allows for a simultaneous evaluation of a
trigonometric polynomial f ∈ ΠI at all nodes of a generated set, i.e., the computation of the
matrix vector productAf̂ , whereA is the Fourier matrix, using simple pre-computations and
a one-dimensional nonequispaced fast Fourier transform (NFFT), cf. Section 4.2. Similar to
the rank-1 lattice approach, we have to assume Fourier matricesA of full column rank in order
to compute a unique inversion of A using the pseudoinverse (A∗A)−1A∗. We call a generated
set that allows for the inversion of A∗A reconstructing generated set for the frequency index
set I, since the corresponding pseudoinverse (A∗A)−1A∗ allows for the exact reconstruction
of all trigonometric polynomials f ∈ ΠI from the sampling values along this generated set,
see Section 4.3.

In particular, we develop an algorithm that searches for reconstructing generated sets for
a given frequency index set I and a target condition number for the matrix A in Section 4.4.
The low computational costs of the search algorithm that uses a continuous optimization
method, the guarantee on the condition number of A, and the fast computations of the
matrix vector products concerning A and an iterative method, i.e., a conjugate gradient
method (CG), computing the pseudoinverse of A are the main advantages of generated sets.

Furthermore, we analyzed the approximation properties of the suggested sampling
method. We prove upper bounds on the L2(Td) approximation error of our sampling method,
which are equivalent to the estimates for rank-1 lattices, cf. Section 4.5. At this point, we
would like to stress that we bounded the approximation error in the L∞(Td) norm for rank-1
lattices indeed. Table 4.1 lists the most important details of the differences of the rank-1
lattice approach and the generated set approach.

In Section 4.6, we compare specific reconstructing generated sets found by our search
method to reconstructing rank-1 lattices that we have determined in Chapter 3. The corre-
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Rank-1 Lattice Generated Set

Evaluation
FFT NFFT

O (M logM + d|I|) O (M logM + (d− log ε)|I|)

Algorithm 3.1 Algorithm 4.1

Search technique for
reconstructing sampling set

discrete continuous
component–by–component simplex search method

Algorithms 3.3 & 3.8 Algorithm 4.5

Reconstruction
FFT NFFT & CG

O (M logM + d|I|) O (rε,κ(M logM + (d− log ε)|I|))

Algorithm 3.2 Algorithm 4.3

Error estimate
for approximation

‖f − S̃IN f |L∞(Td)‖
≤ 2N−1‖f |Aω(Td)‖

‖f − S̆IN f |L2(Td)‖
≤ CδN−1‖f |Aω(Td)‖

Theorem 3.11 Theorem 4.12

Table 4.1: Characteristics of rank-1 lattice and generated set sampling for comparison.

sponding number of sampling values that are needed in order to get stable Fourier matrices
A are of our particular interest. In general, the cardinalities of reconstructing generated sets
and reconstructing rank-1 lattices for the specific frequency index sets are similar—at least
in its order of magnitude.

4.1 Motivation

At first, we consider a simple theoretical example, that motivates the intensive study of
generated sets. The starting point is Remark 3.6 which states that for arbitrary M ′ ∈ N
there exist frequency index sets I containing only two elements, i.e., |I| = 2, such that there
exists no reconstructing rank-1 lattice Λ(z,M, I), where M ≤M ′.

Lemma 4.1. [Opposite of Remark 3.6] For arbitrary d ∈ N, and arbitrary index set I ⊂ Zd
with |I| = 2, there exists a generated set Λ(r,M) of size M = 2 with perfectly stable Fourier
matrix A =

(
e2πijk·r)

j=0,1;k∈I , i.e., A∗A = 2I.

Proof. Let h ∈ I and k ∈ I and h 6= k the two elements of the index set I. We define the

matrix C =

(
h1 · · · hd
k1 · · · kd

)
and distinguish three different cases.

• h = 0,k 6= 0 or h 6= 0,k = 0
W.l.o.g. we assume h = 0 and k 6= 0. Then there exists an integer s0 ∈ {1, . . . , d} with

ks0 6= 0. We determine the generating vector r with rs =

{
0 for s 6= s0,

1
2ks

for s = s0,
and obtain

Cr =

(
h · r
k · r

)
=

(
0
1
2

)
.

• h 6= 0,k = λh with λ ∈ R \ {0, 1}
Due to h 6= 0 we can find an s0 ∈ {1, . . . , d} with hs0 6= 0. A suitable generating vector



84 4 Generated Sets

r is given by rs =

{
0 for s 6= s0,

1
2(λ−1)hs

for s = s0,
and we calculate

Cr =

(
h · r
k · r

)
=

(
1

2(λ−1)
1

2(λ−1) + 1
2

)

• h 6= 0,k 6= λh for all λ ∈ R
In order to obtain the current case, we have to require d ≥ 2. Due to h 6= 0 6= k
and h and k are linear independent, the matrix C has full row rank. Consequently,

we obtain the vector

(
0
1
2

)
in the image of C and we can find at least one solution

of Cr =

(
0
1
2

)
. We determine a suitable r computing the solution of the normal

equation of the second kind CC∗r̃ =

(
0
1
2

)
, r = C∗r̃.

For each of the three different cases we determined a generating vector r that fulfills Cr =(
c

c+ 1
2

)
, c ∈ R. We obtain that the Fourier matrix

A =
(

e2πijk·r
)
j=0,1;k∈I

=

(
1 1

e2πic −e2πic

)
,

is unitary up to the constant factor 1√
2
. Accordingly, the discrete Fourier transform with

frequency index set I and corresponding sampling scheme Λ(r, 2) has condition number
1.

According to the last lemma, for each multivariate trigonometric polynomial with frequen-
cies supported on only two d-dimensional indices there exists a generated set of cardinality
2 such that the Fourier matrix A is perfectly stable. In particular, we can reconstruct the
trigonometric polynomial in a stable and unique way applying the adjoint Fourier matrix A∗

to the two-dimensional vector of the sampling values. In contrast to sampling along rank-1
lattices, the number of samples needed for the reconstruction is independent of the specific
frequency indices of the trigonometric polynomial, cf. Remark 3.6.

In the next sections, we analyze different properties of generated sets in detail.

4.2 Evaluation of Multivariate Trigonometric Polynomials

We assume the index set I ⊂ Zd being of finite cardinality and f(x) =
∑
k∈I f̂ke2πik·x ∈ ΠI .

Our task is to evaluate f at all nodes xj , j = 0, . . . ,M − 1, of the generated set Λ(r,M). We
exploit the structure of the generated set Λ(r,M) and achieve

f(xj) =
∑
k∈I

f̂ke2πijk·r =
∑
y∈Y

 ∑
k∈I

k·r≡y (mod 1)

f̂k

 e2πijy =
∑
y∈Y

ĝye
2πijy, (4.2)

where Y := {k · r mod 1 : k ∈ I} and ĝy =
∑

k∈I
k·r≡y (mod 1)

f̂k.
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Algorithm 4.1 Evaluation of a trigonometric polynomial at a generated set

Input: M ∈ N cardinality of generated set Λ(r,M)
r ∈ Rd generating vector of generated set Λ(r,M)
I ⊂ Zd frequency index set of finite cardinality

f̂ =
(
f̂k

)
k∈I

Fourier coefficients of f ∈ ΠI

for each k ∈ I do
yk = k · r mod 1

end for
f = adjNFFT 1D(f̂ ,y,M)

Output: f = Af̂ = (f (jr mod 1))M−1
j=0 function values of f ∈ ΠI

Concretely, the right hand side of equation (4.2) is an adjoint one-dimensional nonequis-
paced discrete Fourier transform (NDFT). In order to evaluate the trigonometric polynomial
f ∈ ΠI at all nodes of the generated set Λ(r,M) we have to pre-compute the corresponding
values y = k · r mod 1 for all k ∈ I. This pre-computation step causes a complexity of
O (d|I|). We compute the following adjoint NDFT using the adjoint one-dimensional noneq-
uispaced fast Fourier transform (NFFT) with a complexity of O (M logM + | log ε||I|), cf.
[KKP09], where ε describes the accuracy of the (adjoint) NFFT algorithm. We end up with
a total complexity of O (M logM + (| log ε|+ d)|I|). Pre-computing k · r mod 1 and stor-
ing the corresponding mapping saves some complexity in the case that one evaluates several
trigonometric polynomials from ΠI at all nodes of Λ(r,M). So we obtain a complexity of
O (M logM + | log ε||I|). We outlined the described approach in Algorithm 4.1, where the
function adjNFFT 1D is an adjoint one-dimensional NFFT. Note that one has to specify
some accuracy parameters in order to use the NFFT software library, cf. [KKP09]. At this
juncture, we leave these parameters out for reasons of simplification.

Algorithm 4.1 indicates the fast evaluation of multivariate trigonometric polynomials
f ∈ ΠI with frequencies supported on arbitrary index sets I. Please note the conformity
with the evaluation of f ∈ ΠI at rank-1 lattice nodes, cf. Section 3.1.

4.3 Reconstruction of Multivariate Trigonometric Polynomials

In this section, we analyze sufficient conditions on generated sets Λ(r,M) that allow for
the unique reconstruction of a trigonometric polynomial with frequencies supported on a
fixed index set I. In the following, each Λ(r,M) with this property is called reconstructing
generated set for the index set I. The notation Λ(r,M, I) symbolizes the reconstruction
property of Λ(r,M) with respect to I. Due to the fact that each (reconstructing) rank-
1 lattice is also a (reconstructing) generated set, we can apply the existence results from
Corollary 3.4.

In order to investigate the reconstruction property of a given sampling scheme we consider
the corresponding Fourier matrix A. In our specific case the matrix A is given by the
frequency index set I, the generating vector r, and the generated set size M , and reads as
follows

A = A(I, r,M) :=
(

e2πijk·r
)
j=0,...,M−1;k∈I

. (4.3)

Below, we will use the notation A as far as possible. In cases where we consider various
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different Fourier matrices, we will use the explicit notation A(I, r,M).
Certainly, the reconstruction of multivariate trigonometric polynomials supported on the

frequency index set I requires a number of samples M not smaller than the number of
frequency indices |I|. In detail, the matrix A needs a full column rank and thus at least as
many rows as columns. The essential condition on the generating vector r guaranteeing that
Λ(r,M), M ≥ |I|, is a reconstructing generated set is specified in the following lemma.

Lemma 4.2. Let the frequency index set I of finite cardinality and the generated set Λ(r,M),
M ≥ |I|, be given. Then the Fourier matrix A(I, r,M) in (4.3) is

• either of full column rank, i.e., k · r 6≡ h · r (mod 1) for all k 6= h, k,h ∈ I,

• or has at least two identical columns.

Proof. The Fourier matrix A(I, r,M) is a transposed Vandermonde matrix. The first |I|
rows of A(I, r,M) form a square Vandermonde matrix A(I, r, |I|). We number the fre-
quency indices contained in I, i.e., I = {k1, . . . ,k|I|}. According to [HJ85, Sec. 0.9.11], the
corresponding determinant is given by

det(A(I, r, |I|)) =
∏

1≤`<l≤|I|
(e2πiyl − e2πiy`),

where yl = kl · r. The determinant det(A(I, r, |I|)) is nonzero iff e2πiyl(1− e2πiy`−yl) 6= 0 for
all 1 ≤ ` < l ≤ |I|, i.e., all differences y` − yl, 1 ≤ ` < l ≤ |I| have to be non-integer. Using
the definition of yl and y` − yl = −(yl − y`), we obtain the condition kl · r 6≡ k` · r (mod 1)
for all kl 6= k`, kl,k` ∈ I, in order to obtain a regular matrix A(I, r, |I|). The regularity
of A(I, r, |I|) yields that the rows of A(I, r, |I|) and hence the first |I| rows of A(I, r,M),
M ≥ |I|, are linear independent. Accordingly, the rank of A(I, r,M) is at least |I|. Since
the matrix A(I, r,M) has |I| columns, the rank of A(I, r,M) is exactly |I|, i.e., the matrix
A(I, r,M) has full column rank. On the other hand, let us assume that there exist l 6= `
such that kl ·r ≡ k` ·r (mod 1). Then the terms e2πiyl and e2πiy` produce the same entries in
the columns numbered with l and ` within the transposed Vandermonde matrix A(I, r,M).
Consequently, we have at least two identical columns in A(I, r,M).

According to Lemma 4.2 and assuming M ≥ |I|, the generating vector r ∈ Rd determines
the reconstruction property of the generated set Λ(r,M) with respect to I. In detail, we
recognize the necessary condition

|Y(I, r)| = |I|,

where Y(I, r) := {k · r mod 1: k ∈ I} ⊂ Td is a discrete subset of the one-dimensional torus.
For an arbitrary fixed frequency index set I we are interested in the existence of generating
vectors r fulfilling |Y(I, r)| = |I|. In fact we simply show, that we can consider r ∈ (0, 1)d as
uniformly distributed random variable and the probability of choosing r such that |Y(I, r)| =
|I| is one.

Lemma 4.3. Let I ⊂ Zd of finite cardinality. Then, the Lebesgue measure of the set

G(I) :=
{
r ∈ (0, 1)d : |Y(I, r)| = |I|

}
is one, i.e., in formula λd(G(I)) = 1.
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Proof. We show that the Lebesgue measure of the complement G(I){ of G(I) is zero.

G(I){ =
{
r ∈ (0, 1)d : |Y(I, r)| < |I|

}
=
{
r ∈ (0, 1)d : ∃k1,k2 ∈ I s.t. k1 · r ≡ k2 · r (mod 1)

}
=
{
r ∈ (0, 1)d : ∃k ∈ D(I) s.t. k · r ≡ 0 (mod 1)

}
=

⋃
k∈D(I)

⋃
a∈Z

{
r ∈ (0, 1)d : k · r = a

}
.

Since the frequency index set I is of finite cardinality, the difference set D(I), cf. (2.11),

is embedded in an unweighted `1-ball of appropriate size L, i.e., D(I) ⊂ Id,11,L, where Id,11,L is
defined in Equation (2.15). We estimate |k · r| ≤ ‖k‖1 ≤ L and conclude

G(I){ =
⋃

k∈D(I)

L⋃
a=−L

{
r ∈ (0, 1)d : k · r = a

}

⊂
⋃

k∈D(I)

L⋃
a=−L

{
r ∈ Rd : k · r = a

}
.

In the last line, we see that a finite union of vector hyperplanes of dimension d− 1 covers the
set G(I){. Each of this vector hyperplanes has d-dimensional Lebesgue measure zero.

Due to the last lemma, we observe that we can randomly choose a generating vector
r ∈ (0, 1)d and we can expect that the corresponding generated set Λ(r,M), M ≥ |I|, is
a reconstructing generated set with respect to the frequency index set I. At this point, we
would like to remind the reader that we cannot expect to choose r randomly over the real
vectors contained in (0, 1)d in numerical applications. Using a number representation of finite
precision, we choose r randomly over a discrete subset of finite cardinality contained in (0, 1)d

and, thus, each candidate r with |Y(I, r)| < |I| will be chosen with a probability larger than
zero, provided that such r is representable on the machine.

Up to now, we investigated the reconstruction properties of generated sets from a theo-
retical point of view and showed that this mainly depends on the frequency index set and
the generating vector. The next lemma points out the concrete method we will use in order

to reconstruct trigonometric polynomials f ∈ ΠI from the sampling values
(
f
(
j
M r
))M−1

j=0

along a reconstructing generated set Λ(r,M, I).

Lemma 4.4. Let the dimension d ∈ N, the frequency index set I ⊂ Zd of finite cardinality,
and the reconstructing generated set Λ(r,M, I) be given, i.e., the corresponding Fourier
matrix A, cf. (4.3), is of full column rank. We assume that the vector f = (f(jr))M−1

j=0 ∈ CM

belongs to the image of A. Then we can uniquely reconstruct the Fourier coefficients f̂ ∈ C|I|
of the trigonometric polynomial f ∈ ΠI satisfying Af̂ = f .

Proof. Due to the full column rank ofA we obtain a unique solution f̂ of the normal equation
A∗Af̂ = A∗f . In addition, Af̂ and f ∈

{
Ax : x ∈ C|I|

}
⊂ CM are orthogonal to the null

space ofA∗ . Consequently, Af̂−f is orthogonal to the null space ofA∗ andA∗
(
Af̂ − f

)
=

0 implies Af̂ − f = 0.
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Algorithm 4.2 Adjoint of the evaluation of a trigonometric polynomial at a generated set

Input: r ∈ Rd generating vector of generated set Λ(r,M)
I ⊂ Zd frequency index set of finite cardinality

f = (f (jr mod 1))M−1
j=0 function values of f ∈ ΠI at the generated

set nodes

for each k ∈ I do
yk = k · r mod 1

end for
ĝ = NFFT 1D(f ,y, length(f))

Output: ĝ = A∗f result of adjoint Fourier transform

Algorithm 4.3 Reconstruction of a trigonometric polynomial from sampling values along a
generated set

Input: r ∈ Rd generating vector of Λ(r,M)
I ⊂ Zd frequency index set of finite cardinality

f = (f (jr mod 1))M−1
j=0 function values of f ∈ ΠI at the generated

set nodes

M = length(f)
for each k ∈ I do
yk = k · r mod 1

end for
b = NFFT 1D(f ,y,M)
solve

NFFT 1D
(

adjNFFT 1D
(

ˆ̆
f ,y,M

)
,y,M

)
= b

using an iterative method

Output:
ˆ̆
f = argmin

x∈C|I|
‖Ax− f |`2(M)‖ approximated Fourier coefficients of f

The proof of the last lemma uses the normal equation to calculate a unique solution of
Af̂ = f , f ∈ ΠI . Due to the full column rank of A we observe a full rank square matrix
A∗A. In order to solve Af̂ = f we compute

f̂ = (A∗A)−1A∗f .

Of course, we use iterative solvers applying only the matrices A and A∗ instead of computing
the inverse of A∗A. Furthermore, we use Algorithm 4.1 and Algorithm 4.2 computing the
matrix times vector products in a fast way. Note that both matrix times vector products can
be realized with a complexity of O (M logM + (| log ε|+ d)|I|), where ε describes the accu-
racy of the one-dimensional NFFT. We condensed the strategy to reconstruct multivariate
trigonometric polynomials with frequencies supported on an index set I ⊂ Zd using samples
along a generated set in Algorithm 4.3. This Algorithm mentioned the usage of an itera-
tive method in order to solve the normal equation. A small condition number of the matrix
A∗A guarantees the fast convergence of most of these iterative methods. Accordingly, the
condition number indicates not only the stability of the problem, but also characterizes the
computational complexity of the reconstruction algorithm. In particular, we estimate the
number of iterations of a conjugate gradient method (CG) applied on A∗Ax = b such that
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we achieve a relative error of at most ε in Algorithm 4.3. We stress the fact that the accuracy
parameter ε of the NFFT and the relative error ε do not have a direct relationship to each
other here.

Lemma 4.5. Let the dimension d ∈ N, the frequency index set I ⊂ Zd of finite cardinality,
Λ(r,M, I) a reconstructing generated set for I, f ∈ CM , and ε < 1 be given. In addition, let
x0 = 0 and xr the result of the rth iteration of the conjugate gradient method, cf. [Bjö96],
applied to solve A∗Ax = A∗f . The corresponding exact solution is denoted by x∗. Then
the number

rε :=

⌈
log2 ε− 1

log2 (cond2(A)− 1)− log2 (cond2(A) + 1)

⌉
(4.4)

gives an iteration number of the conjugate gradient method guaranteeing a relative error

‖x∗ − xr|`2(|I|)‖
‖x∗|`2(|I|)‖

≤ ε, for all r ≥ rε.

The condition number of the non-square matrix A is given by cond2(A) =
√

cond2(A∗A).

Proof. We apply the standard estimate for the convergence of the conjugate gradient method,
cf. e.g. [Bjö96, p. 289], similar to the proof of [Kun06, Corollary 3.5]. For x∗ = 0 the exact
solution is x0 and all results of the iterations of the conjugate gradient method are 0. With
x∗ 6= 0, r ≥ rε, and

r log2

(
cond2(A)− 1

cond2(A) + 1

)
≤ rε log2

(
cond2(A)− 1

cond2(A) + 1

)
≤ log2

ε

2

we obtain

ε ≥ 2

(
cond2(A)− 1

cond2(A) + 1

)rε
≥ 2

(
cond2(A)− 1

cond2(A) + 1

)r
≥ ‖x∗ − xr|`2(|I|)‖
‖x∗ − x0|`2(|I|)‖

=
‖x∗ − xr|`2(|I|)‖
‖x∗|`2(|I|)‖

.

Please note that the number of iterations needed to achieve a relative error smaller or
equal ε only depends logarithmically on ε. Furthermore, we stress the fact that large condition
numbers of A yields small absolute values of the denominators inside the ceiling of (4.4). For

example cond2(A) = 300 causes a value of log2

(
cond2(A)+1
cond2(A)−1

)
smaller than 10−2. In detail, rε

depends almost linearly on the condition number of A provided that cond2(A) ≥ 2. In fact,
the slope of the function a(t) = 1

log2(t+1)−log2(t−1) is contained in the interval ( log 2
2 , log 4

3 log2 3
] ⊂

(0.3465, 0.3829] provided that t ≥ 2 and tends to log 2
2 as t tends to infinity, cf. Figure 4.2

for illustration. Accordingly, in addition to the stability of the given problem the condition
number characterizes the convergence properties of the reconstruction algorithm.

4.4 Stability

We are interested in the condition number corresponding to the `2(|I|) norm which is defined
as

cond2(A∗A) =
λmax(A∗A)

λmin(A∗A)
.
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Figure 4.2: Thick line: a(t) =
[
log2( t+1

t−1)
]−1

, dashed line: b(t) = log 2
2 t− 20.

Here λmax(A∗A) and λmin(A∗A) denote the maximal and minimal absolute value of the
eigenvalues of A∗A, respectively. In order to consider the condition number of A∗A with
A as stated in (4.3) we assume Λ(r,M) being a reconstructing generated set. Otherwise we
obtain that the matrix A∗A is not of full rank, which means that the smallest eigenvalue of
A∗A is zero and the condition number is infinite.

We consider the entries of the matrix A∗A and obtain

(A∗A)k,h =
M−1∑
j=0

e2πij(h−k)·r =: DM (h · r − k · r), k,h ∈ I. (4.5)

Here, the function DM is the one-dimensional Dirichlet kernel

DM (x) =

{
M for x ∈ Z,
eπi(M−1)x sin(Mπx)

sin(πx) for x ∈ R \ Z.
(4.6)

A more instructive notation gives us

(A∗A)k,h = DM (yh − yk). (4.7)

with yk = k · r mod 1 for all k ∈ I. Due to the necessity of the full rank property of the
matrix A∗A, we require that the sequence (yk)k∈I contains pairwise distinct components. In
addition, Equation (4.7) shows that the reconstruction problem is nothing more than a normal
equation of the second kind of an under-determined linear system which is a one-dimensional
nonequispaced discrete Fourier transform, cf. [KP07], in fact. This interpretation directly
leads to the approach indicated in Algorithm 4.3.

