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Abstract The approximation of problems in d spatial dimensions by sparse trigono-
metric polynomials supported on known or unknown frequency index sets I ⊂ Zd is
an important task with a variety of applications. The use of a generalization of rank-
1 lattices as spatial discretizations offers a suitable possibility for sampling such
sparse trigonometric polynomials. Given an index set of frequencies, we construct
corresponding sampling sets that allow a stable and unique discrete Fourier trans-
form. Applying the one-dimensional non-equispaced fast Fourier transform (NFFT)
enables the fast evaluation and reconstruction of the multivariate trigonometric poly-
nomials.

1 Introduction

Given a spatial dimension d ∈N, we consider Fourier series of continuous functions
f (x) = ∑k∈Zd f̂ke2πik·x mapping the d-dimensional torus [0,1)d into the complex
numbers C, where

(
f̂k
)

k∈Zd ⊂ C are the Fourier coefficients. A sequence
(

f̂k
)

k∈Zd

with a finite number of nonzero elements specifies a trigonometric polynomial. We
call the index set of the nonzero elements the frequency index set of the correspond-
ing trigonometric polynomial. For a fixed index set I ⊂ Zd with a finite cardinality
|I|, ΠI = span{e2πik·x : k ∈ I} is called the space of trigonometric polynomials with
frequencies supported by I.

Assuming the index set I is of finite cardinality and a suitable discretization in
frequency domain for approximating functions, e.g. functions of dominating mixed
smoothness, cf. [13], we are interested in evaluating the corresponding trigono-
metric polynomials at sampling nodes and reconstructing the Fourier coefficients(

f̂k
)

k∈I from samples. Accordingly, we consider (sparse) multivariate trigonomet-
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ric polynomials
f (x) = ∑

k∈I
f̂ke2πik·x

and assume the frequency index set I is given.
For different specific index sets I there has been done some related work us-

ing rank-1 lattices as spatial discretizations [11, 6]. A multivariate trigonometric
polynomial evaluated at all nodes of a rank-1 lattice essentially simplifies to a one-
dimensional fast Fourier transform of the length of the cardinality of the rank-1 lat-
tice, cf. [10]. Allowing for some oversampling one can find a rank-1 lattice, which
even allows the reconstruction of the trigonometric polynomial from the samples
at the rank-1 lattice nodes. A suitable strategy to search for such reconstructing
rank-1 lattices can be adapted from numerical integration. In particular, a modifica-
tion of the component-by-component constructions of lattice rules based on various
weighted trigonometric degrees of exactness described in [2] allows one to find ad-
equate rank-1 lattices in a relatively fast way, cf. [6]. The search strategy specified
in [6] uses discrete optimization techniques.

In this paper we consider so-called generated sets, which generalize the concept
of rank-1 lattices. The structure of these spatial discretizations allows for the evalua-
tion of multivariate trigonometric polynomials by means of some simple precompu-
tations and a one-dimensional non-equispaced discrete Fourier transform (NDFT).
The fast computation can be realized by using the non-equispaced fast Fourier trans-
form (NFFT), cf. [7]. The stability of the computation mainly depends on the Fourier
matrices of this one-dimensional NFFT. Similar to the approaches known from rank-
1 lattices, we have to search for suitable generating vectors guaranteeing a Fourier
matrix of full column rank and, in addition, stability. In contrast to searching for
suitable rank-1 lattices, we can use continuous optimization methods. Our search
algorithm is based on the minimization of an upper bound of the maximum Ger-
schgorin circle radii, cf. [4], via a simplex search method.

The paper is organized as follows: In Section 2 we define generated sets, explain
their advantages in computation, and give a basic example. To estimate the stabil-
ity of the corresponding discrete Fourier transform, we specify an upper bound on
the condition number of the involved Fourier matrices in Section 3. Algorithm 1
describes how to compute this upper bound in a simple and fast way. We optimize
the generating vector by applying a nonlinear optimization technique as described in
[12]. In practice, we (locally) minimize the theoretical number of samples needed to
achieve at least a fixed stability. Some numerical examples can be found in Section
4.