Besides the convergence properties of the conjugate gradient method applicable in Algo-
rithm 4.3, the condition number characterizes the stability concerning round-off errors of the
given problem.

Of course, for a fixed frequency index set I and a given generated set Λ(r,M) one can
determine the smallest and the largest eigenvalues of the matrix A∗A and compute the con-
dition number numerically. One can use the condition number depending on the generating
vector r and the number of elements M in order to classify the generated set. Basically, we
are interested in generated sets with a relatively small M and a condition number as small
as possible.

We look at the condition number of A∗A as a rate of quality of a given generated set
Λ(r,M). Consequently, for fixed M and frequency index set I ⊂ Zd we are interested in
a generating vector r ∈ Rd ensuring a relatively small condition number of A∗A. A direct
optimization of the condition number leads to huge computational costs. Hence, we score
the generated set based on an upper bound on the condition number cond2(A∗A) of the
corresponding matrix . We consider an upper bound on the condition number which is based
on the radii of Gershgorin circles, cf. [Ger31] or [Axe96, Section 4.2].
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Lemma 4.6. [Gershgorin circle theorem applied on A∗A] Let the dimension d ∈ N, the fre-
quency index set I ⊂ Zd of finite cardinality, Λ(r,M) a generated set, and the corresponding
matrix A∗A of full rank. Then the interval [M −R(A∗A),M +R(A∗A)] with

R(A∗A) := max
h∈I

∑
k∈I
k 6=h

|DM ((k − h) · r)| (4.8)

contains all eigenvalues of A∗A. We name R(A∗A) the maximum Gershgorin circle radius
of A∗A.

Proof. We apply the Gershgorin circle theorem and obtain all eigenvalues of the matrix A∗A
in the union of all circlesz ∈ C : |z − (A∗A)h,h| ≤

∑
k∈I
k 6=h

|(A∗A)h,k|

 , h ∈ I.

Since the matrix A∗A is a Hermitian matrix, i.e., self-adjoint, all eigenvalues of A∗A are
necessarily real. In addition, all diagonal elements of the matrixA∗A equal M . Consequently,
with (4.5) we obtain⋃

h∈I

x ∈ R : |x−M | ≤
∑
k∈I
k 6=h

|DM ((k − h) · r)|

 = [M −R(A∗A),M +R(A∗A)].

With R(A∗A) as stated in (4.8) we get an upper bound on the condition number of A∗A
in the following way

cond2(A∗A) =
λmax(A∗A)

λmin(A∗A)
≤ max{|x| : x ∈ [M −R(A∗A),M +R(A∗A)]}

min{|x| : x ∈ [M −R(A∗A),M +R(A∗A)]}

=

{
∞ for R(A∗A) ≥M,
M+R(A∗A)
M−R(A∗A) for 0 ≤ R(A∗A) < M.

Consequently, R(A∗A) needs to be smaller than M in order to suitably estimate the condition
number of A∗A. In order to estimate the maximum Gershgorin circle radius we collect some
basic facts about the Dirichlet kernel DM in the next

Lemma 4.7. Let M ∈ N and DM (x) the Dirichlet kernel as defined in (4.6) be given. Then
the following equalities and inequality hold

|DM (x)| = |DM (−x)| = |DM (x+ k)| for x ∈ R and k ∈ Z, and

|DM (x)| ≤ 1

2x
for x ∈

(
0,

1

2

]
.

Proof. The symmetry and the one-periodicity of the absolute value of DM can be seen from
(4.6). Applying 2x ≤ sinπx for x ∈ (0, 1/2] yields

|DM (x)| =
∣∣∣∣sinMπx

sinπx

∣∣∣∣ ≤ 1

sinπx
≤ 1

2x
.
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Theorem 4.8. Let the dimension d ∈ N, the frequency index set I ⊂ Zd of finite cardinality,
and the generated set Λ(r,M) be given. We determine yh = h · r mod 1 for each h ∈ I and
assume the sequence of yh’s being sorted in ascending order, i.e., 0 ≤ yh1 ≤ yh2 ≤ . . . ≤ yh|I| ,
y =

(
yhj
)|I|
j=1

. We define the sequence of gaps g in y as

gj =

{
yh1 − yh|I| + 1 for j = 1,

yhj − yhj−1
for j = 2, . . . , |I|.

Then, we can estimate the Gershgorin circle radius by

R(A∗A) ≤ ρ(A∗A) :=

⌊
|I|
2

⌋∑
l=1

(
l∑

k=1

gp(k)

)−1

. (4.9)

Here, the function p is a permutation of the sequence 1, . . . , |I| arranging gp(k) ≤ gp(k+1) for
all 1 ≤ k < |I|. We name ρ(A∗A) upper bound on the maximum Gershgorin circle radius of
A∗A.

Proof. We consider the sequence
(
gp(k)

)|I|
k=1

. For gp(1) = 0 we obtain at least one pair k,h ∈ I,
h 6= k, with yh = yk. Accordingly, the matrix A∗A contains at least two identical columns
and thus is not of full rank. So, there exists no or no unique solution of A∗Ax = b. The
smallest eigenvalue of the matrix A∗A is zero. On the other hand, the corresponding upper
bound ρ(A∗A) of the Gershgorin circle radius of A∗A is infinite. Certainly, the interval
[−∞,∞] contains all eigenvalues of A∗A.

Now, let us assume gp(1) > 0. We consider the Gershgorin radius of the matrix A∗A
corresponding to the row of A∗A with index h ∈ I, yh = h ·r mod 1. Due to the assumption
gp(1) > 0, we have yh−yk ∈ (−1, 0)∪ (0, 1) for all k ∈ I with h 6= k. Consequently we obtain

∑
k∈I
k 6=h

|DM (yk − yh)| =
∑
k∈I
k 6=h

∣∣∣∣sin(Mπ(yk − yh))

sin(π(yk − yh))

∣∣∣∣ .
We split the index set I \ {h} in the two disjoint subsets

J1 := {k ∈ I : (yh − yk) mod 1 ∈ (0, 1/2]} and

J2 := {k ∈ I : (yk − yh) mod 1 ∈ (0, 1/2)}.

Using the one-periodicity of DM and |DM (−x)| = |DM (x)| ≤ (2x)−1 for all x ∈ (0, 1/2] we
deduce∑
k∈I
k 6=h

∣∣∣∣sin(Mπ(yk − yh))

sin(π(yk − yh))

∣∣∣∣ ≤ ∑
k∈J1

∣∣∣∣sin(Mπ(yk − yh))

sin(π(yk − yh))

∣∣∣∣+
∑
k∈J2

∣∣∣∣sin(Mπ(yk − yh))

sin(π(yk − yh))

∣∣∣∣
=
∑
k∈J1

∣∣∣∣ sin(Mπ(yk − yh))

sin(π((yk − yh) mod 1))

∣∣∣∣+
∑
k∈J2

∣∣∣∣ sin(Mπ(yk − yh))

sin(π((yk − yh) mod 1))

∣∣∣∣
≤ 1

2

∑
k∈J1

1

(yh − yk) mod 1
+

1

2

∑
k∈J2

1

(yk − yh) mod 1
.
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Now, we estimate the differences yk − yh mod 1. In principle we interpret the index set J1

as the indices of the left neighbors of yh. So, the distance of the nearest neighbor on the left
hand side to yh is at least gp(1). Clearly, the second nearest neighbor at the left hand side
brings a distance of at least gp(1) + gp(2). In general, the jth nearest neighbor to the left of

yh has a distance not less than
∑j

l=1 gp(l) to yh. The index set J2 can be interpreted as the
index set of the right neighbors of yh and we determine the lower bounds on the distances in
the same way as done for the left neighbors. We obtain

∑
k∈I
k 6=h

∣∣∣∣sin(Mπ(yk − yh))

sin(π(yk − yh))

∣∣∣∣ ≤ 1

2

|J1|∑
j=1

(
j∑
l=1

gp(l)

)−1

+
1

2

|J2|∑
j=1

(
j∑
l=1

gp(l)

)−1

and balance the two sums applying
∑j

l=1 gp(l) ≤
∑t

l=1 gp(l) for j ≤ t and |J1 ∪ J2| = |I| − 1

∑
k∈I
k 6=h

∣∣∣∣sin(Mπ(yk − yh))

sin(π(yk − yh))

∣∣∣∣ ≤
⌊
|I|
2

⌋∑
j=1

(
j∑
l=1

gp(l)

)−1

.

The right hand side is independent of h now. Hence, each Gershgorin circle radius is bounded
by the right hand side and the assertion holds.

Remark 4.9. We stress the fact that the right hand side of ρ(A∗A) does not depend on M .
The upper bound on the Gershgorin circle radius ρ(A∗A) only depends on the generating
vector r. Hence, for a fixed frequency index set I ⊂ Zd and a fixed generated set Λ(r,M) the
value of ρ(A∗A) is an upper bound on the Gershgorin circle radii for all matrices contained in

the set of matrices
{
B∗B : B =

(
e2πijk·r)

j=1,...,M ′−1, k∈I ,M
′ ∈ N

}
. Consistently, we denote

ρ(I, r) := ρ(A∗A).

Corollary 4.10. Let the dimension d ∈ N, the frequency index set I ⊂ Zd of finite cardinality,
|I| > 1, the generating vector r ∈ Rd, and the upper bound on the Gershgorin circle radius
ρ(I, r) := ρ(A∗A) as stated in Theorem 4.8 be given. In addition, we assume ρ(I, r) < ∞,
the constant C ∈ R, C > 1, and

M ≥M(I, r, C) :=

⌈
C + 1

C − 1
ρ(I, r)

⌉
. (4.10)

Then, we estimate the condition number of A(I, r,M)∗A(I, r,M) by

cond2(A∗A) ≤ C.

Proof. Assuming M ≥ C+1
C−1ρ(I, r), we obtain

C ≥ M + ρ(I, r)

M − ρ(I, r)
≥ M +R(A∗A)

M −R(A∗A)
≥ cond2(A∗A).
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Algorithm 4.4 Computing the upper bound ρ(A∗A) of the maximum Gershgorin circle
radius

Input: r ∈ Rd real valued generating vector
I ⊂ Zd frequency index set of finite cardinality

for j = 1, . . . , |I| do
yj = kj · r mod 1

end for
y = SORT(y)
g1 = y1 − y|I| + 1
for j = 2, . . . , |I| do
gj = yj − yj−1

end for
g = SORT(g)
ρ = 0, a = 0
for j = 1, . . . ,

⌊
I
2

⌋
do

a = a+ gj
ρ = ρ+ 1

a
end for

Output: ρ = ρ(I, r) upper bound on the maximum Gershgorin
circle radius, cf. (4.9)

Remark 4.11. In Corollary 4.10, we determine M = M(I, r, C) guaranteeing that the con-
dition number cond2(A) =

√
cond2(A∗A) of the Fourier matrix A =

(
e2πijk·r)

j=0,...,M−1,k∈I
is bounded by

√
C for a given frequency index set I and generating vector r. The number

M(I, r, C) is essentially based on the upper bound ρ(I, r) on the Gershgorin circle radius
R(A∗A).

In order to determine the upper bound ρ(I, r) of the radii of all Gershgorin circles in The-
orem 4.8, we estimated the absolute value of the Dirichlet kernel DM (◦) by a monotonically
non-increasing upper bound |2 ◦ |−1 in

[
0, 1

2

]
. Due to the continuity of |DM (◦)| and 1

2◦ in(
0, 1

2

]
and the condition |DM ( t

M )| = 0 < M
|2t| = |2 t

M |
−1 for t ∈ Z \MZ, the upper bound and

the absolute value of the kernel DM possibly differ widely. In addition, we sorted the pairwise
distances of the sorted sequence

(
yhj
)
j=1,...,|I| in a worst case scenario. Thus, we also have to

expect some differences between the estimated and the exact maximum Gershgorin radius.
Altogether, we obtain an estimate ρ(I, r) of the maximum Gershgorin radius R(A∗A) which
eventually is much larger than the exact maximum Gershgorin circle radius.

According to Corollary 4.10, we can determine a number M(I, r, C) from (4.10) for each
C > 1 and each generating vector r ∈ Rd with a unique sequence (h · r mod 1)h∈I , i.e., |{y :
y = h · r mod 1,h ∈ I}| = |I|. The resulting reconstructing generated set Λ(r,M(I, r, C), I)
guarantees that the condition number of the corresponding Fourier matrix A∗A is not larger
than C. The essential part of determining the right hand side of (4.10) is the computation
of ρ(I, r) for a given generating vector r. Algorithm 4.4 indicates an efficient method to
compute ρ(I, r) with a complexity of O (|I|(log |I|+ d)).

Taking Remark 4.9 into account, we can interpret the variation of the generated set size
M in detail. Increasing M means shifting the interval of fixed length 2ρ(I, r) containing all
eigenvalues to the right at the real numbers, i.e., in the case M > ρ(I, r) the upper bound
M+ρ(I,r)
M−ρ(I,r) of the condition number of the corresponding Fourier matrices slightly decreases
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R0 M − ρ(r) M M + ρ(r)

Figure 4.3: Schematic diagram of the interval containing the eigenvalues of the matrix A∗A.
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Figure 4.4: The estimator M+ρ
M−ρ of the condition number of the matrix A∗A depending on

the relation of M and ρ.

with growing number M of samples, cf. Figures 4.3 and 4.4 for illustration.

Due to the fact that the number M(I, r, C) depends linearly on the value ρ(I, r), cf.
Corollary 4.10, and we are interested in sampling sets of small cardinalities, we assess the
vector r using its ρ-value. In other words, for a given frequency index set I we prefer
generating vectors r such that the value ρ(I, r) is as small as possible. Thus, we are interested
in an approach that determines minimizers of ρ for a given frequency index set I. Local
minimizer of ρ can be found using Algorithm 4.5. This algorithm numerically searches for local
mimimizers using a simplex search method according to the famous Nelder-Mead method,
cf. [NM65]. The simplex search method uses only function evaluations of ρ, which are fast
realized by Algorithm 4.4. The functional ρ(I, ◦) has uncountable many poles, e.g., there exist
d−1-dimensional hyperplanes such that all values ρ(I, r), where r is from the hyperplane, are
infinite, confer the proof of Lemma 4.3 for details. The huge set of poles and some numerical
tests lead us to the conjecture, that nonlinear optimization techniques using also derivatives
or approximations of derivatives do not improve the results of Algorithm 4.5 in general.

Algorithm 4.5 Search for suitable reconstructing generated set Λ(r,M, I)

Input: I ⊂ Zd frequency index set of finite cardinality
C ∈ R target condition number C > 1

d = dimension of elements in I
r0 = random start vector in (0, 1)d

r• = fminsearch†(ρ, r0) using Algorithm 4.4

M(I, r•, C) =
⌈
C+1
C−1ρ(I, r•)

⌉
Output: r• generating vector

M(I, r•, C) generated set size guaranteeing cond2(A∗A) ≤ C
† function name from MATLABR© [MAT], in detail a simplex search method, according to [NM65], using
suitable additional parameters
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4.5 Approximation of Multivariate Periodic Functions

In order to approximate a function f ∈ Aω(Td), see (2.9), using sampling values along
a generated set Λ(r,M) we have to solve the following over-determined system of linear
equations

A
ˆ̆
f ≈ f , A =

(
e2πijk·r)

)
j=0,...,M−1;k∈I

, f = (f(jr mod 1))j=0,...,M−1 .

Here, the frequency index sets I ⊂ Zd determines the space of trigonometric polynomials

where the approximant S̆If ∈ ΠI , f(x) :=
∑
k∈I

ˆ̆
fke2πik·x, comes from.

We approximate the function f ∈ Aω(Td) computing the Fourier coefficients
(

ˆ̆
fk

)
k∈I
∈

C|I| of the approximant S̆If as the solution of the normal equation

A∗A ˆ̆
f = A∗f

which is equivalent to solve the linear least squares problem

‖A ˆ̆f − f‖2 → min,

cf. [Bjö96]. More precisely, we use Algorithm 4.3 in order to compute the approximated

Fourier coefficients
(

ˆ̆
fk

)
k∈I

.

Theorem 4.12. Let f ∈ Aω(Td) and IN = {k ∈ Zd : ω(k) ≤ N} of finite cardinality. Addi-
tionally we assume Λ(r,M, IN ) is a reconstructing generated set for IN with corresponding
Fourier matrix A and the Gershgorin radius of A∗A bounded by δM with δ < 1. Then we
estimate the error of the approximation of f

S̆IN f(x) =
∑
k∈IN

ˆ̆
fke2πikx,

with (
ˆ̆
fk

)
k∈IN

:= argmin
ĝ∈C|IN |

‖Aĝ − f |l2(M)‖ and f = (f(jr mod 1))M−1
j=0 ,

by

‖f − S̆IN f |L2(Td)‖ ≤
(

1 +
1√

1− δ

)
N−1‖f |Aω(Td)‖. (4.11)

Proof. We estimate the L2(Td) error of the approximation S̆IN f of f using Parseval’s identity
and the triangle inequality of the `2-norm

‖f − S̆IN f |L2(Td)‖ ≤
∥∥∥∥(f̂k − ˆ̆

fk

)
k∈IN

|`2(IN )

∥∥∥∥+

∥∥∥∥(f̂k)k∈Zd\IN |`2(Zd \ IN )

∥∥∥∥ . (4.12)

In order to estimate the left summand at the right hand side of (4.12), we apply

A∗A
(

ˆ̆
fk − f̂k

)
k∈IN

= A∗f −A∗

f −
 ∑
k∈Zd\IN

f̂ke2πijk·r

M−1

j=0


= A∗

 ∑
k∈Zd\IN

f̂ke2πijk·r

M−1

j=0
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and obtain∥∥∥∥(f̂k − ˆ̆
fk

)
k∈IN

|`2(IN )

∥∥∥∥ ≤ ‖(A∗A)−1A∗|`2(M)→ `2(IN )‖
∥∥∥∥A(f̂k)k∈IN − f |`2(M)

∥∥∥∥ ,
where ‖(A∗A)−1A∗|`2(M)→ `2(IN )‖ is the operator norm of (A∗A)−1A∗ as operator map-
ping from `2(M) to `2(IN ). According to [Bjö96, Subsection 1.4.3], we estimate the maximal
singular value of (A∗A)−1A∗ using the singular value decomposition of A = UΣV ∗ with
unitary U ∈ CM×M , unitary V ∈ C|IN |×|IN |, and matrix Σ ∈ RM×|IN | with Σj,k = 0 for
j 6= k and Σj,j = σj the singular values of A, σ1 ≥ σ2 ≥ . . . ≥ σ|IN | > 0. Note that the
matrix Σ is of full column rank. We achieve

(A∗A)−1A∗ = (V Σ∗U∗UΣV ∗)−1V Σ∗U∗ = V (Σ∗Σ)−1 V −1V Σ∗U∗

= V (Σ∗Σ)−1 Σ∗U∗ = V Σ(A∗A)−1A∗U
∗.

We identify the singular values of (A∗A)−1A∗ from the diagonal of Σ(A∗A)−1A∗ . The matrix
is given by (

Σ(A∗A)−1A∗
)
j,k

=

{
0 for k 6= j,
1
σj

for k = j.

This yields

‖(A∗A)−1A∗|`2(M)→ `2(IN )‖ =
1

σ|IN |
=

1√
λmin(A∗A)

≤ 1√
M(1− δ)

where λmin(A∗A) > 0 is the smallest eigenvalue of A∗A. Applying∣∣∣∣∣
(
A
(
f̂k

)
k∈IN

)
j

− f(jr mod 1)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈Zd\IN

f̂ke2πijk·r

∣∣∣∣∣∣ ≤
∑

k∈Zd\IN

|f̂k|

and ∥∥∥∥(f̂k − ˆ̆
fk

)
k∈IN

|`2(IN )

∥∥∥∥ ≤ 1√
M(1− δ)

√
M

∥∥∥∥A(f̂k)k∈IN − f |`∞(M)

∥∥∥∥
we conclude

‖f − S̆IN f |L2(Td)‖ ≤ 1√
1− δ

∥∥∥∥(f̂k)k∈Zd\IN |`1(Zd \ IN )

∥∥∥∥+

∥∥∥∥(f̂k)k∈Zd\IN |`1(Zd \ IN )

∥∥∥∥
=

(
1 +

1√
1− δ

)∥∥∥∥(f̂k)k∈Zd\IN |`1(Zd \ IN )

∥∥∥∥
≤
(

1 +
1√

1− δ

)
1

N
‖f |Aω(Td)‖.

The estimate (4.11) of the approximation error for the generated set sampling is closely
related to the approximation result from Theorem 3.11. This theorem specifies error estimates
for approximations computed from sampling values along reconstructing rank-1 lattices. The
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corresponding findings are in some sense sharper than the results from Theorem 4.12. In
detail, we proved in Theorem 3.11 that the L∞(Td) error of an approximation S̃IN f that
is computed from sampling values along a reconstructing rank-1 lattice for IN := {k ∈
Zd : ω(k) ≤ N} is bounded by 2/N times the norm of f in the space Aω(Td). As a matter of
course, the L2(Td) error of this approximation is also bounded by the same terms since the
inequality ‖f |L2(Td)‖ ≤ ‖f |L∞(Td)‖ holds for all functions f ∈ A(Td). The proofs of the
Theorems 3.11 and 4.12 use different methods. More specifically, the proof of the L∞(Td)
error bound in Theorem 3.11 exploits the detailed aliasing formula, cf. (3.12), that is known
for the rank-1 lattice sampling. We could not find a similar suitable formula for generated
sets. Nevertheless, one can find a nice similarity in the results. Since each reconstructing
generated set Λ(r,M, IN ) with r ∈ M−1Zd is in fact a reconstructing rank-1 lattice, we
obtain δ = 0 in Theorem 4.12 and this yields the inequality

‖f − S̆IN f |L2(Td)‖ ≤ 2N−1‖f |Aω(Td)‖.

On the other hand, we estimate

‖f − S̃IN f |L2(Td)‖ ≤ ‖f − S̃IN f |L∞(Td)‖ ≤ 2N−1‖f |Aω(Td)‖,

where S̃IN f is the approximant of f found by sampling along the reconstructing rank-1
lattice Λ(z,M, IN ), z = Mr ∈ Zd, cf. Theorem 3.11. Actually, the operators S̆IN and S̃IN
are identical and both Theorems bound the L2(Td) error from above using exactly the same
terms—even the small constants are identical.

Furthermore, we would like to stress that the right hand side of the estimates of both
Theorems are only two- and Cδ-folds of the worst case error caused by the approximation of
f by the exact Fourier partial sum SIN f , cf. (2.10), which is the best possible approximation
of f in ΠIN , cf. Lemma 2.2.