The given examples include frequency index sets called weighted hyperbolic
crosses

Hd,γγγ
N := {h ∈ Zd :

d

∏
s=1

max(1,γ−1
s |h j|)≤ N}

with parameters d ∈ N, N ∈ R, γγγ ⊂ RN, 1≥ γ1 ≥ γ2 ≥ . . .≥ 0, and 0−1 := ∞. More
general index sets called generalized hyperbolic crosses were discussed in [5, 8].
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Note that our approach is universally applicable. Accordingly, the theoretical state-
ments of this paper also treat the frequency index sets specified in [5, 8].

2 Generated Sets

For given M ∈ N and r ∈ Rd we define the generated set

Λ(r,M) := {x j = jr mod 1, j = 0, . . . ,M−1}

as a generalization of rank-1 lattices. We stress the fact that the restriction of the
generating vector r ∈ M−1Zd results in rank-1 lattices, cf. [2, 3, 14, 15]. Note, in
contrast to rank-1 lattices, generated sets do not retain the group structure of the
sampling sets, i.e. in general we have x j 6= x j+M .

However, we take advantage of the rank-1 structure of the generated set. In a
similar way as described in [10], the evaluation of the trigonometric polynomial
f ∈ ΠI at all nodes x j ∈ Λ(r,M) simplifies to a one-dimensional NDFT. For Y =
{k ·r mod 1 : k∈ I} is the set of all scalar products of the elements of the frequency
index set I with the generating vector r we obtain

f (x j) = ∑
k∈I

f̂ke2πi jk·r = ∑
y∈Y

(
∑

k·r≡y (mod 1)
f̂k

)
e2πi jy.

We evaluate f at all nodes x j ∈Λ(r,M), j = 0, . . . ,M−1, by the precomputation of
all ĝy :=∑k·r≡y (mod 1) f̂k and a one-dimensional NFFT in O (M logM+(| logε|+d)|I|)
floating point operations, [7]. The parameter ε determines the accuracy of the com-
putation and is independent of the dimension d.

As the fast evaluation of trigonometric polynomials at all sampling nodes x j of
the generated set Λ(r,M) is guaranteed, we draw our attention to the reconstruction
of a trigonometric polynomial f with frequencies supported on I using function
values at the nodes x j of a generated set Λ(r,M). We consider the corresponding
Fourier matrix A and its adjoint A∗,

A :=
(

e2πik·x
)

x∈Λ(r,M), k∈I
and A∗ :=

(
e−2πik·x

)
k∈I, x∈Λ(r,M)

,

to determine necessary and sufficient conditions on generated sets Λ(r,M) allowing
for a unique reconstruction of all Fourier coefficients of f ∈ ΠI . Assuming a full
column rank matrix A, the reconstruction of the Fourier coefficients f̂ = ( f̂k)k∈I
from sampling values f = ( f (x))x∈Λ(r,M) can be realized by solving A∗Af̂ = A∗f
using a standard conjugate gradient method, see [1, Ch. 11]. In particular, we aim to
find generated sets Λ(r,M) that even allow for a stable reconstruction of the Fourier
coefficients of specific trigonometric polynomials.

For that reason we consider the spectral condition number of the matrix B =
M−1A∗A, which is defined as
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cond2(B) =
λmax

λmin
,

where λmax and λmin are the largest and smallest eigenvalues of B, respectively. Note
that B is a symmetric, positive semidefinite matrix with eigenvalues 0 ≤ λmin ≤
λmax. In particular, the condition number of B is bounded below by one.

Besides the stability, the considered condition number measures the speed of
convergence of the conjugate gradient method used to reconstruct the trigonomet-
ric polynomial f , cf. [1, Ch. 13]. The lower the condition number the faster our
reconstruction algorithm converges.