4.6 Specific Frequency Index Sets

In order to compute reconstructing generated sets Λ(r,M, I) of small sizes M , we fix the
parameter C = 7 in (4.10). According to this, we obtain

M(I, r, C) =

⌈
4

3
ρ(I, r)

⌉
and thus ρ(I, r) ≤ 3

4
M.

Bounding the condition number of A∗A from above by C = 7, the CG algorithm used in
Algorithm 4.3 needs at most a number

rε :=

⌈
log2 ε− 1

log2 (cond2(A)− 1)− log2 (cond2(A) + 1)

⌉
≤ 1− 3 log10(ε)

of iterations in order to ensure a relative `2-error of the reconstructed Fourier coefficients ˆ̆f
not larger than ε, i.e.,

‖(A∗A)−1A∗f − ˆ̆f |`2(|I|)‖
‖(A∗A)−1A∗f |`2(|I|)‖

≤ ε.

In addition, considering matrices A∗A having a condition number cond2(A∗A) ≤ 7, we
estimate the approximation error in Theorem 4.12 by

‖f − S̆IN f |L2(Td)‖ ≤ 3

N
‖f |Aω(Td)‖.
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So far, we presented the theoretical results for the setting of this section of examples. In
order to show the outstanding properties of the generating vectors found by Algorithm 4.5, we
compute condition numbers κ = cond2(A∗A) and its estimates κG based on the maximum
Gershgorin circle radius R(A∗A), cf. (4.8). Since we know that the output M(I, r•, C)
of Algorithm 4.5 may be not optimal, cf. Remark 4.11, we are interested in smaller M <
M(I, r•, C) guaranteeing that the condition number of the matrixA(I, r•,M) is also bounded
by C. Accordingly, we apply the following strategy. We compute some local minimizers r•

using Algorithm 4.5, choose that r•, where M(I, r•, C) is the smallest one, and denote this
generating vector by r#. Once we have fixed r#, we compute the minimal power of two

MG(I, r#, C) := min
n∈N

{
2n : R(A(I, r#, 2n)∗A(I, r#, 2n)) ≤ C−1

C+12n
}
, (4.13)

such that the maximum Gershgorin circle radius

R
(
A
(
I, r#,MG(I, r#, C)

)∗
A
(
I, r#,MG(I, r#, C)

))
allows for the estimate cond2(A(I, r#,MG(I, r#, C))∗A(I, r#,MG(I, r#, C))) ≤ C, i.e.,
MG(I, r#, C) many multiples of r# are enough in order to stably sample trigonometric poly-
nomials with frequencies supported on the frequency index set I. Due to the fact that
we determine the number M(I, r#, C) based on an upper bound on the Gershgorin circle
radius, which itself only allows for an estimate of the condition number of the considered
matrix from above, we are also interested in a heuristic rule of thumb that determines a
more or less good approximation of an M < M(I, r#, C) such that the condition number
cond2(A(I, r#,M)∗A(I, r#,M)) is bounded near C.

Motivated by our numerical tests, cf. Tables 4.5 and 4.6, we determine the lower bound

⌊
|I|
2

⌋∑
k=1

(
k

|I|

)−1

≤ ρ(r, I)

on the functional ρ(r, I) and obtain equality, iff the sequence of (yh)h∈I , see Theorem 4.8
for its definition, is an equispaced lattice on the one-dimensional torus. In that case we can
translate yh such that yh1 = 0 and apply an equispaced FFT of length |I| to reconstruct all
Fourier coefficients supported on I. In other words, a frequency index set I and a generating
vector r implying an equispaced sequence (yh)h∈I causes an M(I, r, C) that is oversized by

a factor of at least
∑⌊

|I|
2

⌋
k=1 k−1. Now, we deduce the heuristically large enough generated set

size

M \(I, r, C) :=

M(I, r, C)


⌊
|I|
2

⌋∑
k=1

k−1


−1 . (4.14)

In detail, we can estimate the harmonic numberHL =
∑L

k=1 k
−1, L ∈ N, using the inequalities

one finds in [Hav09] given by D. W. DeTemple in [DeT91]

ln

(
L+

1

2

)
+ γ +

1

24(L+ 1)2
≤ HL ≤ ln

(
L+

1

2

)
+ γ +

1

24L2
,
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where γ = 0.5772156649 . . . is the Euler–Mascheroni constant here. Consequently, the relation
of the numbers M(I, r, C) and M \(I, r, C) is approximately given by ln(|I|), i.e., M(I,r,C)

M\(I,r,C)
∼

ln(|I|).
Our main focus is on the stability of the corresponding Fourier transform and thus the

condition numbers of the matrices A∗A. We denote the condition numbers κ := cond2(A∗A)

and its estimates κG := M+R(A∗A)
M−R(A∗A) by the following explicit notations

κ(I, r,M) := cond2 (A(I, r,M)∗A(I, r,M)) , (4.15)

κG(I, r,M) :=
M +R(A(I, r,M)∗A(I, r,M))

M −R(A(I, r,M)∗A(I, r,M))
(4.16)

and shorten them using

κ(I, r,M,C) := κ(I, r,M(I, r, C)), κG(I, r,M,C) := κG(I, r,M(I, r, C)),
κ(I, r,MG, C) := κ(I, r,MG(I, r, C)), κG(I, r,MG, C) := κG(I, r,MG(I, r, C)),
κ(I, r,M \, C) := κ(I, r,M \(I, r, C)), κG(I, r,M \, C) := κG(I, r,M \(I, r, C)).

(4.17)

If we assume ρ(I, r) is finite and M ≥ |I|, we obtain that the matrix A(I, r,M)∗A(I, r,M)
is a regular and positive-definite Hermitian matrix,

x∗A∗Ax = (Ax)∗Ax = ‖Ax|`2(M)‖ > 0 ∀x ∈ C|I| \ {0},

and thus all eigenvalues are positive real values and larger than zero. Nevertheless, the
minimum of the interval [M −R(A(I, r,M)∗A(I, r,M)),M +R(A(I, r,M)∗A(I, r,M))] is
non-positive for M ≤ R(A(I, r,M)∗A(I, r,M)) and, consequently, the estimated condition
number κG(I, r,M) becomes infinite or negative. In these cases, each positive real number
near zero is a candidate for the smallest eigenvalue of the matrix A(I, r,M)∗A(I, r,M).
Accordingly, the condition number of the matrix A(I, r,M)∗A(I, r,M) can be arbitrarily
large, i.e., κG(I, r,M) = ∞ and κG(I, r,M) < 0 indicates that we cannot estimate the
condition number of the matrix A(I, r,M)∗A(I, r,M) using the Gershgorin circle radius.

4.6.1 Weighted `p-balls

As a first example, we would like to treat a weight function that yields convex frequency index
sets. Since weighted `∞-balls are well investigated, cf. [ST89], tensor products of equispaced
sampling schemes provide perfectly stable spatial discretizations, and the corresponding fast
algorithm, the multidimensional fast Fourier transform, is well known, we focus on frequency
index sets of a more difficult structure. In particular, we will consider weighted `1-balls as
convex frequency index sets and, in addition, `1/2-balls as non-convex `p-balls.

Example 4.13. We consider the same `1-ball frequency index sets as investigated in Exam-
ple 3.20 and compare the reconstructing generated sets to the corresponding reconstructing
rank-1 lattices. Accordingly, we fix the weights γ =

(
0.9s−1

)
s∈N compute the frequency

index sets I = Id,γ1,N , N = 2, 6, 10, for dimensions d from two up to its effective dimension
deff, cf. (3.18), and apply Algorithm 4.5 in order to determine reconstructing generated
sets as described in the introduction of this section. The corresponding generated set sizes
M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7) and the estimates κG(I, r#,M, 7), κG(I, r#,MG, 7),
and κG(I, r#,M \, 7) of the condition numbers of the corresponding Fourier matrices A∗A,
are presented in Tables 4.2, 4.3, and 4.4. Furthermore, we computed the exact condition
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Weighted `1-balls Id,γ1,2 – Reconstructing Generated Sets Λ(r,M, Id,γ1,2 )

d |I
d
,γ

1
,2
|

M
(I
, r

#
, 7

)

κ
G

(I
, r

#
,M

, 7
)

M
G

(I
, r

#
, 7

)

κ
G

(I
, r

#
,M

G
, 7

)

M
\ (
I,
r

#
, 7

)

κ
G

(I
, r

#
,M

\ ,
7)

κ
(I
, r

#
,M

\ ,
7)

2 7 18 2.3357 16 2.5508 9 7.9460 2.0000
3 9 26 1.8889 16 3.9364 12 8.6678 2.5572
4 11 34 1.8333 32 1.9091 14 24.8025 2.5356
5 13 46 2.2856 32 3.1964 18 45.4228 2.6772
6 15 54 2.2128 32 2.9649 20 -172.3200 2.7966
7 17 66 2.4026 64 2.2784 24 -30.5293 2.6388

Table 4.2: Generated set sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7), estimated condition
numbers κG, cf. (4.16) and (4.17), and condition numbers κ(I, r,M \, 7), cf. (4.17),

for weighted `1-ball frequency index sets I = Id,γ1,2 , γ =
(
0.9s−1

)
s∈N.

numbers κ(I, r#,M \, 7) for the reconstructing generated sets Λ(r#,M \(I, r#, 7), I), where
|I| < 25 000, since there are several cases where the numbers κG(I, r#,M \, 7) do not bound
the condition number of the matrices A∗A. In fact, all the computed condition numbers
κ(I, r#,M \, 7) are less than three.

At first, we compare the results of our theoretical findings in Corollaries 3.4 and 4.10, i.e.,
we compare our generated set sizes from Tables 4.2, 4.3, and 4.4 to the rank-1 lattices sizes
from Tables 3.3, 3.4, and 3.5. We observe that the determined generated set sizes M(I, r#, 7)
are larger than the lattice sizes MCor3.4 by a factor up to approximately eight. However, we
stress the fact that the computation of MCor3.4 involves the computation of the difference sets,
which needs a lot of memory and time. On the contrary, the generated set sizes M(I, r#, 7)
are results of our search Algorithm 4.5 and arise during the search for suitable generating
vectors r by the way.

Furthermore, we compare the generated set sizes MG(I, r#, 7) and M \(I, r#, 7) against
the rank-1 lattice sizes MAlg3.3+Alg3.5 and MAlg3.8. In detail, we observe generated set sizes
that are larger than the lattice sizes by a factor up to approximately ten. Despite larger
oversampling factors MG(I, r#, 7)/|I| of reconstructing generated sets compared to those
of reconstructing rank-1 lattices MAlg3.3+Alg3.5/|I|, the found reconstructing generated sets
Λ(r#,MG(I, r#, 7), I) have numbers of sampling nodes that are—at least for larger dimen-
sions d and parameters N—considerably less than those needed by applying an embedding
approach as mentioned in Example 3.20, see also Table 3.2.

At this point we should mention, that the computation of M \(I, r#, 7) involves (almost)
no additional computational costs. The computation of MG(I, r#, 7) has a complexity that is
bounded by C|I|2 logM(I, r#, 7) + 2d|I| and can be done without essential memory usage—
clearly the memory should contain the values of yk = k ·r, k ∈ I, in order to compute all Ger-
shgorin radii of the matrices A(I, r, 2m)∗A(I, r, 2m), m = dlog2 |I|e, . . . ,

⌊
log2M(I, r#, 7)

⌋
.

The term C only depends on the computational complexity of the evaluation of the sine func-
tion since we compute the absolute values of all entries of the matricesA(I, r, 2m)∗A(I, r, 2m),
cf. (4.7). In particular, the constant C does not depend on the dimension d.
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Weighted `1-balls Id,γ1,6 – Reconstructing Generated Sets Λ(r,M, Id,γ1,6 )
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2 63 360 2.1066 256 2.7861 89 -6.1365 2.0000
3 227 2 199 1.7209 1 024 4.9325 414 -4.4752 2.2349
4 551 8 609 1.6476 2 048 5.3565 1 389 -5.5349 1.9991
5 997 25 570 1.4249 8 192 3.2054 3 766 -5.8051 2.0938
6 1 567 58 582 1.3953 16 384 3.8851 8 090 -13.6403 2.0012
7 2 169 126 671 1.2854 32 768 3.1516 16 741 -259.7592 2.0231
8 2 697 188 828 1.2161 32 768 5.3597 24 258 18.8615 1.9258
9 3 121 249 116 1.2532 65 536 2.5502 31 414 9.2822 1.8275

10 3 433 283 980 1.2517 65 536 2.9557 35 385 14.2974 1.9386
11 3 653 361 453 1.1881 65 536 3.5917 44 693 12.4097 2.0564
12 3 799 406 239 1.2639 65 536 5.7006 49 989 5.2574 1.7902
13 3 877 510 590 1.2030 65 536 3.9957 62 673 4.0355 1.6235
14 3 911 482 280 1.2343 131 072 2.2897 59 134 7.4497 2.0566
15 3 933 485 456 1.1723 65 536 5.2095 59 483 4.3564 1.7814
16 3 943 400 322 1.1924 65 536 4.8344 49 036 4.9136 1.7534
17 3 945 438 061 1.2092 65 536 4.8976 53 655 4.8469 1.8470
18 3 947 485 004 1.1607 65 536 5.4885 59 401 5.9468 1.7913

Table 4.3: Generated set sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7), estimated condition
numbers κG, cf. (4.16) and (4.17), and condition numbers κ(I, r,M \, 7), cf. (4.17),

for weighted `1-ball frequency index sets I = Id,γ1,6 , γ =
(
0.9s−1

)
s∈N.

In accordance to Remark 4.11, we observe that the estimates κG(I, r#,M, 7) on the
condition numbers of the matrices A(I, r,M)∗A(I, r,M) are non-monotonic with respect to
the number M of sampling values. Our numerical findings confirm the same behavior even for
the exact condition numbers κ(I, r#,M, 7). In particular, one can use the initial findings from
Lemma 4.1 in order to construct a nice minimal example. Thus, the condition numbers of the
matrices A(I, r,M + 1)∗A(I, r,M + 1) may be larger than those of A(I, r,M)∗A(I, r,M).
However, for a fixed generating vector r and a fixed frequency index set I the condition

number varies within the fixed interval
[
1, M+ρ(r,I)

M−ρ(r,I)

]
as long as M > ρ(r, I) holds.

Example 4.14. Similar to Example 3.21 we would like to treat weighted non-convex `p-balls.
Specifically, we fix the parameters p = 1/2, γ =

(
0.9s−1

)
s∈N, and N = 35 and compare the

found reconstructing generated set sizes, that are listed in Table 4.5, to the rank-1 lattice sizes
presented in Table 3.7. In general, we observe larger cardinalities for reconstructing generated
sets than for reconstructing rank-1 lattices. Up to dimension d = 10 the generated set sizes
M(I, r#, 7) are less than four times the rank-1 lattice sizes MCor3.4. Similarly, we observe
that the generated set sizes M \(I, r#, 7) are not larger than ten times the rank-1 lattice sizes
MAlg3.3+Alg3.5 or MAlg3.8. Since we consider frequency index sets of substantial cardinality
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Weighted `1-balls Id,γ1,10 – Reconstructing Generated Sets Λ(r,M, Id,γ1,10)
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2 183 1 311 1.9759 1 024 2.5340 257 -3.9695 2.0000
3 983 12 431 1.5478 4 096 4.0563 1 834 -3.2507 2.2125
4 3 741 88 554 1.5012 32 768 2.6445 10 917 -3.8293 2.1301
5 10 569 470 305 1.2737 131 072 3.6799 51 400 -5.7059 2.0243
6 23 431 1 716 851 1.2750 262 144 3.7796 172 619 -9.7223 2.0232
7 43 081 5 179 281 1.2085 1 048 576 2.7806 490 698 8.1427 –
8 67 857 10 773 726 1.1357 2 097 152 2.3746 978 608 24.3931 –
9 94 693 25 047 401 1.1162 2 097 152 4.4027 2 208 285 4.8482 –

10 120 251 40 082 509 1.1579 4 194 304 4.1762 3 460 936 3.9950 –
11 142 261 50 120 683 1.1177 4 194 304 3.2392 4 265 776 3.3211 –
12 159 611 68 346 777 1.1042 4 194 304 5.7392 5 760 580 3.2268 –
13 172 079 92 708 602 1.0968 8 388 608 4.1251 7 764 684 4.3660 –
14 180 383 95 547 471 1.0908 8 388 608 3.6335 7 970 986 3.6633 –
15 185 551 147 089 331 1.0683 8 388 608 6.1100 12 241 985 2.5929 –
16 188 531 138 940 316 1.0974 8 388 608 4.8203 11 548 443 2.4997 –
17 190 085 140 891 818 1.1128 8 388 608 6.8848 11 702 663 3.4279 –
18 190 819 171 448 313 1.0740 16 777 216 3.0043 14 236 169 2.3026 –
19 191 105 139 003 851 1.0899 8 388 608 5.7615 11 540 716 2.1610 –
20 191 207 155 186 701 1.1208 16 777 216 3.2687 12 883 717 3.3075 –
21 191 233 141 303 357 1.0985 16 777 216 3.0772 11 730 979 3.0025 –
22 191 235 130 564 751 1.1008 8 388 608 3.8759 10 839 452 3.1905 –

Table 4.4: Generated set sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7), estimated condition
numbers κG, cf. (4.16) and (4.17), and condition numbers κ(I, r,M \, 7), cf. (4.17),

for weighted `1-ball frequency index sets I = Id,γ1,10, γ =
(
0.9s−1

)
s∈N.

|I|, dimension d, and structure, the oversampling factors up to 400 for the reconstructing
generated sets are acceptable, in particular with respect to the relatively fast search Algorithm
4.5.

We note that the reconstructing generated set sizes are not too far away from the cor-
responding reconstructing rank-1 lattice sizes for `p-ball frequency index sets of reasonable
cardinality—even for non-convex `p-balls, i.e., 0 < p < 1.

4.6.2 Weighted Hyperbolic Crosses

Due to the fact that each reconstructing rank-1 lattice is also a reconstructing generated set
for a specific frequency index set I, the existence results for reconstructing rank-1 lattices,
cf. Corollary 3.4, apply directly to reconstructing generated sets. Our search strategy for
reconstructing generated sets is based on a continuous optimization method which can only
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Weighted `1/2-balls Id,γ1/2,35 – Reconstructing Generated Sets Λ(r,M, Id,γ1/2,35)
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2 749 14 307 1.643 8 192 1.872 2 200 -4.989 2.057
3 3 285 169 538 1.321 16 384 4.640 21 242 -69.617 1.893
4 8 835 1 037 473 1.188 131 072 6.582 115 653 4.626 1.552
5 18 019 4 652 262 1.137 524 288 3.643 480 444 3.231 1.573
6 30 263 12 670 321 1.164 1 048 576 3.271 1 241 975 3.230 1.843
7 44 867 30 464 506 1.087 2 097 152 4.144 2 875 223 2.631 1.786
8 60 479 65 209 353 1.085 8 388 608 2.044 5 985 738 2.475 1.744
9 76 109 76 113 188 1.120 8 388 608 2.249 6 842 255 2.183 1.647

10 90 983 155 571 721 1.108 16 777 216 2.001 13 764 368 2.182 1.737
11 104 615 214 018 985 1.064 16 777 216 3.762 18 704 502 2.101 –
12 116 571 310 727 610 1.087 33 554 432 2.067 26 902 068 1.971 –
13 126 761 301 779 850 1.077 33 554 432 1.832 25 939 191 2.128 –
14 135 105 426 149 997 1.076 33 554 432 2.290 36 429 690 2.108 –
15 141 877 471 661 378 1.073 33 554 432 3.487 40 152 382 1.983 –
16 147 195 397 110 673 1.065 33 554 432 2.005 33 700 336 1.987 –
17 151 371 613 800 095 1.075 33 554 432 6.085 51 966 058 1.843 –
18 154 569 605 304 755 1.073 67 108 864 2.238 51 156 271 2.002 –
19 156 955 566 656 688 1.067 33 554 432 3.848 47 828 078 1.641 –
20 158 715 609 848 421 1.071 33 554 432 6.248 51 425 231 2.096 –
21 159 999 540 794 630 1.064 33 554 432 3.160 45 571 334 2.633 –
22 160 917 636 159 526 1.067 67 108 864 1.909 53 581 650 1.700 –
23 161 551 576 314 229 1.079 33 554 432 4.947 48 525 004 1.746 –
24 161 965 515 658 324 1.074 33 554 432 2.816 43 408 491 2.062 –
25 162 221 684 218 540 1.061 67 108 864 1.716 57 590 355 1.709 –
26 162 381 559 140 055 1.070 33 554 432 4.811 47 058 653 1.946 –
27 162 477 628 385 517 1.074 67 108 864 1.835 52 883 897 2.221 –
28 162 549 659 006 471 1.070 33 554 432 4.803 55 458 838 2.131 –
29 162 595 591 983 153 1.070 33 554 432 6.218 49 817 290 1.764 –
30 162 621 657 959 603 1.095 67 108 864 1.707 55 368 675 2.695 –
31 162 631 538 222 519 1.102 33 554 432 4.759 45 292 315 2.136 –
32 162 633 493 595 180 1.070 33 554 432 2.695 41 536 808 1.865 –
33 162 635 499 030 445 1.075 33 554 432 4.577 41 994 150 2.552 –
34 162 637 573 600 550 1.069 33 554 432 4.969 48 269 285 1.722 –
35 162 637 495 029 394 1.058 33 554 432 2.918 41 657 413 1.855 –

Table 4.5: Generated set sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7),estimated condition
numbers κG, cf. (4.16) and (4.17), and condition numbers κ(I, r,M \, 7), cf. (4.17),

for weighted `1/2-ball frequency index sets I = Id,γ1/2,35, γ =
(
0.9s−1

)
s∈N.
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Figure 4.5: Cardinalities of stable (C = 7) reconstructing generated sets for weighted hyper-

bolic crosses I := Id,γhc,N of different dimensions d for comparison. Upper dashed:

2(log2N)d−2, lower dashed: 1/4, thick dashed: M(I, r#, 7)/N2, thick dotted:
MG(I, r#, 7)/N2, thick solid: M \(I, r#, 7)/N2, γ =

(
1
2

)
s∈N.

find local minimizers of the functional ρ, cf. (4.9). In general, we do not find global minimizers
using this method.

We would like to consider one of the most interesting questions in this area: Can we
expect the same asymptotic behavior for reconstructing rank-1 lattice sizes and reconstructing
generated set sizes using the presented search methods?

In particular, we consider the behavior of the cardinalities of reconstructing generated
sets for weighted hyperbolic crosses with respect to the parameter N .

Example 4.15. We computed reconstructing generated sets for weighted hyperbolic crosses
I = Id,γhc,N for d = 2, . . . , 5 and N = 2, 4, . . . , 1 024. Specifically, we obtain reconstructing

generated sets of sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7), as introduced in this section.
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Similar to Example 3.24, we plotted the functions 2(log2(N))d−2 and 1/4 and the values of
M(I, r#, 7)/N2, MG(I, r#, 7)/N2, M \(I, r#, 7)/N2 in Figure 4.5 for dimensions d = 2, 3, 4, 5.
Accordingly, the thin dashed lines (2(log2(N))d−2 and 1/4) are exactly the same as plotted for
rank-1 lattices. We compare the plots to those presented in Figure 3.2. The most interesting
observations are:

1. The plots of M(I, r#, 7)/N2 behave like the function 2(log2(N))d−2 and thus like
MCor3.4/N

2.

2. The plotted values of MG(I, r#, 7)/N2 and M \(I, r#, 7)/N2 grow similar to the plots
of MAlg3.7/N

2 and MAlg3.8/N
2 in Figure 3.2.

3. In most cases we obtain generated set sizes M(I, r#, 7) (MG(I, r#, 7) or M \(I, r#, 7))
that are larger than the rank-1 lattice sizes MCor3.4 (MAlg3.8) determined in Example
3.24.

Thus, we recognize similar behaviors for our determined reconstructing generated set sizes
and reconstructing rank-1 lattice sizes with respect to the parameter N . As also mentioned
in Example 3.24 for reconstructing rank-1 lattices, we observe an asymptotic behavior of
the cardinalities of our reconstructing generated sets Λ(r#,M, Id,γhc,N ), M = MG(I, r#, 7) or

M = M \(I, r#, 7), that differs from the lower bound N2/4 and also from the upper bound
N2(logN)d−2.

Although the most reconstructing generated set sizes M \(I, r#, 7) are even significantly
larger than the rank-1 lattice sizes MAlg3.8, we would like to emphasize the practical advan-
tages of the generated set approach. In particular, applications that causes varying frequency
index sets, i.e., time dependent partial differential equations, may benefit from well adapted
frequency index sets and corresponding suitable sampling sets. Clearly, we need fast methods
in order to determine such sampling sets in order to compute a lot of time steps. Conse-
quently, generated sets might be preferred to rank-1 lattices since the corresponding search
algorithm, cf. Algorithm 4.5, determines suitable generated sets in a relatively fast way.

Again, we stress the fact that almost all determined reconstructing generated sets
Λ(r#,M, Id,γhc,N ), M = M(I, r#, 7), M = MG(I, r#, 7), or M = M \(I, r#, 7), induce Fourier

matricesA =
(
e2πik·x)

x∈Λ(r#,M,Id,γhc,N ),k∈Id,γhc,N
, such that the condition numbers of the matrices

A∗A are bounded by three actually.

Example 4.16. We consider equally weighted hyperbolic crosses Id,γhc,N of different dimensions

d, parameters N = 4, 22.5 and fixed weights γs =
(

108972864000
2122061π10

)1/10 ≈ 0.941686, s = 1, . . . , d,
similar to Example 3.25. In Table 4.6, we present stable reconstructing generated sets for
these weighted hyperbolic crosses Id,γhc,N . In general, we observe that the cardinalities of
the generated sets are up to approximately five times larger than the lattice sizes of the
reconstructing rank-1 lattices we presented in Table 3.8. Nevertheless, sampling schemes
with comparable reconstruction properties has cardinalities in the same order of magnitude.
We notice that all exactly determined condition numbers are less than three actually.

At this point, we would like to stress that the limit of the cardinality of the weighted
hyperbolic crosses Id,γhc,N of approximately one million is not caused by our search method,
i.e., Algorithm 4.5. Quite the contrary, we check the properties of the determined generated
sets by computing the exact Gershgorin circle radii. The corresponding complexity is in
Θ
(
|I|2
)

and, thus, the bottleneck here.
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Weighted hyperbolic crosses Id,γhc,N – Reconstructing Generated Sets Λ(r,M, Id,γhc,N )
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2 33 158 2.0655 128 2.5990 46 -9.3958 2.4702
3 135 1 124 1.9964 512 4.0671 234 -4.7711 2.2959
4 513 7 203 1.6336 4 096 2.7259 1 176 -4.7668 2.1102
5 1 703 53 432 1.3602 16 384 2.3190 7 295 -8.3791 2.0167
6 5 217 343 833 1.2639 65 536 3.2891 40 720 78.7394 1.8761
7 15 655 1 691 514 1.2045 262 144 2.6203 177 258 17.8978 1.9187
8 47 617 7 668 584 1.1314 1 048 576 3.7965 719 716 5.6432 1.6474
9 148 167 48 791 878 1.0846 4 194 304 3.9202 4 138 354 3.6469 –

10 469 409 210 333 486 1.0957 16 777 216 3.6974 16 250 377 3.7299 –

N
=

25
/
2

2 61 379 2.0086 256 3.0994 94 -6.4329 2.4149
3 255 3 215 1.7037 2 048 2.3693 592 -5.7753 2.1553
4 1 001 24 387 1.3488 8 192 2.2781 3 590 -6.6803 1.9993
5 3 843 173 537 1.3132 32 768 3.3784 21 324 -19.0376 1.7747
6 13 125 1 074 309 1.2395 262 144 1.8144 114 698 -15.1377 1.9459
7 40 407 4 793 474 1.1925 1 048 576 1.9742 456 920 16.0385 –
8 117 905 30 724 067 1.1083 2 097 152 4.9095 2 657 399 3.2846 –
9 341 307 175 872 820 1.0708 16 777 216 2.7536 13 930 955 2.9900 –

10 1 007 629 849 340 491 1.0789 67 108 864 2.0387 61 963 186 2.1041 –

Table 4.6: Generated set sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7), estimated condition
numbers κG, cf. (4.16) and (4.17), and condition numbers κ, cf. (4.15) and (4.17),

for hyperbolic cross frequency index sets I = Id,γhc,N , γ =
(

2122061π10

108972864000

)−1/10
1.

4.6.3 Arbitrary Sparse Frequency Index Sets

Since we would like to compare the numerical results of this section with those of Section 3.8.4,
we computed reconstructing generated sets for exactly the same randomly chosen frequency
index sets as considered in Section 3.8.4. We present the corresponding generated set sizes
M , MG and M \, estimates of the condition numbers κG, and condition numbers κ in Table
4.7. Similar to the numerical results for reconstructing rank-1 lattices, the two-dimensional
frequency index sets I ⊂ [−128, 128]2 ∩ Z2 seem to have some additional structure, which
may be caused by the high density of the two-dimensional frequency index sets I within the
discrete set [−128, 128]2 ∩ Z2. Accordingly, we focus on the frequency index sets of higher
dimensions d = 4, . . . , 1024.

At first we consider fixed dimension d and growing cardinalities |I|. Similar to the recon-
structing rank-1 lattices, we obtain approximately fourfold generated set sizes for doubled
cardinalities of frequency index sets. Consequently, the generated set sizes grow approxi-
mately as the squared cardinality of the frequency index set I.

Furthermore, we obtain cardinalities of the reconstructing generated sets that are similar
to the rank-1 lattice sizes presented in Table 3.11 in the order of magnitude. In particular,
the values within the tuples (M(I, r#, 7),MCor3.4) and (M \(I, r#, 7),MAlg3.3+Alg3.5,MAlg3.8)
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Arbitrary frequency index sets I – Reconstructing Generated Sets Λ(r,M, I)
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75
0

2 175 855 1.1864 32 768 2.3435 27 031 1.4358 1.1318
4 264 274 1.1023 32 768 3.7252 40 623 2.8878 1.8521
8 207 848 1.1601 32 768 2.3929 31 949 2.3647 1.6115

16 142 567 1.1579 16 384 3.6510 21 914 2.5299 1.6179
32 118 850 1.2556 16 384 2.6977 18 269 3.5602 1.7384
64 105 529 1.1733 16 384 3.4507 16 221 3.3623 1.8754

128 77 779 1.2484 16 384 3.8866 11 955 6.4992 1.9725
256 67 399 1.2437 16 384 2.3913 10 360 7.4982 2.0225
512 67 769 1.2234 8 192 6.0333 10 417 7.6357 2.0920

1 024 67 735 1.2824 8 192 6.8689 10 412 4.6306 1.8402

|I
|=

15
00

2 424 770 1.1208 65 536 1.9321 59 012 1.2895 1.0806
4 886 339 1.1403 131 072 1.7242 123 137 1.9850 1.7794
8 833 773 1.1028 131 072 1.7028 115 834 2.3318 1.8294

16 605 972 1.1661 65 536 4.9773 84 186 2.7771 1.8020
32 476 273 1.1135 65 536 2.3508 66 167 2.3054 1.5975
64 412 495 1.1794 65 536 2.7616 57 307 2.9043 1.7450

128 329 227 1.1875 32 768 6.0854 45 738 2.5163 1.6943
256 246 535 1.1782 32 768 3.5957 34 250 3.5141 1.8048
512 293 640 1.1882 32 768 4.5122 40 794 4.2008 1.8058

|I
|=

3
00

0

2 604 908 1.1771 65 536 2.2606 76 660 2.1397 1.3249
4 3 039 764 1.0971 262 144 6.1060 385 230 2.1546 1.9630
8 3 120 064 1.0790 262 144 5.6093 395 406 2.0191 1.8691

16 2 678 164 1.1122 262 144 3.4153 339 404 1.7900 1.6055
32 1 880 963 1.1026 262 144 2.1722 238 375 2.0828 1.6177
64 1 515 685 1.1517 262 144 2.6016 192 083 2.2648 1.7525

128 1 229 923 1.1056 131 072 2.1753 155 868 2.3957 1.6649
256 1 140 653 1.1424 131 072 2.6274 144 555 2.4377 1.7032

|I
|=

6
00

0

2 709 484 1.2538 65 536 3.9082 82 654 14.1339 1.8350
4 12 771 978 1.1030 1 048 576 5.1820 1 487 925 2.1443 1.9841
8 12 550 893 1.1073 1 048 576 4.9586 1 462 169 2.2041 2.0689

16 10 643 820 1.1082 1 048 576 3.0549 1 239 996 2.0480 1.8882
32 7 923 112 1.1037 1 048 576 2.0819 923 036 2.2783 1.7199
64 6 625 638 1.1216 524 288 5.7345 771 881 1.8552 1.6084

128 5 544 914 1.1285 524 288 2.8288 645 978 2.1266 1.6709
256 4 771 193 1.1108 524 288 2.6301 555 840 2.3159 1.6784

Table 4.7: Generated set sizes M(I, r#, 7), MG(I, r#, 7), M \(I, r#, 7), estimated condition
numbers κG, cf. (4.16) and (4.17), and condition numbers κ, cf. (4.15) and (4.17),
for arbitrary frequency index sets I chosen uniformly distributed from [−128, 128]d.
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are very close to each other.
To this end, we focus on fixed cardinalities of the frequency index sets I and growing

dimensions. We observe that the cardinalities of the found reconstructing generated sets
mildly decrease with growing dimensions. In other words, an increasing number of degrees
of freedom of the functional ρ results in a lower minimal value. This behavior seems to be
somehow natural. In fact, for large dimensions d � |I| and randomly chosen |I| we have
a high probability that all elements contained in I are linearly independent. Thus, let us
assume that all elements of the frequency index set I are linearly independent. Then, the
matrix

K =
(
k1, k2, · · · , k|I|

)
∈ Zd×|I|,

that contains each element of I as one column, has full column rank and we obtain that the
vector 1

|I| (0, 1, . . . , |I| − 1)> is in the range of K>. Hence, we compute a generating vector

r ∈ Rd as the solution of the system of linear equations

K>r =
1

|I|
(0, 1, . . . , |I| − 1)> .

Consequently, the vector r is an optimal choice of a generating vector, since the corresponding

Fourier matrixA =
(
e2πijkl·r

)
j=0,...,|I|−1, l=1,...,|I| =

(
e

2πi jl|I|

)
j,l=0,...,|I|−1

simplifies to a Fourier

matrix of a one-dimensional discrete Fourier transform and, thus, is a unitary matrix up
to some constant. In addition, we obtain an optimal cardinality |I| of the reconstructing
generated set Λ(r, |I|, I). Furthermore the vector r is a global minimizer of ρ(I, ◦) and the

corresponding value is given by ρ(I, r) = |I|
∑⌊

|I|
2

⌋
j=1 j−1.

We stress the fact that we cannot expect a similar behavior for structured frequency
index sets I since the condition d � |I| and the linear independence of the elements of the
frequency index sets I is usually violated.

4.7 Summary

The basic subject of this chapter was the generalization of the rank-1 lattice approach that
is presented in Chapter 3. We simply allowed real valued vectors as generating vectors of the
sampling scheme with rank-1 structure.

We exploited this rank-1 structure of generated sets Λ(r,M) in order to evaluate a trigono-
metric polynomial at all nodes of a generated set similar to the rank-1 lattice approach. The
only difference is the application of a one-dimensional adjoint nonequispaced fast Fourier
transform instead of an equispaced fast Fourier transform. The corresponding complexity of
the evaluation problem is in O (M logM + (| log ε|+ d)|I|), where ε describes the accuracy
of the one-dimensional nonequispaced fast Fourier transform, see Section 4.2 for all details.

Since a fast evaluation of multivariate trigonometric polynomials along generated sets is
guaranteed, we focus on the reconstruction problem, i.e., the unique reconstruction of all
frequencies f̂k ∈ C, k ∈ I, of the trigonometric polynomials f ∈ ΠI from the sampling
values f(x), x ∈ Λ(r,M). The necessary condition on the corresponding Fourier matrix
A is that A needs full column rank, which is fulfilled if and only if the conditions |{k ·
r mod 1: k ∈ I}| = |I| and M ≥ |I| are fulfilled, cf. Lemma 4.2. We gave a fast algorithm
for the reconstruction problem that applies a conjugate gradient method to one-dimensional
nonequispaced fast Fourier transforms and corresponding adjoint nonequispaced fast Fourier
transforms, cf. Algorithm 4.3. The computational complexity of one step of the conjugate
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gradient method is bounded by O (M logM + (| log ε|+ d)|I|). Certainly, the number of
needed steps of the conjugate gradient method crucially depends on the condition number
of the corresponding Fourier matrix A, cf. Lemma 4.5. Thus, the condition number of
the matrix A describes the stability of the given problem and somehow the computational
complexity of the reconstruction problem.

Furthermore, we considered the approximation of functions f ∈ Aω(Td) using trigono-
metric polynomials S̆IN f ∈ ΠIN that well approximates the Fourier partial sums SIN f of
f . Here, we compute S̆IN f from sampling values of f that are taken along a reconstructing
generated set for IN . In particular, we estimate the L2(Td) error of the approximation by the
term N−1 times the norm of f in Aω(Td) times a term that depends inversely proportional
on the smallest singular value of A and, thus, can be bounded from above by the condition
number of A, cf. Theorem 4.12.

In order to estimate the stability, or more precisely the condition number, of the Fourier
matrix A, where Λ(r,M) and I are given, we considered the Gershgorin circle radii of the
matrixA∗A and gave an upper bound ρ(I, r) on the maximum Gershgorin circle radius. Note
that all centers of the Gershgorin circles are identical. The upper bound on the maximum
Gershgorin circle radius only depends on the distances of successive elements within the set
{k ·r mod 1: k ∈ I} and is fast computable in O (|I|(log |I|+ d)), cf. Theorem 4.8 and Algo-
rithm 4.4. In addition, we can simply compute a generated set size M(I, r, C), which depends
linearly on ρ(I, r), such that the corresponding matrixA∗A,A =

(
e2πik·x)

x∈Λ(r,M(I,r,C)),k∈I ,
has a condition number smaller or equal to C > 1, cf. Corollary 4.10. For that reason, we
use ρ(I, r) in order to rate the reconstruction properties of a generating vector r for a given
frequency index set I.

We suggest to numerically minimize the functional ρ(I, ◦) : Td → R ∪ {∞} in order
to achieve suitable generated sets, i.e., generated sets that consists of a small number of
sampling nodes and guarantees a small condition number of A. Due to the fact that the
functional ρ(I, ◦) may has poles on d − 1- dimensional subsets of Td, we restrict ourselves
to evaluations of ρ(I, ◦) in order to find local minimizers of ρ(I, ◦). Accordingly, we use a
simplex search method for the optimization of ρ(I, ◦), cf. Algorithm 4.5. In contrast to the
rank-1 lattice search algorithm, which is a discrete component–by–component type algorithm,
the search algorithm for generated sets is based on a continuous search method. We compute
the corresponding evaluations of ρ(I, ◦) in a fast way. The related algorithm needs only few
memory, cf. Algorithm 4.4.

We demonstrate the search algorithm for generated sets, cf. Algorithm 4.5, on specific
frequency index sets. To this end, we computed stable reconstructing generated sets for
weighted `p-balls, weighted hyperbolic crosses, and randomly chosen frequency index sets
and compare the results to the reconstructing rank-1 lattices that we determined in Chapter
3. The numerical tests heuristically motivate that the theoretically found M(I, r, C) may
suffer from the rough estimate of the maximum Gershgorin circle radius and even a smaller
number of sampling values are enough in order to obtain small condition numbers of the
Fourier matrix A. In general, the number of sampling nodes of the stable generated sets
and the reconstructing rank-1 lattices that we determined using our search algorithms are
broadly similar.
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Applications and Numerical Examples

In this chapter, we present some examples with detailed theoretical error analysis and corre-
sponding numerical tests. More precisely, we specified some error estimates in the L∞(Td)
norm in Chapter 3. In the following, we will illustrate their validity by some specific exam-
ples. In particular, we have to compute or estimate the L∞(Td) norm of different functions.
Due to the fact, that we do not only want to approximate the L∞(Td) norm of a function
using a finite set of sampling values, we will compute an upper bound on it. More specifically,
we estimate

‖f − t|L∞(Td)‖ ≤ ‖f − t|A(Td)‖ =
∑
k∈Zd

|f̂k − t̂k|

=
∑
k∈Zd

|f̂k| −
∑
k∈I
|f̂k|+

∑
k∈I
|f̂k − t̂k|

= ‖f |A(Td)‖+
∑
k∈I

(
|f̂k − t̂k| − |f̂k|

)
=: err(f, t,A(Td)), (5.1)

where f ∈ A(Td) belongs to the Wiener algebra and t ∈ ΠI is a trigonometric polynomial
with frequencies supported on the index set I ⊂ Zd, |I| < ∞. We name err(f, t,A(Td)) the
error of the approximation t of f in the space A(Td), which is in fact an upper bound on the
L∞(Td) norm of f − t. At this point, we would like to stress that we checked the relevance
of the upper bound err(f, t,A(Td)) of the L∞(Td) error in (5.1) by evaluating the considered
test functions f and corresponding approximations t at suitable rank-1 lattices. Indeed, we
found sampling nodes x ∈ Td where the error f(x) − t(x) was in the order of magnitude of
the upper bound err(f, t,A(Td)) in all our numerical tests.

Furthermore, we proved some error estimates in Chapter 4, where the error is measured
in the L2(Td) norm. Similar to (5.1), we estimate

‖f − t|L2(Td)‖2 =
∑
k∈Zd

|f̂k − t̂k|2 =
∑
k∈Zd

|f̂k|2 +
∑
k∈I

(
|f̂k − t̂k|2 − |f̂k|2

)
using Parseval’s identity and the requirement that t ∈ ΠI is a trigonometric polynomial with
frequencies supported on the frequency index set I. Since we sum up a large number of
differences of squared rounded floating point numbers, we have to expect that the right hand
side of the equality may sum up to some negative value. Thus, we will compute the values

111
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of the L2(Td) error by

‖f − t|L2(Td)‖ =

∣∣∣∣∣‖f |L2(Td)‖2 +
∑
k∈I

(
|f̂k − t̂k|2 − |f̂k|2

)∣∣∣∣∣
1/2

=: err(f, t, L2(Td)).

We stress the fact that we do not apply the asymptotically best possible theoretical error
estimates in this section. More precisely, we estimate the approximation errors in Theorems
3.11 and 4.12 by the norm of the function f ∈ Aω(Td) in the specific function space Aω(Td),
the term N−1, and terms Cδ ≥ 2 and 2 that depend on the smallest singular value of the
involved Fourier matrices A(IN ,Λ(r,M)) and A(IN ,Λ(z,M)), respectively. In general, the
norm of a fixed function f ∈ Aω(Td) in the space Aω(Td) is monotone in ω, i.e., the larger ω
the larger the norm of the function f in Aω(Td).

For our numerical examples, we do not choose the weight function ω best possible with
respect to the smoothness of our test functions f , since we have to expect large norms
of f in the corresponding function spaces Aω(Td) and, thus, we cannot expect adequate
error estimates for numerical manageable problem sizes, i.e., reasonable cardinalities of the
frequency index sets I. For that reason, we consider weight functions ω that yield meaningful
error estimates already for relatively small values of N . The chosen weight functions ω are
somehow a tradeoff between small norms of f on the one hand and a suitable decay of the error
estimates with respect to N on the other. In most of our examples, we exploit the smoothness
of the test functions, i.e., the decay of the Fourier coefficients of the test functions, with the
exception of (almost) one order of smoothness in order to give theoretical error bounds of
practical usefulness.

We would like to stress the fact that all of our test functions in this chapter are functions
that vary considerably, and do not tend to zero for growing dimension d. Specifically, the
range of our functions do not reduce for growing dimensions d. Quite the contrary, the ranges
expand for the polynomial test function, cf. Sections 5.1.1 and 5.2.1, and mildly expand for
the periodic test function, cf. Section 5.1.2, if the dimension d increases.

We compute approximations of different test functions in Section 5.1 and demonstrate
that the weights γ used to define weighted frequency index sets, cf. Section 2.3, are of
particular interest and may cause more or less sparse and suitable frequency index sets I in
different dimensions.

In Section 5.2, we discuss the application of trigonometric spectral methods on Poisson’s
equation in arbitrary dimensions d. We stress the fact that the presented methods can also
be applied to more general partial differential equations as described in [LH03].

Moreover, we illustrate a usual approach to treat the approximation problem for non-
periodic functions using FFT methods in Section 5.3. Similar approaches have already been
studied in the field of numerical integration in order to apply suitable cubature rules for
periodic functions to non-periodic functions, cf. [Hic02, CDLP07, DNP14].

5.1 Approximation of Periodic Functions

In this section, we will demonstrate the outstanding properties of the approximation methods
specified in Chapters 3 and 4. We approximate functions from specific function spaces Aω(Td)
by approximated Fourier partial sums and compare the theoretical findings to the numerical
results.

The first example is a tensor product of a ten times continuously differentiable one-
dimensional test function that is polynomial on the torus T. Well adapted frequency index
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Figure 5.1: One period of the polynomial test function v(x).

sets for the approximation of such a multivariate periodic function are weighted hyperbolic
crosses.

We also treat a second test function in this section, which is also a suitable weighted
tensor product of a one-dimensional test function. In particular, the one-dimensional function
is an infinitely many times continuously differentiable function and, thus, has exponentially
decaying Fourier coefficients. The corresponding weighted tensor product of such functions
are well approximated using trigonometric polynomials supported on weighted `p-balls. In
our numerical tests, we use d-dimensional `1-balls up to dimensions d larger than 20.