Of course, one can consider the condition number as a function of different vari-
ables. Our approach fixes the frequency index set I, which results in a functional

κ(r,M) := cond2(B(r,M))

depending on the generating vector r and the number of samples M, where B(r,M)=
M−1 (A(r,M))∗A(r,M) and A(r,M) =

(
e2πik·x)

x∈Λ(r,M),k∈I . Now we are interested
in a generating vector r which minimizes the functional κ for fixed M. For relatively
small cardinalities |I| one can evaluate this condition number exactly. Thus, we can
minimize the functional κ using nonlinear optimization techniques such as nonlin-
ear simplex methods. The vectors (1) in the following example were determined in
this way.

Example 1. We consider the weighted hyperbolic cross Hd,γγγ
256 with γγγ =

(
41−s

)
s∈N

and fix the number of sampling points M = 16381 < 16384 = bγ1Ncbγ2Nc. Hence,
for d ≥ 2 Lemma 2.1 in [6] yields that there does not exist any sampling scheme of
M = 16381 nodes that allows for a perfectly stable reconstruction, i.e. it is proven
that cond2(B)> 1.

Nevertheless, we ask for a sampling scheme of cardinality M = 16381 with a
stable Fourier matrix A. Generated sets are our first choice because of the easy
possibility of the fast evaluation and reconstruction. In fact, the vectors

r2 =

(
0.508425953824
0.058509185871

)
and r5 =


0.075119519237
0.285056619170
0.500703041738
0.970811563102
0.568203958723

 (1)

generate the two-dimensional set Λ2 = Λ(r2,16381) and the five-dimensional set
Λ5 = Λ(r5,16381). The corresponding condition numbers cond2(Bs) with Bs =
M−1 (As)

∗As and Fourier matrices As =
(
e2πik·x)

x∈Λs,k∈Hs,γγγ
N

, s = 2,5, are

cond2(Bs)≈

{
3.9177, for s = 2,
11.934, for s = 5.
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Note that the corresponding matrices are square matrices with B2 ∈C1761×1761 and
B5 ∈ C2187×2187, respectively. ut

Considering frequency index sets and corresponding generated sets of larger cardi-
nalities, we cannot compute exact condition numbers efficiently. For that reason, we
want to estimate the condition numbers from above.

3 Gerschgorin Circle Theorem and Generated Sets

In the following, we consider the Fourier matrix A(r,M) and its adjoint A∗(r,M)
like above and apply the Gerschgorin circle theorem to the matrix B(r,M). Let us
consider the elements

(B(r,M))h,k =
1
M

M−1

∑
j=0

e2πi j(k−h)·r =
1
M

M−1

∑
j=0

e2πi j(yk−yh) =: KM(yk− yh) (2)

of the matrix B(r,M). We define yh = h ·r mod 1 for all h ∈ I and therefore we can
regard KM as a univariate trigonometric kernel, which obviously is a Dirichlet ker-
nel. Now we adapt some results from [9, Theorem 4.1] and formulate the following

Theorem 1. We fix r ∈ Rd and I ∈ Zd . Let yh = h · r mod 1 for all h ∈ I. Moreover,
let us assume that we have sorted the sequence of yh’s in ascending order, i.e. 0 ≤
yh1 ≤ yh2 ≤ . . .≤ yh|I| < 1. In addition, we define the sequence of gaps g

g j =

{
1+ yh1 − yh|I| , for j = 1,
yh j − yh j−1 , for j = 2, . . . , |I|.

Then, for M ∈ N the interval
[
1−M−1∆(r),1+M−1∆(r)

]
with

∆ : Rd → R, r 7→ ∆(r) :=

⌊
|I|
2

⌋
∑
k=1

(
k

∑
t=1

gπ(t)

)−1

, (3)

and π being a permutation of {1, . . . , |I|} ordering the gaps 0 ≤ gπ(1) ≤ gπ(2) ≤
. . .≤ gπ(|I|) contains all eigenvalues of the matrix

(B(r,M))h,k∈I = (KM(yk− yh))h,k∈I .