5.1.1 Polynomial Test Function

As first example we consider the following univariate function

v(x) =

{
4096
4146(2x12 − 12x11 + 22x10 − 33x8 + 44x6 − 33x4 + 10x2) + 1 for x ∈ [0, 1],

v(x− bxc) for x ∈ R \ [0, 1],

cf. Figure 5.1 for an illustration, and construct the multivariate function ud(x) =
∏d
s=1 v(xs).

We define a suitable weight function ωda(k) =
∏d
s=1 max(1, a|ks|10) with a = 2122061π10

108972864000 ≈
1.82364 and calculate the weighted norms of v and u in Aωda(Td) using the Fourier coefficients
of the univariate function v given in Table 5.1

‖v|Aω1
a
(T)‖ = v̂0 + 2

∞∑
k=1

ω1
a(k)v̂k

=
6143

4095
+ 2

∞∑
k=1

2122061(πk)10

108972864000

159667200

691(πk)12

=
6143

4095
+

6142

4095
= 3

‖ud|Aωda(Td)‖ =

d∏
s=1

‖v|Aω1
a
(T)‖ = 3d.
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p(x) p̂0 p̂k, k 6= 0

p2(x) = 5(x(x− 1))2 1
6 − 30

4(kπ)4

p3(x) = −10(x(x− 1))3 1
14 − 450

4(kπ)6 + 30
4(kπ)4

p4(x) = 17
2 (x(x− 1))4 17

1260 − 5355
4(kπ)8 + 510

4(kπ)6

p5(x) = −4(x(x− 1))5 1
693 − 56700

4(kπ)10 + 6300
4(kπ)8 − 60

4(kπ)6

p6(x) = (x(x− 1))6 1
12012 − 467775

4(kπ)12 + 56700
4(kπ)10 − 945

4(kπ)8∑6
j=2 pj(x) 691

2730 − 467775
4(kπ)12

v(x) = 1 + 4096
2073

∑6
j=2 pj(x) 6143

4095 − 159667200
691(kπ)12

Table 5.1: Construction of the polynomial test function v and its Fourier coefficients.

Thus, we estimate the L2(Td) and the L∞(Td) errors by

‖ud − S̃Id,aK ud|L2(Td)‖ ≤ ‖ud − S̃Id,aK ud|L∞(Td)‖ ≤ 2K−1‖ud|Aωda(Td)‖ (5.2)

and

‖ud − S̆Id,aK ud|L2(Td)‖ ≤ CδK−1‖ud|Aωda(Td)‖, (5.3)

where S̃
Id,aK

ud and S̆
Id,aK

ud are approximations of ud based on sampling along a reconstructing

rank-1 lattice and a reconstructing generated set for Id,aK := {k ∈ Zd : ωda(k) ≤ K}, respec-
tively. The general error estimates can be found in Theorems 3.11 and 4.12. We analyze the
weight function ωda and obtain

d∏
s=1

max(1, a|ks|10) ≤ K ⇔
d∏
s=1

max(1, a1/10|ks|) ≤ K1/10 =: N.

Thus, the corresponding frequency index sets Id,aK are determined by

Id,aK = {k ∈ Zd : ωda(k) ≤ K} = {k ∈ Zd :
d∏
s=1

max(1, a1/10ks) ≤ N} =: I
d,γa
hc,N .

Accordingly, Id,aK = I
d,γa
hc,N are just weighted hyperbolic crosses I

d,γa
hc,N with weights γa,s =

a−1/10 ≈ 0.941686 for s = 1, . . . , d, cf. (2.17).
Hence, the a priori estimates (5.2) and (5.3) of the corresponding accuracy of the approx-

imation of ud yield

‖ud − S̃Id,γahc,N

ud|L∞(Td)‖ ≤ 2
3d

N10
(5.4)

and

‖ud − td|L2(Td)‖ ≤ 3d

N10

2 for td = S̃
I
d,γa
hc,N

ud,

Cδ for td = S̆
I
d,γa
hc,N

ud.
(5.5)
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N = 4 N = 25/2 N = 8

d 3d/N10 |Id,γahc,N | 3d/N10 |Id,γahc,N | 3d/N10 |Id,γahc,N |

2 8.583e-06 33 2.682e-07 61 8.382e-09 93
3 2.575e-05 135 8.047e-07 255 2.515e-08 435
4 7.725e-05 513 2.414e-06 1 001 7.544e-08 1 865
5 2.317e-04 1 703 7.242e-06 3 843 2.263e-07 6 823
6 6.952e-04 5 217 2.173e-05 13 125 6.789e-07 22 917
7 2.086e-03 15 655 6.518e-05 40 407 2.037e-06 75 435
8 6.257e-03 47 617 1.955e-04 117 905 6.110e-06 248 785
9 1.877e-02 148 167 5.866e-04 341 307 1.833e-05 823 167

10 5.631e-02 469 409 1.760e-03 1 007 629 5.499e-05 2 729 709

Table 5.2: Cardinalities |Id,γahc,N | of frequency index sets of hyperbolic cross type and val-
ues of the main term of the theoretical error bounds (5.4) and (5.5), γa =((

108972864000
2122061

)1/10 1
π

)d
s=1

.

Table 5.2 specifies the corresponding values of 3d

N10 for different N = 22, 25/2, 23 and

presents the cardinalities of the frequency index sets Id,aK = I
d,γa
hc,N . Clearly, we obtain a priori

error estimates in the spaces L∞(Td) and L2(Td) by multiplying these values by 2 and Cδ for
approximations S̃

I
d,γa
hc,N

ud and S̆
I
d,γa
hc,N

ud, respectively.

The last error estimates mainly depends on the norm of ud in the function space Aωda(Td)
and, thus, on the weight function ωda, that we have chosen in order to compute the norm of
the functions ud. In particular, one can change the value of a and obtain, in some sense, a
more suitable weight function. We will choose b = 2475853π10

54486432000 in order to compare the two
weights ωda and ωdb . At a first glance, the weight function ωdb causes a norm of ud

‖ud|Aωdb (Td)‖ =
d∏
s=1

‖v|Aω1
b
(T)‖ = 5d,

which is much larger than the norm of ud in the space Aωda(Td) and, thus, has counterpro-
ductive effects with respect to our approximation estimate

‖ud − S̃Id,bK ud|L∞(Td)‖ ≤ 2
5d

N10
(5.6)

and

‖ud − td|L2(Td)‖ ≤ 5d

N10

2 for td = S̃
Id,bK

ud,

Cδ for td = S̆
Id,bK

ud,
(5.7)

where the frequency index set Id,bK is defined by Id,bK := {k ∈ Zd : ωdb (k) =∏d
s=1 max(1, b|ks|) ≤ K} and S̃

Id,bK
ud and S̆

Id,bK
ud are determined from samples of related

reconstructing rank-1 lattices and related reconstructing generated sets, respectively. Only
on a second glance, we obtain that the cardinalities of the frequency index sets Id,bK are much



116 5 Applications and Numerical Examples

N = 4 N = 25/2 N = 8

d 5d/N10 |Id,γbhc,N | 5d/N10 |Id,γbhc,N | 5d/N10 |Id,γbhc,N |

2 2.384e-05 25 7.451e-07 49 2.328e-08 65
3 1.192e-04 87 3.725e-06 177 1.164e-07 285
4 5.960e-04 305 1.863e-05 593 5.821e-07 1 105
5 2.980e-03 903 9.313e-05 1 833 2.910e-06 3 613
6 1.490e-02 2 313 4.657e-04 5 409 1.455e-05 10 737
7 7.451e-02 5 463 2.328e-03 15 921 7.276e-05 30 285
8 3.725e-01 12 641 1.164e-02 45 921 3.638e-04 83 169
9 1.863e+00 30 087 5.821e-02 125 577 1.819e-03 227 565

10 9.313e+00 74 745 2.910e-01 321 489 9.095e-03 623 329

Table 5.3: Cardinalities |Id,γbhc,N | of frequency index sets of hyperbolic cross type and val-
ues of the main term of the theoretical error bounds (5.6) and (5.7), γb =((

54486432000
2475853

)1/10 1
π

)d
s=1

.

smaller than those of the frequency index sets Id,aK , at least for smaller dimensions. According

to the considerations from above, we get Id,bK = I
d,γb
hc,N , where the parameters N and γb are

given by N = K1/10 and γb =
((

54486432000
2475853π10

)1/10
)d
s=1

(γb,s ≈ 0.865180). Table 5.3 presents

the values 5d

N10 for different d and N = 22, 25/2, 23 connected with the cardinalities of the

frequency index sets Id,bK = I
d,γb
hc,N .

Numerical Example 5.1. For dimensions d = 1, . . . , 10, parameters N = 22 and N =
25/2, we gave reconstructing rank-1 lattices for the frequency index sets I

d,γa
hc,N in Table 3.8.

Consequently, we apply our strategy in order to approximate the function ud =
∏d
s=1 v(xs)

using a Fourier partial sum S̃
I
d,γa
hc,N

ud(x) =
∑
k∈Id,γa

hc,2l

ˆ̃ud,ke2πik·x for different dimensions d =

2, . . . , 10 and hyperbolic crosses of different expansions N = 22, 25/2.

The theoretical error bounds can be achieved by multiplying the values contained in Table

5.2 by two. In fact, we determine the L2(Td) errors err

(
ud, S̃Id,γahc,N

ud, L2(Td)
)

, cf. (5.3), and

error bounds err

(
ud, S̃Id,γahc,N

ud,A(Td)
)

, cf. (5.1), on the L∞(Td) error as given in Table 5.4.

In addition to it, we specified the cardinalities of the corresponding frequency index sets I
d,γa
hc,N

and the reconstructing rank-1 lattices Λ(z,M, I
d,γa
hc,N ).

For comparison, we computed the approximations S̃
I
d,γb
hc,N

ud, for d = 1, . . . , 10 and N =

25/2, 23 and the corresponding L2(Td) errors and the upper bounds on the L∞(Td) errors.
We present these results in Table 5.5.

In general, the errors we computed are much lower than the theoretical error estimates
promise. Nevertheless, the upper bounds on the L∞(Td) errors increase with growing dimen-
sion as expected. Specifically, for fixed N , the error bounds multiply by factors near three
and five for growing dimension d and approximants S̃

I
d,γa
hc,N

ud and S̃
I
d,γb
hc,N

ud, respectively. In

addition, we recognize decreasing errors for growing parameters N . In particular, the errors
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Polynomial test function ud – Rank-1 Lattice Approximation – weights γa

N = 22 N = 25/2

d |Id,γahc,N | M errA err2 |Id,γahc,N | M errA err2

2 33 38 2.569e-07 3.425e-08 61 73 2.344e-09 6.664e-08
3 135 186 7.940e-07 6.000e-08 255 449 8.429e-09 1.460e-07
4 513 875 2.114e-06 3.991e-07 1 001 2 497 2.785e-08 4.539e-07
5 1 703 4 037 5.455e-06 2.665e-07 3 843 11 144 9.082e-08 9.791e-10
6 5 217 17 060 1.614e-05 3.546e-06 13 125 45 393 2.901e-07 3.568e-06
7 15 655 61 334 4.726e-05 1.023e-05 40 407 218 084 9.606e-07 1.017e-05
8 47 617 238 682 1.393e-04 1.398e-05 117 905 916 888 3.325e-06 5.363e-06
9 148 167 1 001 977 4.132e-04 1.676e-05 341 307 3 979 598 1.154e-05 1.533e-05

10 469 409 3 458 502 1.176e-03 3.035e-05 1 007 629 17 436 325 3.870e-05 2.827e-05

Table 5.4: Cardinalities |Id,γahc,N | of frequency index sets of hyperbolic cross type, lattice

sizes M = |Λ(z,M, I
d,γa
hc,N )| of corresponding reconstructing rank-1 lattices,

L2(Td) errors err2 = err

(
ud, S̃Id,γahc,N

ud, L2(Td)
)

and upper bounds errA =

err

(
ud, S̃Id,γahc,N

ud,A(Td)
)

on the L∞(Td) errors of the approximations S̃
I
d,γa
hc,N

ud

of ud, γa =
((

108972864000
2122061

)1/10 1
π

)d
s=1

.

Polynomial test function ud – Rank-1 Lattice Approximation – weights γb

N = 25/2 N = 23

d |Id,γbhc,N | M errA err2 |Id,γbhc,N | M errA err2

2 49 58 1.697e-08 6.657e-08 65 90 8.543e-10 6.664e-08
3 177 264 9.656e-08 1.459e-07 285 572 3.732e-09 1.460e-07
4 593 1 384 4.373e-07 4.538e-07 1 105 2 200 1.374e-08 4.539e-07
5 1 833 5 417 1.916e-06 1.292e-08 3 613 11 749 7.459e-08 3.576e-10
6 5 409 18 711 8.125e-06 3.568e-06 10 737 43 794 4.222e-07 3.568e-06
7 15 921 72 959 3.142e-05 1.017e-05 30 285 159 381 2.092e-06 1.017e-05
8 45 921 267 176 1.195e-04 1.389e-05 83 169 644 650 9.231e-06 1.389e-05
9 125 577 971 228 4.682e-04 2.207e-05 227 565 2 511 491 3.713e-05 2.145e-05

10 321 489 3 372 316 1.923e-03 3.441e-05 623 329 8 324 021 1.398e-04 3.482e-05

Table 5.5: Cardinalities |Id,γbhc,N | of frequency index sets of hyperbolic cross type, lat-

tice sizes |Λ(z,M, I
d,γb
hc,N )| of corresponding reconstructing rank-1 lattices,

L2(Td) errors err2 = err

(
ud, S̃Id,γbhc,N

ud, L2(Td)
)

and upper bounds errA =

err

(
ud, S̃Id,γbhc,N

ud,A(Td)
)

on the L∞(Td) errors of approximations S̃
I
d,γb
hc,N

ud of ud,

γb =
((

54486432000
2475853

)1/10 1
π

)d
s=1

.

of the approximants S̃
I
d,γa
hc,N

ud decrease by factors near 1/
√

2
10

= 1/32. The approximants
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Polynomial test function ud – Rank-1 Lattice Interpolation – weights γa

N = 22 N = 25/2

d |Ĩd,γahc,N | M errA err2 |Ĩd,γahc,N | M errA err2

2 38 38 2.500e-07 1.769e-08 73 73 2.173e-09 7.300e-08
3 186 186 7.214e-07 8.429e-08 449 449 6.681e-09 1.577e-07
4 875 875 1.556e-06 4.373e-07 2 497 2 497 1.409e-08 4.805e-07
5 4 037 4 037 3.433e-06 2.707e-07 11 144 11 144 3.423e-08 1.686e-07
6 17 060 17 060 9.064e-06 3.573e-06 45 393 45 393 8.033e-08 3.592e-06
7 61 334 61 334 2.065e-05 1.040e-05 218 084 218 084 1.701e-07 1.036e-05
8 238 682 238 682 3.950e-05 2.613e-06 916 888 916 888 3.498e-07 1.409e-05
9 1 001 977 1 001 977 9.564e-05 7.341e-05 3 979 598 3 979 598 7.371e-07 7.526e-05

10 3 458 502 3 458 502 1.891e-04 8.764e-05 17 436 325 17 436 325 1.509e-06 8.244e-05

Table 5.6: Cardinalities |Ĩd,γahc,N | of interpolating frequency index sets of hyperbolic cross

type, lattice sizes |Λ(z,M, Ĩ
d,γa
hc,N )| of corresponding reconstructing rank-1 lat-

tices, L2(Td) errors err2 = err

(
ud, S̃Ĩd,γahc,N

ud, L2(Td)
)

and upper bounds errA =

err

(
ud, S̃Ĩd,γahc,N

ud,A(Td)
)

on the L∞(Td) errors of approximations S̃
Ĩ
d,γa
hc,N

ud of ud,

γa =
((

108972864000
2122061

)1/10 1
π

)d
s=1

.

S̃
I
d,γb
hc,N

ud do not reach the same error reduction for increasing N , in particular for larger di-

mensions d. The L2(Td) errors of all the approximants suffers from rounding errors and only
indicate a rough trend. We observe increasing L2(Td) errors for growing dimensions d.

Numerical Example 5.2. Furthermore, we interpolated the function ud, cf. Section 3.5,
using the same reconstructing rank-1 lattices as used for the computations in Tables 5.4 and
5.5. To this end, we applied Algorithm 3.6 in order to determine the frequency index sets
Ĩ
d,γa
hc,N ⊃ I

d,γa
hc,N and Ĩ

d,γb
hc,N ⊃ I

d,γb
hc,N . The corresponding approximation errors are given in Tables

5.6 and 5.7.
Naturally, the interpolation errors are not greater than the approximation errors. In

general, we observe decreased interpolation errors compared to the approximation errors.
Particularly for frequency index sets I

d,γa
hc,N and I

d,γb
hc,N that have reconstructing rank-1 lattices

that imply a large oversampling factor, the interpolating frequency index sets Ĩ
d,γa
hc,N and Ĩ

d,γb
hc,N

contains a lot of additional frequency indices. The corresponding frequencies of ud are not
significantly large but the huge amount of additional approximated frequencies significantly
improves the upper bounds on the L∞(Td) errors. Due to the fact that the number of
rounding errors also increases with higher cardinalities of the interpolating frequency index
sets during the calculation of the L2(Td) error, we observe even higher L2(Td) errors for
interpolation against the expectations.

Numerical Example 5.3. In addition to the rank-1 lattice approximations, we also com-
puted approximations of the functions ud from samples along reconstructing generated sets
for appropriate frequency index sets. The resulting approximation errors are given in Tables
5.8 and 5.9. We observe error estimates for the L∞(Td) errors that are very close to those
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Polynomial test function ud – Rank-1 Lattice Interpolation – weights γb

N = 25/2 N = 23

d |Ĩd,γbhc,N | M errA err2 |Ĩd,γbhc,N | M errA err2

2 58 58 1.690e-08 7.293e-08 90 90 5.710e-10 7.300e-08
3 264 264 6.073e-08 1.576e-07 572 572 1.648e-09 1.577e-07
4 1 384 1 384 1.807e-07 4.804e-07 2 200 2 200 4.587e-09 4.805e-07
5 5 417 5 417 4.379e-07 1.693e-07 11 749 11 749 1.187e-08 1.686e-07
6 18 711 18 711 1.376e-06 3.592e-06 43 794 43 794 4.316e-08 3.592e-06
7 72 959 72 959 3.128e-06 1.036e-05 159 381 159 381 1.325e-07 6.616e-06
8 267 176 267 176 1.216e-05 1.272e-05 644 650 644 650 3.587e-07 3.785e-06
9 971 228 971 228 3.124e-05 4.670e-05 2 511 491 2 511 491 1.194e-06 7.309e-05

10 3 372 316 3 372 316 7.618e-05 1.081e-04 8 324 021 8 324 021 3.487e-06 8.348e-05

Table 5.7: Cardinalities |Ĩd,γbhc,N | of interpolating frequency index sets of hyperbolic cross

type, reconstructing rank-1 lattice sizes |Λ(z,M, I
d,γb
hc,N )|, L2(Td) errors err2 =

err

(
ud, S̃Ĩd,γbhc,N

ud, L2(Td)
)

and upper bounds errA = err

(
ud, S̃Ĩd,γbhc,N

ud,A(Td)
)

on

the L∞(Td) errors of approximations S̃
Ĩ
d,γb
hc,N

ud of ud, γb =
((

54486432000
2475853

)1/10 1
π

)d
s=1

.

Polynomial test function ud – Generated Set Approximation – weights γa

N = 22 N = 25/2

d |Id,γahc,N | M errA err2 |Id,γahc,N | M errA err2

2 33 46 2.644e-07 3.295e-08 61 94 2.206e-09 6.664e-08
3 135 234 8.436e-07 5.767e-08 255 592 8.678e-09 1.460e-07
4 513 1 176 2.157e-06 4.062e-07 1 001 3 590 3.249e-08 4.539e-07
5 1 703 7 295 5.962e-06 2.651e-07 3 843 21 324 1.018e-07 5.766e-10
6 5 217 40 720 1.476e-05 3.563e-06 13 125 114 698 3.167e-07 3.568e-06
7 15 655 177 258 4.540e-05 1.021e-05 40 407 456 920 1.056e-06 1.017e-05
8 47 617 719 716 1.370e-04 1.395e-05 117 905 2 657 399 3.562e-06 5.363e-06
9 148 167 4 138 354 4.110e-04 1.671e-05 341 307 13 930 955 1.294e-05 1.533e-05

10 469 409 16 250 377 1.196e-03 3.041e-05 1 007 629 61 963 186 5.243e-05 2.827e-05

Table 5.8: Cardinalities |Id,γahc,N | of frequency index sets of hyperbolic cross type, gener-

ated set sizes M = |Λ(r,M, I
d,γa
hc,N )| of corresponding reconstructing generated

sets, L2(Td) errors err2 = err

(
ud, S̃Id,γahc,N

ud, L2(Td)
)

and upper bounds errA =

err

(
ud, S̆Id,γahc,N

ud,A(Td)
)

on the L∞(Td) error of approximations S̆
I
d,γa
hc,N

ud of ud,

γa =
((

108972864000
2122061

)1/10 1
π

)d
s=1

.

for the rank-1 lattice approximations, cf. Tables 5.4 and 5.5. Note, that the error bounds for
the generated set approximation approach are proved for the L2(Td) error only. The L2(Td)
errors have almost the same values as the corresponding errors that occurs by computing the
rank-1 lattice approximations.
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Polynomial test function ud – Generated Set Approximation – weights γb

N = 25/2 N = 23

d |Id,γbhc,N | M errA err2 |Id,γbhc,N | M errA err2

2 49 72 1.758e-08 6.657e-08 65 105 1.122e-09 6.664e-08
3 177 377 1.088e-07 1.459e-07 285 609 4.707e-09 1.460e-07
4 593 1 868 4.839e-07 4.539e-07 1 105 4 198 1.571e-08 4.539e-07
5 1 833 8 737 2.176e-06 1.356e-08 3 613 15 977 8.826e-08 4.899e-10
6 5 409 38 557 9.021e-06 3.568e-06 10 737 102 710 4.683e-07 3.568e-06
7 15 921 155 847 3.447e-05 1.017e-05 30 285 428 188 2.207e-06 1.017e-05
8 45 921 796 317 1.248e-04 1.389e-05 83 169 1 910 752 9.672e-06 1.389e-05
9 125 577 3 242 942 4.845e-04 2.769e-05 227 565 8 707 707 3.887e-05 2.728e-05

10 321 489 13 073 944 1.979e-03 3.672e-05 623 329 35 617 319 1.459e-04 3.953e-05

Table 5.9: Cardinalities |Id,γbhc,N | of frequency index sets of hyperbolic cross type, gener-

ated set sizes |Λ(r,M, I
d,γb
hc,N )| of corresponding reconstructing generated sets,

L2(Td) errors err2 = err

(
ud, S̆Id,γbhc,N

ud, L2(Td)
)

and upper bounds errA =

err

(
ud, S̆Id,γbhc,N

ud,A(Td)
)

on the L∞(Td) errors of approximations S̆
I
d,γb
hc,N

ud of ud,

γb =
((

54486432000
2475853

)1/10 1
π

)d
s=1

.