Proof. We consider the sequence
(
gπ(t)

)|I|
t=1. For gπ(1) = 0 we obtain at least one

pair k,h ∈ I, h 6= k with yh ≡ yk (mod 1). Accordingly, the matrix B(r,M) con-
tains at least two identical columns and thus is not of full rank. So, a unique solution
of B(r,M)x = b is not guaranteed. The smallest eigenvalue of the matrix B(r,M)
is zero. On the other hand, the corresponding upper bound M−1∆(r) of the Ger-
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schgorin circle radius of B(r,M) is infinite. Certainly, the interval [−∞,∞] contains
all eigenvalues of B(r,M).

Now let us assume gπ(1) > 0. Obviously, the diagonal elements of the considered
matrices B(r,M) are all ones. Let λ∗ be an arbitrary eigenvalue of B(r,M). Follow-
ing the Gerschgorin circle theorem, there exists at least one index j ∈ {1, . . . , |I|}
with

|λ∗−1| ≤
|I|

∑
l=1; l 6= j

|KM(yh j − yhl )|.

For x ∈ R\Z we obtain

KM(x) =
1
M

M−1

∑
j=0

e2πi jx =
1
M

e2πiMx−1
e2πix−1

=
eπiMx

eπix
sinπMx
M sinπx

. (4)

Due to 2x≤ sinπx for x ∈ (0,1/2] we estimate

|KM(x)| =
∣∣∣∣ sinπMx
M sinπx

∣∣∣∣≤ 1
|M sinπx|

≤ 1
2Mx

for all x ∈ (0,1/2]. Moreover, we have |KM(x)|= |KM(−x)| for x ∈ R.
We split the index set J = {1, . . . , |I|} \{ j} in the following two subsets

J1 = {l ∈ J : 0 < yh j − yhl mod 1≤ 1
2
}

and J2 = {l ∈ J :
1
2
< yh j − yhl mod 1 < 1}.

This yields

|I|

∑
l=1; l 6= j

|KM(yh j − yhl )| = ∑
l∈J1

|KM(yh j − yhl mod 1)|+ ∑
l∈J2

|KM(−yh j + yhl mod 1)|

≤ 1
2M ∑

l∈J1

1
yh j − yhl mod 1

+
1

2M ∑
l∈J2

1
yhl − yh j mod 1

.

Now, we estimate the differences yh j − yhl mod 1. In principle, we interpret the
index set J1 as the indices of the left neighbors of yh j . So, the distance of the nearest
neighbor on the left hand side to yh j is at least gπ(1). Clearly the second nearest
neighbor at the left hand side brings a distance of at least gπ(1)+ gπ(2). In general
the k-th nearest neighbor to the left of yh j has a distance not less than ∑

k
t=1 gπ(t) to

yh j . The index set J2 can be interpreted as the index set of the right neighbors of yh j

and we determine the lower bounds on the distances in the same way as done for
the left neighbors. We obtain
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|I|

∑
l=1; l 6= j

|KM(yh j − yhl )| ≤
1

2M

|J1|

∑
k=1

(
k

∑
t=1

gπ(t)

)−1

+
1

2M

|J2|

∑
k=1

(
k

∑
t=1

gπ(t)

)−1

.

Using ∑
k
t=1 gπ(t) ≤ ∑

r
t=1 gπ(t) for k ≤ r we balance the two sums and hence

|I|

∑
l=1; l 6= j

|KM(yh j − yhl )| ≤
1
M

⌊
|I|
2

⌋
∑
k=1

(
k

∑
t=1

gπ(t)

)−1

,

which proves the theorem. ut

Remark 1. In order to obtain the upper bound of the radii of all Gerschgorin circles
in Theorem 1, we estimated the absolute value of the kernel KM by a monotoni-
cally non-increasing upper bound |2Mx|−1 in

[
0, 1

2

]
. Due to |KM( t

M )| = 0 < 1
|2t| =

|2M t
M |
−1, for t ∈ Z\MZ, the upper bound and the absolute value of the kernel KM

possibly differ widely. In addition, we sorted the pairwise distances of the sorted
sequence

(
yh j

)
j=1,...,|I| in a worst case scenario. Thus, we also have to expect some

differences between the estimation and the exact maximum Gerschgorin radius. Al-
together, we obtain an estimation of the maximum Gerschgorin radius which even-
tually is much larger than the exact maximum Gerschgorin circle radius.

Corollary 1. With the notation from Theorem 1, ∆(r)< ∞, and C > 1, we determine

M∗(C) =

⌈
C+1
C−1

∆(r)
⌉
. (5)

The condition number of the matrix B(r,M∗(C)) is bounded by

1≤ κ(r,M∗(C))≤C.

Proof. Fixing M∗(C) in (5) ensures

C ≥ 1+M∗(C)−1∆(r)
1−M∗(C)−1∆(r)

≥ κ(r,M∗(C))≥ 1.

ut

Our approach is to find generated sets Λ(r,M) with small condition numbers
κ(r,M). Obviously, the term ∆(r) should be of our main interest here. The func-
tional ∆ is the important term of the upper bound M−1∆(r) of the radii of all
Gerschgorin circles of the matrix B(r,M). Note that ∆(r) depends on the gener-
ating vector r of the generated set Λ(r,M) but not on M. On the contrary, knowing
∆(r) one can simply determine a suitable M∗(C) guaranteeing the condition number
κ(r,M∗(C))≤C, see (5).

Algorithm 1 computes the value of ∆(r) for given I and r with a complexity of
O (|I|(log |I|+d)).
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Algorithm 1 Computing ∆(r) from (3)
Input: I frequency index set

r ∈ Rd generating vector

∆(r) = 0
for j = 1, . . . , |I| do

y j = h j · r mod 1
end for
in-place sort y in ascending order
g1 = 1+ y1− y|I|
for j = 2, . . . , |I| do

g j = y j− y j−1
end for
in-place sort g in ascending order
for j = 1, . . . ,

⌊
|I|
2

⌋
do

∆(r) = ∆(r)+ 1
g j

g j+1 = g j+1 +g j
end for

Output: ∆(r)

Another point of view is described by our approach as follows: Let us assume,
that we search for a generated set Λ(r,M) such that the condition number κ(r,M)
of the matrix B(r,M) does not exceed C. We call the generating vector r suitable
in the sense of Theorem 1 if ∆(r) < ∞, i.e. |Y | = |I|. For each suitable r, Corol-
lary 1 specifies an M∗r (C) guaranteeing a condition number κ(r,M∗r (C)) not larger
than C. So, minimizing the functional ∆ directly reduces the cardinality M∗r (C) of
the corresponding generated set for fixed C. This means that the theoretical num-
ber of sampling nodes needed for the fast and stable reconstruction of the Fourier
coefficients ( fk)k∈I decreases.

Note that a simple lower bound on the functional ∆ is given by

∆(r)≥ |I|

⌊
|I|
2

⌋
∑
k=1

k−1, for all r ∈ Rd . (6)

We obtain equality, iff the sequence of (yh)h∈I is an equispaced lattice on the one-
dimensional torus. In that case we can translate yh such that yh1 = 0 and apply an
equispaced FFT of length |I| to reconstruct all Fourier coefficients supported on I.

Example 2. Continuing Example 1, we obtain the following rounded results by min-
imizing ∆ using a nonlinear simplex search method:

r2,∆ =

(
0.14266632
0.40770614

)
and r5,∆ =


0.24342553
0.42933779
0.05122878
0.88917104
0.94691925
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with
∆(r2,∆)≈ 113324.3 and ∆(r5,∆)≈ 161500.5.