We stress the fact that we need more samples in order to guarantee the stable computation
of approximations that are based on the generated set sampling compared to the rank-1
lattice approximations. However, our specific examples need not more than five times as
many samples for the generated set sampling as needed for the rank-1 lattice sampling.

Numerical Example 5.4. Finally, we compare the A(Td) errors depending on the fre-

quency index sets I
d,γa
hc,N and I

d,γb
hc,N . To this end, we consider fixed dimension d and compare

the approximation errors in relation to the cardinality of the frequency index sets. Thus,
we compare the errors of the approximations S̃

I
d,γa
hc,N

ud (or S̃
Ĩ
d,γa
hc,N

ud, S̆Id,γahc,N

ud) to those of

S̃
I
d,γb
hc,
√

2N

ud (or S̃
Ĩ
d,γb
hc,
√

2N

ud, S̆Id,γb
hc,
√

2N

ud) for fixed d and N = 4, 25/2. Generally, we observe

smaller errors for the approximating trigonometric polynomials supported on the frequency
index sets I

d,γb
hc,
√

2N
than for those supported on I

d,γa
hc,N for lower dimensions d. For larger di-

mensions, i.e. d = 10, we recognize the contrary. The differences of the errors are mainly
caused by the weight functions ωda and ωdb . We observe that the frequency index sets I

d,γa
hc,N

and I
d,γb
hc,
√

2N
do not differ widely. In particular, the weight function ωda picks up some more

important mixed frequency indices, in the corresponding frequency index sets I
d,γa
hc,N in higher

dimensions, whereas the weight ωdb somehow picks up more frequency indices k in I
d,γb
hc,
√

2N

that have a lower mixed order, i.e., a lot of components of k are zero in higher dimensions.
The frequency index sets determined by the weight function ωda seems to be more suitable in
order to approximate our test function ud for higher dimensions d. This observation indicates
that our polynomial test function ud requires some kind of a minimum thickness of mixed
frequencies in order to get suitable approximating trigonometric polynomials.
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Figure 5.2: The periodic test functions vη, cf. (5.8), for η = 1 (solid) and η = 1/2 (dashed).

5.1.2 Periodic Test Function

Based on the periodic test function used by H. Munthe-Kaas and T. Sørevik, cf. [MS12, Sec.
4, Test function 2], we consider the one-dimensional function

vη(x) = 1 + η(esin(2πx) − 1), (5.8)

where η ∈ (0, 1] indicates in some sense the variation of the function vη, cf. Figure 5.2. We
construct the multivariate periodic test functions fηd by tensor products of vηs , s = 1, . . . , d,

fηd (x) =

d∏
s=1

vηs(xs), (5.9)

where η ∈ (0, 1]d is a real valued vector and its components ηs, s = 1, . . . , d, somehow specify
the importance of the sth variable.

In addition, we define suitable d-dimensional weight functions

ωdq (k) =
d∏
s=1

ωq+s(ks) =
d∏
s=1

e(10/9)q+s|ks| = e(10/9)q+1
∑d
s=1(10/9)s−1|ks|

where the one-dimensional weight function ωq is given by ωq(k) := e(10/9)q |k|. Due to our
approximation results in the Theorems 3.11 and 4.12, we estimate

‖fηd − S̃Iq,dK fηd |L∞(Td)‖ ≤ 2K−1‖fηd |Aωdq (Td)‖ (5.10)

‖fηd − td|L2(Td)‖ ≤ K−1‖fηd |Aωdq (Td)‖

2 for td = S̃
Iq,dK

fηd ,

Cδ for td = S̆
Iq,dK

fηd ,
(5.11)

where the frequency index set Iq,dK is given by

Iq,dK := {k ∈ Zd : ωdq (k) ≤ K} = {k ∈ Zd : (10/9)q+1
d∑
s=1

(10/9)s−1|ks| ≤ logK}.
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d 1 3 6 9 12

‖fηd |Aωd0 (Td)‖ 9.099e+00 2.063e+02 6.583e+03 2.755e+06 1.038e+17

‖fηd |Aωd−5
(Td)‖ 4.863e+00 2.956e+01 9.327e+01 1.704e+02 3.710e+02

‖fηd |Aωd−10
(Td)‖ 3.692e+00 1.404e+01 2.758e+01 3.468e+01 3.907e+01

‖fηd |Aωd−15
(Td)‖ 3.220e+00 9.942e+00 1.659e+01 1.920e+01 2.034e+01

d 15 18 21 22 23

‖fηd |Aωd0 (Td)‖ 6.892e+65 3.818e+243 6.075e+623 1.079e+808 3.093e+1026

‖fηd |Aωd−5
(Td)‖ 5.198e+04 1.553e+20 1.538e+99 1.583e+157 1.888e+235

‖fηd |Aωd−10
(Td)‖ 4.364e+01 6.117e+01 7.449e+04 1.140e+09 5.731e+16

‖fηd |Aωd−15
(Td)‖ 2.099e+01 2.152e+01 2.235e+01 2.300e+01 2.456e+01

Table 5.10: Approximated norms of the function fηd , η =

((
7
s+6

)6
)
s∈N

, in the spaceAωdq (Td)

for different dimensions d and parameters q = 0,−5,−10,−15.

and S̃
Iq,dK

fηd and S̆
Iq,dK

fηd are approximated Fourier partial sums of fηd that have frequency

support Iq,dK and are computed from sampling values along reconstructing rank-1 lattices and

reconstructing generated sets for Iq,dK , respectively.

We define N := (10/9)−q−1 logK and γ :=
(
0.9s−1

)
s∈N and obtain that the frequency

index set Id,qK is in fact a weighted `1-ball of appropriate size, i.e., Id,qK = Id,γ1,N .

Accordingly, the error estimates (5.10) and (5.11) yield error estimates

‖fηd − S̃Id,γ1,N
fηd |L∞(Td)‖ ≤ 2

(
e0.9−q−1

)−N
‖fηd |Aωdq (Td)‖ (5.12)

and

‖fηd − td|L2(Td)‖ ≤
(

e0.9−q−1
)−N

‖fηd |Aωdq (Td)‖

2 for td = S̃
Id,γ1,N

fηd ,

Cδ for td = S̆
Id,γ1,N

fηd ,
(5.13)

that decrease exponentially with growing parameter N .

The weight function ωdq , which belongs to the norm Aωdq (Td), is in principle a product of
exponential functions, where each factor only depends on one dimension. The corresponding
bases are strictly larger than one and increase with growing dimension. The growth of the
bases mainly depends on the parameter q. Greater values of q cause larger bases and thus
higher smoothness of the functions that belongs to Aωdq (Td).

Once we have fixed the parameter q, we get a second perspective to the weight function
ωdq . Since the bases e(10/9)q+s of ωq+s grow with growing dimension s, the space Aωdq (Td)
consists of functions that becomes more and more smoother with respect to the variable xs
for increasing s.
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Example 5.5. In this example, we fix the vector η =

((
7
s+6

)6
)
s∈N

and consider the func-

tions fηd for d = 1, . . . , 23. In particular, we computed norms of fηd in the space Aωdq (Td)
for different q = 0,−5,−10,−15 given in Table 5.10. Clearly, since the parameter q is an
indicator of the smoothness of the functions that belong to Aωdq (Td), i.e., larger q requires

more smoothness, the norms of fηd decreases with decreasing parameter q. On the other

hand, we observed the number e0.9−q−1
as the base that mainly affects the theoretical error

estimates in (5.12). In particular for the chosen parameters q we obtain

e0.9−q−1 ≈


3.0377 for q = 0,

1.9273 for q = −5,

1.4732 for q = −10,

1.2571 for q = −15.

Consequently, reducing the parameter q decreases the norms of fηd but also decreases the

base e0.9−q−1
such that the base to the exponent −N increases. Accordingly, only suitable

tradeoffs concerning the parameters q, N , η, and the dimension d yield suitable a priori error
estimates for the approximation S̃

Id,γ1,N
fηd of fηd .

We consider the norm approximations of fηd given in Table 5.10, fix N = 10, and obtain
the best error estimates

‖fηd − S̃Id,γ1,10
fηd |L∞(Td)‖ ≤ 2

(
e0.9−q−1

)−10
‖fηd |Aωdq (Td)‖

≤ 2


0.0984 for d ≤ 6 (q = 0),

0.2411 for d ≤ 9 (q = −5),

0.9065 for d ≤ 15 (q = −10),

2.2686 for d ≤ 21 (q = −15),

(5.14)

for the chosen q = 0,−5,−10,−15 a priori. We stress the fact that the ranges of the func-
tions fηd , d = 6, . . . , 23, contain the interval [0.196, 9.5] and are contained in the interval
[0.1867, 10.81]. Thus, the error bounds on the L∞(Td) error given in (5.14) are of less quality
for higher dimensions d. We would like to point out that the considerations of this example
applied to the error estimates in (5.13) bound the L2(Td) error by similar terms.

In the following, we interpret concrete numerical tests. Particularly, we fixed the sequence

η =

((
7
s+6

)6
)
s∈N

and computed approximations of the function fηd for dimensions d up to

23.

Numerical Example 5.6. We approximated functions fηd by trigonometric polynomials

with frequencies supported on weighted `1-balls Id,γ1,N , N = 4, 6, 8, 10, γ =
(
0.9s−1

)
s∈N from

samples along reconstructing rank-1 lattices Λ(zAlg3.8,MAlg3.8, I
d,γ
1,N ). The corresponding

L2(Td) errors and upper bounds on the L∞(Td) errors are presented in Tables 5.11 and
5.12. As expected, we observe an exponential decay in the error with respect to growing
N for fixed dimension d. For example, we increased N by two and observe error bounds

errA := err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

that decreases by factors larger than 5,4, and 3 in dimen-

sions d = 6, 9, and 15, respectively.
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Periodic test function fηd – Rank-1 Lattice Approximation

N = 4 N = 6

d |Id,γ1,4 | M errA err2 |Id,γ1,6 | M errA err2

2 27 31 1.638e−01 2.982e−02 63 71 5.027e−03 8.397e−04
3 65 83 4.925e−01 4.431e−02 227 317 2.812e−02 1.883e−03
4 129 181 8.579e−01 5.051e−02 551 918 1.004e−01 3.679e−03
5 193 313 1.215e+00 5.507e−02 997 1 964 1.933e−01 4.658e−03
6 241 422 1.479e+00 5.727e−02 1 567 3 699 2.797e−01 5.316e−03
7 281 545 1.751e+00 6.027e−02 2 169 6 238 3.525e−01 5.656e−03
8 311 545 1.962e+00 6.300e−02 2 697 7 902 4.122e−01 5.999e−03
9 333 591 2.085e+00 6.359e−02 3 121 9 634 4.655e−01 6.293e−03

10 351 614 2.151e+00 6.351e−02 3 433 9 881 5.121e−01 6.566e−03
11 361 614 2.229e+00 6.406e−02 3 653 11 666 5.454e−01 6.717e−03
12 363 614 2.312e+00 6.670e−02 3 799 11 666 5.768e−01 6.920e−03
13 365 614 2.358e+00 6.731e−02 3 877 11 666 6.032e−01 7.089e−03
14 367 614 2.384e+00 6.729e−02 3 911 11 666 6.255e−01 7.186e−03
15 367 614 2.407e+00 6.735e−02 3 933 11 666 6.429e−01 7.257e−03
16 367 614 2.425e+00 6.740e−02 3 943 11 666 6.573e−01 7.316e−03
17 367 614 2.438e+00 6.743e−02 3 945 11 666 6.713e−01 7.405e−03
18 367 614 2.449e+00 6.745e−02 3 947 11 666 6.820e−01 7.492e−03
19 367 614 2.457e+00 6.747e−02 3 947 11 666 6.907e−01 7.544e−03

Table 5.11: Cardinalities |Id,γ1,N | of weighted `1-balls, lattice sizes |Λ(z,M, Id,γ1,N )|
of corresponding reconstructing rank-1 lattices, L2(Td) errors err2 :=

err

(
fηd , S̃Id,γ1,N

fηd , L2(Td)
)

and upper bounds errA := err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

on the L∞(Td) errors of approximations S̃
Id,γ1,N

fηd of fηd , cf. (5.9),

η =

((
7
s+6

)6
)
s∈N

, γ =
(
0.9s−1

)d
s=1

.

In particular, we focus on the approximations S̃
Id,γ1,10

fηd and dimensions d = 6, 9, 15, 21 in

order to compare the error to the theoretical a priori error bounds given in (5.14). We obtain

errors err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

that are smaller by factors of 24 to 61 than the theoretical

bounds from (5.14). Thus, the theoretical error bounds for different dimensions are in some
sense equally close to the practical errors. We would like to mention, that we had to adjust
the parameters q to the specific dimensions d, the function fηd , and N = 10 in order to obtain
the theoretical error bounds in (5.14).

Numerical Example 5.7. We also considered the interpolation problem on the functions fηd ,

i.e., we applied Algorithm 3.6 and constructed interpolating frequency index sets Ĩd,γ1,N , N =

4, 6, 8, 10, γ =
(
0.9s−1

)
s∈N, for the reconstructing rank-1 lattices Λ(zAlg3.8,MAlg3.8, I

d,γ
1,N ).

Some of the used reconstructing rank-1 lattices are given in Table 3.4 and 3.5 for N = 6, 10.

We do not present detailed tables of the errors of these interpolations since the corre-
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Periodic test function fηd – Rank-1 Lattice Approximation

N = 8 N = 10

d |Id,γ1,8 | M errA err2 |Id,γ1,10| M errA err2

2 115 127 8.420e-05 1.350e-05 183 199 8.956e-07 1.468e-07
3 515 695 1.825e-03 1.347e-04 983 1 326 8.929e-05 6.374e-06
4 1 573 2 627 1.035e-02 2.990e-04 3 741 6 387 7.387e-04 1.729e-05
5 3 691 7 778 2.546e-02 4.245e-04 10 569 24 322 2.741e-03 3.377e-05
6 6 955 18 530 4.370e-02 5.219e-04 23 431 64 015 6.013e-03 4.775e-05
7 11 103 36 547 6.359e-02 6.124e-04 43 081 165 954 9.910e-03 6.213e-05
8 15 525 56 704 8.146e-02 6.953e-04 67 857 358 751 1.458e-02 8.102e-05
9 19 671 84 274 9.870e-02 7.814e-04 94 693 561 453 1.974e-02 1.153e-04

10 23 193 105 214 1.146e-01 8.836e-04 120 251 806 670 2.425e-02 1.400e-04
11 25 969 130 235 1.281e-01 9.738e-04 142 261 1 021 007 2.935e-02 1.766e-04
12 27 909 142 745 1.416e-01 1.102e-03 159 611 1 228 093 3.410e-02 2.296e-04
13 29 201 143 789 1.555e-01 1.311e-03 172 079 1 409 797 3.981e-02 3.304e-04
14 29 997 143 789 1.668e-01 1.434e-03 180 383 1 517 004 4.455e-02 3.583e-04
15 30 443 143 789 1.762e-01 1.544e-03 185 551 1 553 233 4.848e-02 3.838e-04
16 30 665 143 789 1.846e-01 1.607e-03 188 531 1 553 253 5.326e-02 4.904e-04
17 30 767 143 789 1.922e-01 1.646e-03 190 085 1 553 253 5.749e-02 5.878e-04
18 30 801 143 789 2.010e-01 1.706e-03 190 819 1 578 919 6.236e-02 6.572e-04
19 30 815 143 789 2.083e-01 1.749e-03 191 105 1 578 919 6.617e-02 6.875e-04
20 30 817 143 789 2.162e-01 1.847e-03 191 207 1 578 919 7.040e-02 7.245e-04
21 30 817 143 789 2.216e-01 1.926e-03 191 233 1 578 919 7.503e-02 7.588e-04
22 30 817 143 789 2.260e-01 1.987e-03 191 235 1 578 919 8.067e-02 8.520e-04
23 30 817 143 789 2.296e-01 2.035e-03 191 235 1 578 919 8.419e-02 9.230e-04

Table 5.12: Cardinalities |Id,γ1,N | of weighted `1-balls, lattice sizes |Λ(z,M, Id,γ1,N )|
of corresponding reconstructing rank-1 lattices, L2(Td) errors err2 :=

err

(
fηd , S̃Id,γ1,N

fηd , L2(Td)
)

and upper bounds errA := err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

on the L∞(Td) errors of approximations S̃
Id,γ1,N

fηd of fηd , cf. (5.9),

η =

((
7
s+6

)6
)
s∈N

, γ =
(
0.9s−1

)d
s=1

.

sponding approximation errors err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

and err

(
fηd , S̃Id,γ1,N

fηd , L2(Td)
)

are

only mildly smaller than those for the approximations given in Tables 5.11 and 5.12. We

plotted the upper bounds on the approximation errors err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

against the

upper bounds on the interpolation errors err

(
fηd , S̃Ĩd,γ1,N

fηd ,A(Td)
)

for N = 4, 6, 8, 10 in Fig-

ure 5.3.

In detail, we observe that the interpolation errors are larger than one third of the ap-
proximation errors in Tables 5.11 and 5.12. Moreover, we see that the interpolation er-
rors come closer to the approximation errors with growing dimensions d, in general. The
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Figure 5.3: Approximation errors err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

and err

(
fηd , S̃Ĩd,γ1,N

fηd ,A(Td)
)

of

approximations and interpolations of the function fηd given in (5.9), η =((
7
s+6

)6
)

, N = 4, 6, 8, 10.

relation of the approximation errors err

(
fηd , S̃Id,γ1,N

fηd ,A(Td)
)

and the interpolation errors

err

(
fηd , S̃Ĩd,γ1,N

fηd ,A(Td)
)

tends to a fixed factor for fixed N and growing dimension d.

This is somehow caused by the finite effective dimension deff of the frequency index sets
Id,γ1,N , cf. (3.18), for fixed N . In principle, the frequency index sets Id,γ1,N do not change

by enlarging the dimension d > deff, i.e. Id,γ1,N = Ideff,γ
1,N ×

{
(0)ds=deff+1

}
. Consequently, the

reconstructing rank-1 lattices fulfills Λ(zAlg3.8,MAlg3.8, I
d,γ
1,N ) = Λ(zAlg3.8,MAlg3.8, I

deff,γ
1,N ) ×{

(0)ds=deff+1

}
. The effective dimension of the interpolating frequency index set Ĩd,γ1,N may

differ for different dimensions d that are greater than the effective dimension deff of the non-
interpolating frequency index set Id,γ1,N . However, for fixed N there exists a number N ′ ∈ R

such that Ĩd,γ1,N ⊂ Id,γ1,N ′ for all d and the effective dimension seff :=
⌊

logN ′
log(10/9)

⌋
+ 1 of Is,γ1,N ′ ,

s large enough, bounds the effective dimension of the interpolating frequency index set Ĩd,γ1,N

from above. Note, that N ′ mainly depends on the reconstructing rank-1 lattice for Ideff,γ
1,N

since Ĩd,γ1,N depends on this rank-1 lattice.

However, we observe that the frequency index sets Id,γ1,N and Ĩd,γ1,N , d > seff, contain no
element that is nonzero in a component of the sth dimension where s > seff. Sampling along
the reconstructing rank-1 lattices Λ(zAlg3.8,MAlg3.8, I

d,γ
1,N ) causes that higher dimensions are

sampled only at 0, i.e., we take sampling values fηd (xj) =
∏d
s=1 vηs(xj,s) =

∏seff
s=1 vηs(xj,s) and

thus both, the approximation error and the interpolation error, suffers from a lower effective
dimension of the approximation problems. The approximation S̃

Id,γ1,N
fηd and the interpolation

S̃
Ĩd,γ1,N

fηd do not recognize anything of the higher dimensions and, thus, the approximation
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errors for both problems should increase by similar values for growing dimension d from
d = seff on.

Nevertheless, we obtain relatively small approximation errors since the sequence η de-
creases fast and the variation of the corresponding functions vηs , s > seff, is strongly limited.

5.2 Poisson’s Equation in d Dimensions

In this section, we treat Poisson’s equation as a representative of elliptic partial differential
equations in higher dimensions d. We would like to refer to the paper of H.-J. Bungartz
and M. Griebel, cf. [BG99], who suggest to solve Poisson’s equation in higher dimensions
using a sparse grid approach, and to the book of W. Hackbusch, cf. [Hac12], who uses
tensor product approximations—a quite different approach—in order to solve elliptic partial
differential equations. Certainly, H. Munthe-Kaas and T. Sørevik presented a rank-1 lattice
approach for the numerical treatment of Poisson’s equation in [MS12]. We pick up their
considerations and solve Poisson’s equation on Td for different dimensions d. We use periodic
boundary conditions, i.e., we consider

∆u(x) = f(x), x ∈ Td, with u(x) = u(x+ l) for all x ∈ Rd and all l ∈ Zd, (5.15)

where the operator ∆ is given by ∆ =
∑d

s=1
∂2

∂x2
s
. H. Munthe-Kaas and T. Sørevik used

rank-1 lattices found by minimizing different integration errors to solve Poisson’s equation in
their paper, cf. [MS12]. Now, Algorithms 3.3 and 4.5 offers better adapted methods in order
to find suitable sampling sets to solve Poisson’s equation in (5.15).

In particular, the strategy to solve partial differential equations that is described in [MS12]
is a collocation method, cf. [SB05, Section 7.5] or [STW11, Section 1.2], on rank-1 lattices.
D. Li and F. J. Hickernell earlier suggest such an approach in a more general setting, cf.
[LH03]. Both papers deal with an interpolation of the right hand side f in (5.15).

In principle, the suggested approach is a numerical solution of a spectral method of
Galerkin type, cf. [STW11, Section 1.3] or [SB05, Section 7.5], i.e., one fixes a suitable space
of trigonometric polynomials ΠI and calculates an approximate solution of Poisson’s equation
in the space ΠI .

In detail, we assume f ∈ A(Td) and calculate

f̂k : =

∫
Td
f(x)e−2πik·xdx (5.16)

=

∫
Td

∆u(x)e−2πik·xdx

= −(2π‖k‖2)2

∫
Td

∆u(x)

−(2π‖k‖2)2
e−2πik·xdx = −(2π‖k‖2)2ûk (5.17)

for all k ∈ Zd \ {0}. In general, we cannot compute all Fourier coefficients f̂k, k ∈ Zd \ {0}.
Consequently, we are not able to compute the exact solution u of Poisson’s equation. In
addition, we want to use sampling values of f in order to approximate the Fourier coefficients
of f . Thus, we expect some additional errors by the numerical evaluation of the integral in
(5.16).