The corresponding cardinalities M2,∆(10) and M5,∆(10) of Λ(rs,∆,Ms,∆(10)) guar-
anteeing a condition number κ(rs,∆,Ms,∆(10)) = cond2(B(rs,∆,Ms,∆)) of at most ten
are determined by

M2,∆(10) = 138508 and M5,∆(10) = 197390,

cf. (5). Of course, these Ms,∆(10) are simply based on an upper bound of the Ger-
schgorin radii. We also computed the exact Gerschgorin radii numerically for the
generating vectors r2,∆ and r5,∆ and different Ms and obtain

M∗2 = 14989 and M∗5 = 20129

guaranteeing condition numbers of B(rs,∆,M∗s ) smaller or equal ten. In fact, we get
condition numbers

κ(rs,∆,M∗s )≈

{
2.1847, for s = 2,
2.1037, for s = 5.

Finally, we give the condition numbers of the problem of Example 1. We simply
took the generating vectors rs,∆ and computed the condition numbers of B(rs,∆,M)
for M = 16381 resulting in

κ(rs,∆,M)≈

{
1.7548, for s = 2,
2.9223, for s = 5.

Obviously, these condition numbers are much smaller than those from Example 1,
where we minimized the condition numbers directly. Note that the minimization of
the main term ∆ of the upper bound of all Gerschgorin radii is much faster than the
direct minimization of the condition number κ . ut

4 Numerical Examples

The numerical minimization of ∆(r) returns minimizers r∗, which are vectors of
rational numbers. So one can find a possibly huge M̄, such that the generated
set Λ(r∗,M̄) is a rank-1 lattice. With M < M̄, one can interpret the generated set
Λ(r∗,M) as the first M elements of the rank-1 lattice Λ(r∗,M̄). In general we obtain
M� M̄.

Our numerical examples use generating vectors r∗ found by minimizing ∆, cf.
(3). We used the nonlinear simplex search method fminsearch of the Optimiza-
tion ToolboxTM of MATLAB in version 7.14.0.739 (R2012a).
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Using the rand function, we started the minimization at a randomly chosen vec-
tor. Providing a diameter of the actual simplex smaller than 10−10 and differences
of the function values at the corners of the simplex smaller than 10−8|I|, we ter-
minated the minimization. Alternatively, we stopped the minimization after a fixed
number of function evaluations, even if these conditions are not fulfilled. In order
to compute the minimizers of Tables 1 and 2 we limited the number of function
evaluations to 3 000. In Table 3, we accepted at most 30 000 function evaluations.
The applied simplex search method finds only local minimizers. For each index set
I we computed twenty local minimizers of ∆ and took as r∗ the local minimizer that
yields the smallest value ∆(r) in order to avoid obtaining minimizers of relatively
large local minima.

Besides the computation of M∗(C) =
⌈C+1

C−1 ∆(r∗)
⌉

from (5) guaranteeing a con-
dition number smaller or equal C we computed exact maximum Gerschgorin circle
radii defined by

ρ(r∗,M) = max
k∈I

∑
h∈I\{k}

|KM(yk− yh)|

for several M, where KM(yk− yh) describes the elements of the matrix B(r∗,M) as
defined in (2). The Gerschgorin circle theorem ensures that the condition ρ(r∗,M)≤
C−1
C+1 implies κ(r∗,M)≤C.

For a fixed vector r∗ we define M∗G(C) as the smallest power of two such that
the exact maximum Gerschgorin circle radius ensures a condition number not larger
than C,

M∗G(C) = min
n∈N

{
2n : ρ(r∗,2n)≤ C−1

C+1

}
.

Moreover, we call κ∗G(M) := 1+ρ(r∗,M)
1−ρ(r∗,M) the estimation of the condition number of

the matrix B(r∗,M) based on the exact maximum Gerschgorin circle radius. Cer-
tainly, we have to assume ρ(r∗,M)< 1 to estimate the condition number κ∗(M) :=
κ(r∗,M) ≤ κ∗G(M). Otherwise, i.e. ρ(r∗,M) ≥ 1, we obtain 0 ∈ [1−ρ(r∗,M),1+
ρ(r∗,M)] and so zero is a candidate for the smallest eigenvalue of B(r∗,M). Conse-
quently, κ∗G(M)< 0 does not bound the condition number of B(r∗,M).