The detailed strategy to compute the solution of Poisson’s equation is as follows. We
sample f at a sampling set X and approximate f by a trigonometric polynomial f̃ ∈ ΠI ,
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f̃(x) =
∑
k∈I

ˆ̃
fke2πik·x, where the frequency index set I should contain all indices of signif-

icant frequencies of f and the approximated Fourier coefficients
ˆ̃
fk, k ∈ I, are computed

using

A∗A ˆ̃
f = A∗f , A =

(
e2πik·x

)
x∈X ,k∈I

,
ˆ̃
f =

(
ˆ̃
fk

)
k∈I

, f = (f(x))x∈X . (5.18)

We solve Poisson’s equation for this trigonometric polynomial f̃ and achieve a trigonometric
polynomial ũ ∈ ΠI fulfilling ∆ũ = f̃ . A suitable chosen frequency index set I and a corre-
sponding sampling set X yield theoretical error bounds guaranteeing that ũ well approximates
u, cf. Theorem 5.8.

We shortly explain how to solve Poisson’s equation for trigonometric polynomials ũ, f̃ ∈
ΠI . Poisson’s equation reads as follows

∆ũ(x) =
d∑
s=1

∂2

∂x2
s

ũ(x) =
d∑
s=1

∑
k∈I

ˆ̃uk
∂2

∂x2
s

e2πik·x

=

d∑
s=1

∑
k∈I

ˆ̃uk

d∏
j=1
j 6=s

e2πikjxj

 ∂2

∂x2
s

e2πiksxs =

d∑
s=1

∑
k∈I
−2πk2

s
ˆ̃uke2πik·x

=
∑
k∈I
−(2π‖k‖2)2 ˆ̃uke2πik·x =

∑
k∈I

ˆ̃
fke2πik·x = f̃(x).

Accordingly, we calculate the Fourier coefficients of ũ from the corresponding Fourier coeffi-
cients of f̃

ˆ̃uk = −
ˆ̃
fk

(2π‖k‖2)2
(5.19)

for all k ∈ I \ {0}. In case of 0 ∈ I we need an initial value u(x0) of u to compute the zeroth
Fourier coefficient ˆ̃u0 of ũ. Knowing this initial value u(x0) we simply set ũ(x0) := u(x0),
determine

ũ(x0) =
∑
k∈I

ˆ̃uke2πik·x0 := u(x0)

and obtain

ˆ̃u0 = u(x0)−
∑

k∈I\{0}

ˆ̃uke2πik·x0 . (5.20)

The last lines outline a strategy to solve Poisson’s equation (5.15) approximately. We summa-
rized all the steps in Algorithm 5.1. Once one has determined a suitable frequency index set I,

the most important step of Algorithm 5.1 is the computation of the solution ofA∗A ˆ̃f = A∗f ,
i.e., the approximation f̃ ∈ ΠI of f . In our numerical examples, we will compare our rank-1
lattice approach to different standard methods, i.e., full grid approximations and standard
sparse grid approximations using monomials as basis functions. We would like to mention
that there are several papers that suggest to solve Poisson’s equation using even adaptive
sparse grid methods and finite elements, cf. e.g. [Bun92, BG99].

For the moment we focus again on the rank-1 lattice approach and calculate theoretical
error bounds for the solution of Algorithm 5.1.
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Algorithm 5.1 Solving Poisson’s equation

Input: I ⊂ Zd frequency index set
X ⊂ Td sampling set
f = (f(x))x∈X sampling values of f
u(x0) initial value of u, needed only if 0 ∈ I

solve A∗A ˆ̃
f = A∗f

forall k ∈ I \ {0} do
ˆ̃uk := − ˆ̃

fk/(2π‖k‖2)2

end for
if 0 ∈ I then

ˆ̃u0 := u(x0)−
∑
k∈I\{0} ˆ̃uke2πik·x0

end if

Output: ˆ̃u =
(

ˆ̃uk

)
k∈I

Fourier coefficients of ũ

Theorem 5.8. Let ω : Zd → [1,∞] be a weight function, N ∈ R fixed, and f ∈ Aω(Td).
As usual, we define IN := {k ∈ Zd : ω(k) ≤ N} and we assume that 1 ≤ |IN | < ∞. In
addition, let X = Λ(z,M, IN ) be a reconstructing rank-1 lattice for IN , cf. Section 3.2, and
the vector of function values f = (f(x))x∈Λ(z,M,IN ) and an initial value u(x0) of u be given.
We compute an approximate solution ũ of ∆u = f using Algorithm 5.1.

Then, we estimate the L∞ error of the approximation ũ of u in terms of the norm of f in
Aω(Td) by

‖u− ũ|L∞(Td)‖ ≤ 1

π2N
‖f |Aω(Td)‖.

Proof. We estimate the L∞(Td) error using the norm in the Wiener Algebra A(Td) and the
knowledge of the function value of u at node x0, i.e. we set u(x0) = ũ(x0),

‖u− ũ|L∞(Td)‖ ≤
∑
k∈Zd

|ûk − ˆ̃uk|

= |û0 − ˆ̃u0|+
∑

k∈IN\{0}
|ûk − ˆ̃uk|+

∑
k∈Zd\(IN∪{0})

|ûk|

≤

∣∣∣∣∣∣
∑

k∈Zd\0
(ûk − ˆ̃uk)e2πik·x0

∣∣∣∣∣∣+
∑

k∈IN\{0}
|ûk − ˆ̃uk|+

∑
k∈Zd\(IN∪{0})

|ûk|

≤
∑

k∈Zd\{0}
|ûk − ˆ̃uk|+

∑
k∈IN\{0}

|ûk − ˆ̃uk|+
∑

k∈Zd\(IN∪{0})
|ûk|

= 2
∑

k∈IN\{0}
|ûk − ˆ̃uk|+ 2

∑
k∈Zd\(IN∪{0})

|ûk|.

We put in the relation of f and u and the relation of f̃ and ũ for k ∈ IN \ {0}, cf. 5.19,

‖u− ũ|L∞(Td)‖ ≤ 2
∑

k∈IN\{0}
(2π‖k‖2)−2| ˆ̃fk − f̂k|+ 2

∑
k∈Zd\(IN∪{0})

(2π‖k‖2)−2|f̂k|,
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use the aliasing formula for reconstructing rank-1 lattices, cf. (3.12),

‖u− ũ|L∞(Td)‖ ≤ 2
∑

k∈IN\{0}
(2π‖k‖2)−2

∑
h∈Λ⊥(z,M)\{0}

|f̂k+h|

+ 2
∑

k∈Zd\(IN∪{0})
(2π‖k‖2)−2|f̂k|,

estimate ‖k‖−2
2 ≤ 1, k ∈ Zd \ {0}, and extend the range of summation indices of the double

sum

‖u− ũ|L∞(Td)‖ ≤ 1

2π2

∑
k∈Zd\(I∪{0})

|f̂k|+ 2
∑

k∈Zd\(IN∪{0})
(2π‖k‖2)−2|f̂k|

≤ 1

π2

∑
k∈Zd\(IN∪{0})

|f̂k|,

insert terms ω(k)
inf
l∈Zd\(IN∪{0})

ω(l) ≥ 1, k ∈ Zd \ (IN ∪ {0}),

‖u− ũ|L∞(Td)‖ ≤ 1

π2

1

infl∈Zd\(IN∪{0}) ω(l)

∑
k∈Zd\(IN∪{0})

ω(k)|f̂k|,

and finally obtain the assertion of the theorem

‖u− ũ|L∞(Td)‖ ≤ 1

π2N
‖f |Aω(Td)‖.

We stress the fact that the approximation f̃ ∈ ΠI of f in Theorem 5.8 is not an interpo-
lation of f , in general. Consequently, our approach is not a collocation method, i.e., there
may exist xj ∈ Λ(z,M, I), where we observe

∆ũ(xj) = f̃(xj) 6= f(xj).

Nevertheless, we can use Algorithm 3.6 in order to extend the frequency index set I to an
interpolating frequency index set Ĩ on the rank-1 lattice Λ(z,M, I), compute the interpolation
S̃Ĩf of f at Λ(z,M, I) and the corresponding ũĨ as indicated by Algorithm 5.1, and observe

∆ũĨ(xj) = S̃Ĩf(xj) = f(xj)

for all xj ∈ Λ(z,M, I). However, we demonstrate the approximation properties of the de-
scribed approach using the polynomial test function and the rank-1 lattice approximation,
i.e., we do not focus on the collocation method.

5.2.1 Polynomial Test Function

We consider the univariate periodic function

v(x) =

{
4096
4146(2x12 − 12x11 + 22x10 − 33x8 + 44x6 − 33x4 + 10x2) + 1 for x ∈ [0, 1],

v(x− bxc) for x ∈ R \ [0, 1],
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see Figure 5.1 for illustration, and construct the multivariate function

ud(x) =
d∏
s=1

v(xs) (5.21)

as a tensor product. The corresponding Poisson’s equation reads as follows

∆ud(x) =

d∑
j=1

∂

∂2xj

d∏
s=1

v(xs) =

d∑
j=1

v′′(xj)
d∏

s=1,s 6=j
v(xs) = fd(x).

Accordingly, we can estimate the L∞(Td) error of the approximation ũd,K , cf. Theorem
5.8,

‖ud − ũd,K |L∞(Td)‖ ≤ 1

π2K
‖fd|Aω(Td)‖, (5.22)

where we assume that the function ũd,K is the solution of Poisson’s equation for the right
hand side f̃ = S̃IKf and S̃IKf is computed from samples of f taken along a reconstructing
rank-1 lattice Λ(z,M, IK) for the frequency index set IK . As usual, we define the frequency
index set IK := {k ∈ Zd : ω(k) ≤ K}.

In particular, we consider suitable weight functions

ωdµ(k) =
d∏
s=1

ωµ(ks), ωµ(k) := max(1, µ|k|8), (5.23)

and fix the parameter µ = 54 589π8

319 901 400 ≈ 1.619153. We define N := K1/8 and γµ =
(
µ−1/8

)
s∈N,

γµ,s ≈ 0.94154 . . ., and identify the frequency index sets Id,µK := {k ∈ Zd : ωdµ(k) ≤ K} as

weighted hyperbolic crosses I
d,γµ
hc,N .

In order to estimate the L∞(Td) error ‖ud − ũd,K |L∞(Td)‖ we have to calculate at least
upper bounds on the norms ‖fd|Aωdµ(Td)‖. In detail, we apply the triangle inequality, exploit
the tensor structure of ud, and achieve

‖fd|Aωdµ(Td)‖ =

∥∥∥∥∥∥
d∑
j=1

v′′(xj)
d∏

s=1,s 6=j
v(xs)|Aωdµ(Td)

∥∥∥∥∥∥ ≤ d‖v′′|Aωµ(T)‖‖v|Aωa(T)‖d−1 =: Cfd,µ.

Thus, we calculate the norms of the one-dimensional function v and its second derivative v′′,

‖v|Aωµ(T)‖ = |v̂0|+ 2
∞∑
k=1

ωµ(k)|v̂k| =
6143

4095
+ 2

∞∑
k=1

54 589(πk)8

319 901 400

159667200

691(πk)12
=

221

93
,

‖v′′|Aωµ(T)‖ = 2
∞∑
k=1

ωµ(k)(2πk)2|v̂k| = 8
∞∑
k=1

54 589(πk)10

319 901 400

159 667 200

691(πk)12
=

444 928

8 463
,

and achieve the upper bounds Cfd,µ on the norms of the functions fd as given in Table 5.13.
We plug in these norms and obtain from the error estimate in (5.22)

‖ud − ũµd,N |L∞(Td)‖ ≤ 444 928

8 463

d

π2

(
221

93

)d−1

N−8, (5.24)
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d 2 3 4 5 6 7 8 9

Cfd,µ 2.50e+02 8.91e+02 2.82e+03 8.38e+03 2.39e+04 6.63e+04 1.80e+05 4.81e+05

Table 5.13: Upper bounds Cfd,µ on the norms of fd in the spaces Aωdµ(Td), for different
dimensions d.

Polynomial test function ud – Rank-1 Lattice Approximation – Poisson’s equation

N |Id,γhc,N | M errµA N |Id,γhc,N | M errµA

d
=

2 4 33 38 4.288e-07

d
=

6 4 5 217 17 060 2.066e-05

25/2 61 73 4.180e-09 25/2 13 125 45 393 3.535e-07
8 93 129 1.381e-10 8 22 917 101 545 1.607e-08

d
=

3 4 135 186 1.133e-06
d

=
9 4 148 167 1 001 977 5.742e-04

25/2 255 449 1.015e-08 25/2 341 307 3 979 598 1.546e-05
8 435 818 3.071e-10 8 823 167 9 363 203 6.358e-07

Table 5.14: Cardinalities |Id,γµhc,N | of weighted hyperbolic crosses, lattice sizes M of corre-

sponding reconstructing rank-1 lattices Λ(z,M, I
d,γµ
hc,N ), and upper bounds errµA :=

err
(
ud, ũ

µ
d,N ,A(Td)

)
on the L∞(Td) errors of approximations ũµd,N of ud given

in (5.21), γµ =
((

319 901 400
54 589

)1/8 1
π

)
s∈N

.

where ũµd,N is the approximation of ud that is computed based on the approximation f̃d =

S̃
I
d,γµ
hc,N

fd of fd.

We refer to Section 5.1.1, where we have specified the weight function ωda and dealt with

the corresponding weighted hyperbolic crosses I
d,γa
hc,N with weights γa,s =

(
108972864000

2122061

)1/10 1
π ≈

0.941686, s = 1, . . . , d. In particular, we obtain the close embedding I
d,γµ
hc,N ⊂ I

d,γa
hc,N . In fact, the

frequency index sets coincide for the parameters N = 4, 25/2, 8 and dimensions d = 2, . . . , 9.

However, due to the embedding I
d,γµ
hc,N ⊂ I

d,γa
hc,N , reconstructing rank-1 lattices

Λ(z,M, I
d,γa
hc,N ) are also reconstructing rank-1 lattices Λ(z,M, I

d,γµ
hc,N ) for the frequency index

sets I
d,γµ
hc,N . In the following examples, we apply this observation and compute approximations

of fd from samples along the reconstructing rank-1 lattices that are presented in Table 3.8.

Numerical Example 5.9. At first we would like to compare the practical approximation
errors, that we observe from the rank-1 lattice approach, see Table 5.14, to the theoretical
error estimate in (5.24). We consider fixed dimension d and increase N by factors of

√
2. We

expect that the errors ‖ud − ũµd,N |L∞(Td)‖ decrease by a factor of at most 1/16 =
√

2
−8

.
The numerical tests in Table 5.14 indicate this behavior even for small parameters N and

all dimensions d = 2, 3, 6, 9. In fact, the error reduces by factors that are smaller than 1/16
for fixed dimension d = 2, . . . , 9 and growing N = 4, 25/2, 8.

On the other hand the theoretical estimate (5.24) predicts growing errors for growing
dimension d and fixed parameter N . The relation of the theoretical error bound in dimension
d to the theoretical error bound in dimension d − 1 is d

d−1
221
93 . We compare dimension d to

dimension s < d and observe the relation of the theoretical error bounds of d
s

(
221
93

)d−s
. In
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Polynomial test function ud – Full Grid Approximation – Poisson’s equation

N |Id,1∞,N | errFG
A N |Id,1s∞,N | errFG

A
d

=
2 3 49 5.081e-07

d
=

6 2 15 625 6.121e-04
5 121 4.043e-09 4 531 441 1.336e-06
7 225 1.425e-10 6 4 826 809 2.597e-08

d
=

3 3 343 1.371e-06

d
=

9 1 19 683 9.248e-01
5 1 331 1.102e-08 2 1 953 125 6.776e-03
7 3 375 3.884e-10 3 40 353 607 2.161e-04

Table 5.15: Cardinalities |Id,1∞,N | of unweighted `∞-balls and upper bounds errFG
A :=

err
(
ud, ũ

FG
d,N ,A(Td)

)
on the L∞(Td) errors of approximations ũFG

d,N of ud given

in (5.21).

particular, we calculate the relation of the error bounds in dimension 9 to dimension 6 and
in dimension 6 to dimension 3 and get approximately 20 and 27, respectively.

We calculate the same relations for our concrete numerical tests and observe quotients
of the 9-dimensional errors divided by the 6-dimensional errors between 27 and 44 for fixed
N = 4, 25/2, 8. Considering the same values of N , the 6-dimensional errors divided by the
3-dimensional errors are contained in the interval [18, 53].

Obviously, the theoretical relations do not bound the relations in practice here. However,
the practical relations are somehow in the right order of magnitude and do not disagree the
theoretical findings, since the practical errors are much smaller than the theoretical bounds
in fact. We expect the behavior indicated by the theoretical bound in the asymptotics.

Since the frequency index sets I
d,γµ
hc,N and, in particular, the corresponding reconstructing

rank-1 lattices are of relatively high cardinality, we would like to compare the approximation
results against so-called full grid approximations, i.e., trigonometric polynomials ũFG

d,N that are

computed from approximations S̃
Id,1∞,N

fd of fd. In particular, we computed the trigonometric

polynomials S̃
Id,1∞,N

fd from sampling values of fd from tensor product grids

X dN =
d

×
s=1

{
0,

1

2N + 1
, . . . ,

2N

2N + 1

}
as described in Lemma 2.4. We stress the fact that the corresponding Fourier matrix A =(
e2πik·x)

x∈X dN ,k∈I
d,1
∞,N

is unitary up to a scaling factor, i.e., perfectly stable. At this point,

we would like to mention that there exist fast algorithms that computes the corresponding
d-dimensional discrete Fourier transform in almost linear time with respect to the cardinality
of Id,1∞,N = (2N + 1)d. The concrete complexity is bounded by C|Id,1∞,N | log |Id,1∞,N |, where the

constant C does not depend on d and N . Since the embedding I
d,γµ
hc,N ⊂ Id,1∞,N holds, we also

expect an error decay of at least N−8 for fixed dimension d.

Numerical Example 5.10. We compare the errors errµA := err
(
ud, ũ

µ
d,N ,A(Td)

)
given in

Table 5.14 to errFG
A := err

(
ud, ũ

FG
d,K ,A(Td)

)
presented in Table 5.15 with respect to the used

number of sampling values M and |X dK | = |I
d,1
∞,K |.
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Specifically, we use the following approach: For fixed dimension d, we pick out tuples
(N,K) where the corresponding errors errFG

A and errµA are in the same order of magnitude.
Since, we would like to compare the number of sampling values that are needed in order to
achieve the errors errFG

A and errµA, we compare the number |X dK | = |Id,1∞,K | to the number

M = |Λ(z,M, I
d,γµ
hc,N )|, where M is the cardinality of the reconstructing rank-1 lattice for the

frequency index set I
d,γµ
hc,N . In detail, we consider the quotient |X dK |/M .

Due to the results from Corollary 3.23 and the estimates in (3.19), we expect a fixed

upper bound on
|X dK |
M for dimension d = 2. From dimension d = 3 on, we expect and also

observe growing relations
|X dN |
M for increasing errors errFG

A ∼ errµA.

Naturally, for larger dimensions (in the given tables d = 6 and d = 9), we notice fast

growing quotients
|X dK |
M up to more than 47 for increasing errors. We stress the fact that the

quotients
|X dK |
M grow with further decreasing errors errFG

A and errµA, which can be obtained by
increasing N and K.

Specifically in dimension d = 9, we were not able to compute full grid approximations
ũFG
d,K of lower errors than 10−4, due to memory limitations on the used machine and the

huge cardinalities of I9,1
∞,K , K ≥ 4, e.g., |I9,1

∞,4| = 99 = 387 420 489. On the other hand, we

computed approximations ũµ9,N based on hyperbolic cross approximations of f9 up to errors

lower than 10−6. We emphasize that we can achieve even lower approximation errors, by

determining suitable reconstructing rank-1 lattices for the frequency index sets I
9,γµ
hc,K , K > 8.

As a last example, we compare the rank-1 lattice approach to a sparse grid approach.
Since we would like to use fast algorithms in order to reconstruct the function fd, we use
a standard dyadic sparse grid interpolation method and the corresponding hyperbolic cross
fast Fourier transform, cf. [Hal92]. For that reason, we define the sampling set

X = SdN :=
⋃
j∈Nd0

‖j‖1=log2 N

d

×
l=1

2−jl(N0 ∩ [0, 2jl)),

where N = 2n, n ∈ N0, is a power of two, and call SdN a dyadic sparse grid. It is well known,
that the so-called dyadic hyperbolic cross

I = Hd
N :=

⋃
j∈Nd0

‖j‖1=log2N

(
Zd ∩

d

×
l=1

(−2−jl−1, 2jl−1]

)
,

N = 2n, n ∈ N0, is a suitable frequency index set, such that one can fast compute trigono-
metric polynomials with frequencies supported on Hd

N that interpolates the sampling values
at the dyadic sparse grid SdN using the hyperbolic cross fast Fourier transform (HCFFT), cf.
[BD89, Hal92]. In particular, we mention that the cardinalities of dyadic hyperbolic crosses
Hd
N and corresponding sparse grids SdN coincide.

Due to the results of W. Sickel and T. Ullrich [SU07] we expect error bounds for approx-
imations computed from sampling values taken at sparse grid nodes that are bounded by
terms which depends on N at least in the same asymptotic order as the right hand side of
(5.24).
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Polynomial test function ud – Sparse Grid Approximation – Poisson’s equation

N |Hd
N | errSG

A N |Hd
N | errSG

A

d
=

2 16 48 1.261e-04

d
=

6 2 048 1 003 136 1.591e-02
32 112 5.535e-08 4 096 2 664 192 2.346e-05
64 256 2.601e-11 8 192 6 960 384 2.150e-08

d
=

3 64 688 9.404e-05

d
=

9 1 024 2 719 028 2.570e+01
128 1 696 5.224e-08 2 048 8 316 200 1.352e+01
256 4 096 2.789e-11 4 096 24 814 832 5.868e+00

Table 5.16: Cardinalities |Hd
N | = |SdN | of dyadic hyperbolic crosses Hd

N and corresponding

sparse grids SdN and upper bounds errSG
A := err

(
ud, ũ

SG
d,N ,A(Td)

)
on the L∞(Td)

errors of approximations ũSG
d,N of ud given in (5.21).

Numerical Example 5.11. We use the strategy indicated in Algorithm 5.1 and compute
approximations ũSG

d,N from the interpolations fSG
d ∈ ΠHd

N
, where fSG

d (x) = fd(x) for all x ∈

SdN . We stress the fact that we compute the solution f̂
SG
d =

(
f̂SG
d,k

)
k∈Hd

N

ofA∗Af̂
SG
d = A∗fd,

A =
(
e2πik·x)

x∈SdN ,k∈Hd
N

, fd = (fd(x))x∈SdN , using the inverse hyperbolic cross fast Fourier

transform. This is a direct method that calculates the matrix vector product A−1fd in a fast
way, see [Hal92] for details.

At first, we classify the frequency index sets Hd
N . We proved the embedding Hd

N ⊂ I
d,1/2
hc,N

in [KKP12], i.e., the dyadic hyperbolic crosses are contained in symmetric hyperbolic crosses

with weights γ = 1/2 =
(

1
2

)
s∈N. Nevertheless, one observes differences I

d,1/2
hc,N \H

d
N that are

of high cardinality for larger dimensions d and parameters N .
However, we present some numerical results of the sparse grid approach in Table 5.16.
On the one hand, we shortly compare the sparse grid approach to the full grid approach,

cf. Table 5.15. For dimensions d = 2 and d = 3 we need approximately as many sampling
nodes as needed for sampling along full grids in order to obtain the same errors. Even in
higher dimensions, i.e., d = 6 and d = 9, we obtain larger errors from the sparse grid sampling
than those we achieved using the full grid approach and approximately the same number of
sampling nodes.

On the other hand, we compare the standard sparse grid approach to the rank-1 lattice
approach. Certainly, we obtain smaller upper bounds on the L∞(Td) errors using the rank-1
lattice sampling compared to the sparse grid approach measured against the number of used
sampling values. As mentioned in Numerical Example 5.4, we observe this behavior due to
the fact that the frequency index sets Hd

N are not as suitable as the frequency index sets

I
d,γµ
hc,N in order to approximate the function fd.

As a consequence of the last examples, we conclude that well adapted suitable frequency
index sets I are most important for approximation approaches in higher dimensions. The
next numerical examples also illustrates that not only the rough structure but also subtle
details of the construction of a frequency index set may cause widely differing approximation
errors.

Numerical Example 5.12. We computed different approximations of the solution of Pois-
son’s equation (5.15) for the function u6, cf. (5.21), in dimension d = 6. In detail, we used



136 5 Applications and Numerical Examples

102 104 106
−14

−12

−10

−8

−6

−4

−2

0

2

number of sampling nodes

lo
g

1
0

(e
rr
A

)

standard sparse grid
full grid

rank-1 lattice for I
6,γµ
hc,N

rank-1 lattice for Hd
N

rank-1 lattice for I
6,1/2
hc,N

Figure 5.4: Approximation errors errA := err
(
u6, p6,A(Td)

)
, p6 = ũSG

6,N , p6 = ũFG
6,N , and

p6 = ũ6,N for different frequency index sets I
6,γµ
hc,N , Hd

N , I
6,1/2
hc,N of approximations

of u6 given in (5.21) plotted against the number of used sampling values.

a full grid and a standard sparse grid approach and, in addition, reconstructing rank-1 lat-

tices for the frequency index sets I
6,γµ
hc,N , Hd

N , I
6,1/2
hc,N in order to compute the corresponding

solutions.

In Figure 5.4 we plotted the number of used sampling values against the occurring upper
bounds on the L∞(Td) errors. We list the most important observations:

• As expected, the errors of the standard sparse grid approach decrease faster than the
errors of the rank-1 lattice approach for the corresponding dyadic hyperbolic cross H6

N

and large N .

• The structure of the dyadic hyperbolic cross H6
N is suitable in order to approximately

solve Poisson’s equation for u6.

• The weighted hyperbolic cross I
6,1/2
hc,N is more suitable than the dyadic hyperbolic cross

H6
N in order to approximate solutions of Poisson’s equation for u6. Even the necessary

oversampling caused by the rank-1 lattice approach applied to I
6,1/2
hc,N leads to better

approximations of u6 with respect to relatively small numbers of sampling values.

• The asymptotic rate of convergence of the sparse grid approach beats the rates of
convergence of all the rank-1 lattice approaches.

• The rank-1 lattice approach applied to the weighted hyperbolic cross I
6,γµ
hc,N cause the

minimal errors of all considered approaches for reasonable numbers of sampling values.

• The full grid approach also beats the sparse grid approach for small numbers of sampling
values.

• The full grid approach has the worst rate of convergence of all tested approaches.
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Finally, we notice that the function u6 has a lot of relatively large frequencies with mixed
indices. For that reason the full grid approach beats the sparse grid approach for small

numbers of used sampling values and the least sparse hyperbolic cross I
6,γµ
hc,N seems to be the

most adequate frequency index set in order to compute approximate solutions of Poisson’s
equation for ud.

Again, we stress the fact that the computational costs of the approximation of a function
f from sampling values along a reconstructing rank-1 lattice for I is bounded from above
by C max(M logM,d|I|), where the term C does not depend on the frequency index set
I, the lattice size M , and the dimension d. We do not compare computational times here
since we used a MATLAB R© [MAT] implementation of the HCFFT in order to compute the
corresponding examples. We refer to [KKP12, Section 4.3], where the authors discuss the
differences of the computational times of the rank-1 lattice fast Fourier transform (LFFT) and
the HCFFT for reasonable problem sizes. The most impressive observation is that the LFFT
outperforms the HCFFT by at least one order of magnitude in the computational times for
higher dimensional problems, although the reconstructing rank-1 lattices are of substantially
larger cardinality than the corresponding sparse grids.

5.3 Approximation of Non-periodic Functions

There exist a variety of well-adapted fast Fourier transforms, e.g., fast Fourier transforms,
nonequispaced fast Fourier transforms, hyperbolic cross fast Fourier transforms, that may
be used in order to approximate periodic functions even in higher dimensions. A usual
approach is to periodize non-periodic functions in order to apply the algorithms that are
already available for the approximation of periodic functions.

However, the qualities of the approximation of the non-periodic function mainly depends
on the transform that yields the periodic function. We illustrate one usual transform in
Figure 5.5 for dimension d = 1. In detail, a non-periodic univariate function v : [0, 1] → R
can be periodized using the following approach, that is often used in image processing, see
e.g. [DY07]. At first one mirrors the function v at the right hand side of its domain and
achieves a function that has the same function values at x = 0 and x = 2. Then, one scales
the new domain [0, 2] to [0, 1] and periodize this function. This yields a continuous periodic
function

vper(x) :=


v(2x) for 0 ≤ x < 1

2 ,

v(2− 2x) for 1
2 ≤ x < 1,

vper(x− bxc) else,

on the torus T. To summarize, the periodic function vper is given by vper(x) = v(ϕ(x−bxc)),
ϕ(x) := 1− |2x− 1|.

In the multivariate case, one defines the periodic function fper in the same way—one has
to apply the transform on all components of the variable x. Accordingly, the periodization
of a continuous function f : [0, 1]d → R is given by the function fper(x) = f(ϕ(x)), where the

periodization is realized by ϕ(x) = (ϕ(x1 − bx1c), . . . , ϕ(xd − bxdc))>.

Now, one approximates the function fper using a suitable fast Fourier transform. The
corresponding approximant also approximates the non-periodic function f since the identity
f(x) = fper(

x
2 ), x ∈ [0, 1]d, holds.

We switch to the univariate case and discuss the approximation properties of the peri-
odization approach. The quality of the approximation of the periodic function vper mainly
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Figure 5.5: Sketch of the periodization of non-periodic functions.

depends on the smoothness of vper or, in other words, the decay of its Fourier coefficients.
Obviously, the smoothness of the periodized function vper is somehow bounded by the smooth-
ness of the non-periodic function v. In addition, we append the mirrored v to v and periodize
this result. Particularly, the smoothness at the tie points, i.e., at vper(0) and vper(

1
2), may

corrupt the smoothness of the periodic function vper such that the errors of the periodic ap-
proximation approaches may decrease slower than one would expect for functions v of higher
smoothness.

Some pre-smoothing steps may overcome these problems. We shortly explain this ap-
proach for univariate functions. Hence, we consider a continuous differentiable function
v : [0, 1] → R with values v′(0) 6= 0 and v′(1) 6= 0 of the first derivatives. We assume
that we know (or can approximate) the values v′(0) 6= 0 and v′(1) 6= 0. Then, we construct
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Figure 5.6: Boundary smoothing with respect to the periodization.

a function

ṽ(x) =


vl(x) for 0 ≤ x < ε/2,

v
(
x−ε/2
1−ε

)
for ε/2 ≤ x ≤ 1− ε/2,

vr(x) for 1− ε/2 ≤ 1,

where the functions vl and vr fulfills

v′l(0) = 0, vl(ε/2) = v(0), v′l(ε/2) =
1

1− ε
v′(0),

v′r(1) = 0, vr(1− ε/2) = v(1), v′l(1− ε/2) =
1

1− ε
v′(1).

Figure 5.6 illustrates the mentioned approach. Subsequently, one periodize the function ṽ
and achieve a function ṽper that is continuously differentiable also at the tie points 0 and
1
2 . We stress the fact that the described approach is of much greater difficulty for higher
dimensions d, since the tie points are even tie planes of dimension d− 1.

Anyway, one can also consider more complicated functions ϕ in order to construct smooth-
ness of higher order at the tie points. In particular for applications in numerical integration,
F. J. Hickernell considers those transforms in a more general setting in [Hic02]. Therein, he
uses the periodization strategy from above in order to analyze one concrete ϕ and calls it
Baker’s transformation. In addition, he suggests to consider directly the integration proper-
ties of the sampling sets

Λϕ(z,M) := {x = ϕ(xj) : xj ∈ Λ(z,M)} (5.25)

in the spaces of non-periodic functions.
Furthermore, J. Dick, D. Nuyens, and F. Pillichshammer, cf. [DNP14], use the sampling

schemes Λϕ(z,M) in order to consider the integration properties of quasi-Monte Carlo rules

in functions spaces that are spanned by cosine terms
(∏d

s=1 cos(πksxs)
)
k∈Nd0

, x ∈ [0, 1]d.

Due to [CDLP07] the function ϕ(x) = 1 − |2x − 1| is called a tent transformation and,
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Figure 5.7: Non-periodic polynomial test function v and its periodization vper.

accordingly, the equally weighted quadrature rule based on Λϕ(z,M) a tent transformed
lattice rule. We stress the fact that the periodization of functions that belong to the cosine

series space spanned by
(∏d

s=1 cos(πksxs)
)
k∈Nd0

yield periodic functions spanned by periodic

cosine terms, in fact. Thus, the periodization using the tent transformation may not corrupt
the smoothness at the tie points in this setting.

However, the cardinality of Λϕ(z,M) determines the number of sampling values that
are taken from the non-periodic multivariate function f in order to sample the periodic
function fper. Due to the symmetry of the specific function ϕ(x) = 1− |2x− 1|, i.e., ϕ(x) =
ϕ(1 − x) for x ∈ [0, 1

2 ], and the group structure of rank-1 lattices, we obtain ϕ( jzsM mod

1) = ϕ( (M−j)zs
M mod 1) for all s = 1, . . . , d and, thus, ϕ( jzM mod 1) = ϕ( (M−j)z

M mod 1).
Accordingly, the sampling set Λϕ(z,M) contains at most

⌊
M+2

2

⌋
sampling nodes.

We approximate sufficiently smooth non-periodic functions f by means of approximated
Fourier partial sums of the periodizations fper of f .

5.3.1 Non-periodic Polynomial Test Function

We consider the univariate non-periodic polynomial test function

v(x) = 4x3 − 6x2 + 1,

see Figure 5.7a. Due to the fact, that the function v do not contain a periodic part and the
equation

∫ 1
0 v(x)dx = 0 holds, i.e., the function v is given by the cosine series

v(x) =

∫ 1

0
v(x)dx+

∞∑
k=1

96

(2k − 1)4π4
cos((2k − 1)πx) =

∑
k∈Z

48

(2k + 1)4π4
eπi(2k+1)x,

only the odd frequencies of the periodic function

vper(x) =
∑
k∈Z

48

(2k + 1)4π4
e2πi(2k+1)x

are non-zero.



5.3 Approximation of Non-periodic Functions 141

1

1

-1

1

(a) non-periodic test function d = 2

1

1

-1

1

(b) periodized test function d = 2

Figure 5.8: Two-dimensional test function f2 and corresponding periodization f2
per.

We define the multivariate non-periodic test function

fd(x) =

d∏
s=1

v(xj)

as a tensor product of v and similar the periodized test function

fdper(x) =
d∏
s=1

vper(xj).

The Fourier coefficients of vper are given by

v̂per,k =

{
48

(kπ)4 for k ∈ Z \ 2Z,
0 else.

We define a suitable hyperbolic cross weight function ωd(k) :=
∏d
s=1 max(1, 4

3 |ks|)
2 and

conclude from

‖vper|Aω1(T)‖ =
∑
k∈Z

ω1(k)v̂per,k =
64

3π2
≈ 2.16152

the norm of the multivariate periodized test function fdper

‖fdper|Aωd(Td)‖ = ‖vper|Aω1(T)‖d =

(
64

3π2

)d
.

Consequently, we estimate the L∞(Td) approximation error by

‖fdper − S̃IdKf
d
per|L∞(Td)‖ ≤ 2

K
‖fdper|Aωd(Td)‖ =

2

K

(
64

3π2

)d
=

2

N2

(
64

3π2

)d
, (5.26)
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Figure 5.9: Approximation errors errA := err
(
fdper, p,A(Td)

)
, p = S̃

I
d,34
hc–o,N

fdper or p =

S̃
Ĩ
d,34
hc–o,N

fdper, plotted against the parameter N .

where IdK := {k ∈ Zd : ωd(k) ≤ K} = {k ∈ Zd :
∏d
s=1 max(1, 4

3 |ks|) ≤ N} = I
d,3

4
hc,N , N =

√
K,

is a frequency index set of hyperbolic cross type, cf. Section 2.3.2. In addition, we will
apply the knowledge of the frequency index gaps, i.e., we would like to reconstruct only those
frequencies, which are not zero a priori. For that reason, we define the hyperbolic cross of
only odd frequency indices by

I
d,3

4
hc–o,N :=

{
k ∈ Id,

3
4

hc,N :
d∏
s=1

(ks mod 2) = 1

}
,

i.e., each frequency index k ∈ Id,
3
4

hc–o,N is a vector of only odd nonzero integers. We emphasize,

that the theoretical error bounds for S̃
I
d,34
hc,N

fdper also hold for S̃
I
d,34
hc–o,N

fdper and are given in

(5.26).

Numerical Example 5.13. Concretely, we computed the approximations S̃
I
d,34
hc–o,N

fdper and

the interpolations S̃
Ĩ
d,34
hc–o,N

fdper for different dimensions d = 3, 6, 10 and parameters N =

20, 40, 80, 160, 320, 640, cf. Figure 5.9. The error estimate in (5.26) predict an error decay
of at least N−2 for fixed dimension d. We would like to point out that the theoretical error
estimates can be improved up to an order of −3 + ε in N for each ε > 0 in the asymptotics.

Indeed, the plotted upper bounds of the errors err

(
fdper, S̃

I
d,34
hc–o,N

fdper,A(Td)

)
of the

approximation S̃
I
d,34
hc–o,N

fdper of fdper decrease similar to N−2 for growing N even for di-

mension d = 10. In addition, we recognize an even faster error decay of the errors

err

(
fdper, S̃

Ĩ
d,34
hc–o,N

fdper,A(Td)

)
for the interpolations S̃

Ĩ
d,34
hc–o,N

fdper. The interpolation errors
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Figure 5.10: Cardinalities of frequency index sets I
d,3/4
hc–o,N , Ĩ

d,3/4
hc–o,N , and I

d,3/4
hc,N plotted against

the parameter N , dimensions d = 3, 10.

decrease faster than the approximation errors since the interpolating frequency index sets

Ĩ
d,3

4
hc–o,N contain a huge amount of indices of less significant frequencies of the functions fdper.

Again, we would like to stress the fact that the frequency index sets I
d,3

4
hc–o,N contain only

a few frequency indices of its corresponding supersets I
d,3

4
hc,N . Furthermore, the well-adapted

interpolating frequency index sets Ĩ
d,3

4
hc–o,N consists of much fewer frequencies than |Id,

3
4

hc,N |, cf.
Figure 5.10.

We consider the absolute values of the errors of the computed approximations and in-
terpolations. The range of the functions fd and its periodizations fdper is the whole interval

[−1, 1]. We achieve error bounds on the L∞(Td) error that are much smaller than the ex-
pected ones and, thus, impressively small with respect to the range of the functions fd and
fdper even for dimension d = 10 and reasonable problem sizes in practice, cf. Figures 5.9 and
5.10.

At the end, we would like to stress the fact that the cardinalities of all the sampling sets

Λϕ(z,M, I
d,3

4
hc–o,N ) := {x = ϕ(xj) : xj ∈ Λ(z,M, I

d,3
4

hc–o,N )}, cf. (5.25), that we used for the

approximation of the non-periodic functions fd are given by the theoretical upper bound⌊
M+2

2

⌋
that we determined on page 140.

5.4 Summary

The last sections treated several approximation problems that may similarly occur in practical
applications. We applied the sampling methods that we presented in Chapter 3 in order to
compute

• approximations and interpolations of multivariate periodic functions,
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• solutions of Poisson’s equation in d dimensions as an example of partial differential
equations,

• approximations of sufficiently smooth multivariate non-periodic functions.

Additionally, we also dealt with approximations of multivariate periodic functions computed
from sampling values along generated sets. We illustrated that our sampling methods yields
suitable solutions of these problems if the given frequency index set I is well-adapted to the
function that one would like to approximate. Specifically, we treated frequency index sets
of different structures, i.e., equally weighted hyperbolic crosses and weighted `1-balls, and in
particular equally weighted hyperbolic crosses with gaps, cf. Section 5.3.1.

We recognize advantages of the rank-1 lattice interpolation approach, cf. Section 3.5,
in Section 5.1. In particular, it may be worthwhile to construct a suitable interpolating
frequency index set ĨN using Algorithm 3.6 for a reconstructing rank-1 lattice Λ(z,M, IN ) for
the frequency index set IN . In general, the theoretical error estimates do not improve but the
practical approximation errors may decrease due to the amount of additional approximated

Fourier coefficients
ˆ̃
fk, k ∈ ĨN \ IN , especially if the oversampling factor M/|IN | ≥ 1 is large.

We would like to point out that the computation of the interpolation, i.e., the d-dimensional
fast Fourier transform using the already determined interpolating frequency index set ĨN , cf.
Algorithm 3.2, has a complexity of O (M(d+ logM)) since |ĨN | = M , whereas the complexity
of the approximation problem is in O (M logM + d|IN |). Thus, the computational times of
both approaches hardly differ for moderate dimension d.

Furthermore, we gave a theoretical error estimate on the approximation error of a Galerkin
method that uses the presented rank-1 lattice approach in order to determine approximate
solutions of Poisson’s equation with periodic boundary conditions in higher dimensions, cf.
Theorem 5.8. We illustrated the practicability of this method by means of an example and
compared the results to full grid and sparse grid approaches in Section 5.2.1.

In general, the most important observation of our numerical tests is that well chosen fre-
quency index sets may severely reduce the number of degrees of freedom of an approximation
of a specific multivariate function. Furthermore, the presented reconstruction approaches for
trigonometric polynomials, i.e., reconstructing rank-1 lattices and reconstructing generated
sets, offer a universally applicable ansatz with respect to the frequency index set I in order
to approximate smooth functions in higher dimensions d.

The development of adaptive methods that reliably determine well-fitting d-dimensional
frequency index sets I for functions f that can be arbitrarily sampled is of great interest—and
affects another wide field of approximation theory. We only mention the recent developments
in sparse fast Fourier transforms, i.e., the computation of frequency indices and frequencies of
sparse trigonometric polynomials from a few sampling values, cf. e.g. [HIKP12b, HIKP12a,
IKP14], which one might apply on rank-1 lattice sampling. Finally, in this context, we would
like to suggest the development of a dimension–by–dimension adaptive approach that uses the
presented sampling sets in order to solve both problems—determining a suitable frequency
index set I and computing the approximated values of the corresponding frequencies f̂k,
k ∈ I.
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Notations

A(Td) Wiener algebra, cf. (2.6).

Aω(Td) Weighted function space, subspace of Wiener algebra, cf. (2.9).

A Fourier matrix, cf (2.7).

C Complex numbers.

cond2(A) Condition number of the matrix A,
cond2(A) =

√
λmax(A∗A)/λmin(A∗A).

D(I) Difference set of the frequency index set I ⊂ Zd, cf. (2.11).

d Spatial dimension.

ess sup Essential supremum.

e Euler’s number, e = 2.71828182845904 . . ..

es Unit vector in the sth dimension.

I Identity matrix.

i Imaginary unit.

I Frequency index set, I ⊂ Zd.

Id,γ,α,βehc,N Weighted energy-norm based hyperbolic cross for 0 < −α < β, cf. (2.21).

Id,γhc,N Weighted hyperbolic cross, cf. (2.17).

Id,γp,N Weighted `p-ball, cf. (2.15).

λmax(A∗A) Maximal eigenvalue of the square matrix A∗A.

λmin(A∗A) Minimal eigenvalue of the square matrix A∗A.

Λ(r,M) Generated set of size M with generating vector r ∈ Rd, cf. (4.1).

Λ(r,M, I) Reconstructing generated set for the frequency index set I, see page 85.

Λ(z,M) Rank-1 lattice of size M with generating vector z ∈ Nd, cf. (3.1).

Λ(z,M, I) Reconstructing rank-1 lattice for the frequency index set I, see page 39.

Lp(Td) Function space of p-integrable functions, cf. (2.2) and (2.3).
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lp(a) Sequence space of p-summable sequences with the usual norm,
sequence space of sequences of length a, if a ∈ N, or over the set a, if
a ⊂ Zd.

mod Component–by–component modulo of a vector a ∈ Rd,
a mod 1 = (as − basc)ds=1, a mod M = (as − bas/McM)ds=1 for M ∈ N.

N Positive integers without zero.

N0 Positive integers, zero included.

Ω (g(x)) f ∈ Ω (g(x))⇔ g ∈ O (f(x)).

O (g(x)) Denotes the set of functions f : Rd 7→ [0,∞) such that there exist positive
constants Cf < ∞ and n ∈ Nd with f(x) ≤ Cfg(x) for all x ∈ Rd with
xs ≥ ns, s = 1, . . . , d, Cf depends on f but not on x, cf. [Knu76].
Depending on the context, one has to distinguish variables and parameters
of the function g.

ΠI Space of trigonometric polynomials, cf. (2.8).

Q Rational numbers.

R Real numbers.

r Vector of real numbers.

Θ (g(x)) Θ (g(x)) = O (g(x)) ∩ Ω (g(x)).

T One-dimensional torus, T ' [0, 1).

X Sampling scheme on the d-dimensional torus, X ⊂ Td.

Z Integers.

z Vector of integers.

‖ ◦ ‖p Usual p norm of a vector.

‖x|X‖ Norm of an element x ∈ X in the normed space X.

We have listed the most frequently used notations. However, the table is not comprehensive.
Several necessary additional notations appear locally throughout the whole work.
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