Applying (4), the computational costs for calculating M∗G(C) is bounded by
c|I|2 log2(M

∗(C)), where c is independent of I and M∗(C). In general, this com-
putation is not necessary in order to obtain stable spatial discretizations, but the
costs for computing M∗G(C) can be quickly compensated using the generated set
Λ(r∗,M∗G(C)) instead of Λ(r∗,M∗(C)) in practical applications. In particular for
a frequently used fixed index set I and generating vector r∗, the generated set
Λ(r∗,M∗G(C)) with cardinality M∗G(C) < M∗(C) saves sampling and computational
costs.
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Table 1 Cardinalities M∗(10), M∗G(10), and M∗∗(10) of generated sets generated by vectors r∗

that are found by minimizing ∆ for index sets I which are weighted hyperbolic crosses Hd,γγγ
32 with

weights γγγa = (2−1)s∈N and dimensions d = 2, . . . ,12; additionally, the condition numbers κ∗ and
upper bounds κ∗G of the corresponding matrices B(r∗,M∗G(10)) and B(r∗,M∗∗(10)), respectively

d |Hd,γγγa
32 | M∗(10) M∗G(10) κ∗G(M

∗
G(10)) κ∗(M∗G(10)) M∗∗(10) κ∗G(M

∗∗(10)) κ∗(M∗∗(10))

2 145 2 216 1 024 2.8466 1.4540 370 11.9876 2.0705
3 441 9 709 4 096 2.8441 1.2811 1 408 -7.1782 1.8418
4 1 105 48 328 8 192 8.1211 1.9993 6 291 -15.0278 2.1016
5 2 433 151 727 32 768 3.0456 1.4690 18 119 4.5528 1.4570
6 4 865 471 958 65 536 6.1468 1.8703 52 492 4.3597 1.6842
7 9 017 1 115 494 131 072 5.2118 1.9046 116 850 7.1495 1.8891
8 15 713 2 538 107 262 144 4.3721 1.7571 252 533 4.1645 1.7939
9 26 017 6 256 440 524 288 5.5048 2.1663 595 180 3.2571 1.7159

10 41 265 15 910 747 2 097 152 3.1616 1.7769 1 454 830 4.1586 1.8770
11 63 097 29 880 128 2 097 152 5.7801 2.5378 2 637 334 2.9012 1.8379
12 93 489 46 057 959 4 194 304 4.4024 1.7782 4 065 252 4.0095 1.7426

4.1 Weighted Hyperbolic Crosses

Tables 1 and 2 shows some numerical examples for weighted hyperbolic crosses
Hd,γγγ

N as frequency index sets I. In Table 1 we consider weights γγγa =
(
2−1
)

s∈N, re-
finement N = 32, and dimensions d from two up to twelve as parameters and deter-
mine suitable generated sets for reconstructing trigonometric polynomials with fre-
quencies supported on I. Table 2 contains similar results for weights γγγb = (3−1)s∈N,
refinement N = 48, and dimensions d up to 27. The parameters chosen ensure
Hd,γγγb

48 ⊂ Hd,γγγa
32 . In detail, we obtain

Hd,γγγa
32 \Hd,γγγb

48 ⊂

{
k ∈ Hd,γγγa

32 : ‖k‖0 =
d

∑
s=1

(1−δ0(ks))> 1

}
,

i.e. the hyperbolic cross Hd,γγγb
48 is sparser than Hd,γγγa

32 in mixed indices only.
The first column of these tables shows the dimension d and the second col-

umn the cardinality of the considered frequency index set Hd,γγγ
N . We minimize ∆

like described above and obtain the resulting theoretical number of sampling points
M∗(10) needed to ensure a condition number of B(r∗,M∗(10)) not larger than ten.
M∗(10) is listed in column three. Fixing I and r∗, in column four we present the
smallest power of two M∗G(10) guaranteeing that the exact maximum Gerschgorin
radius is not larger than 9

11 . This restriction ensures that even the condition num-
ber of B(r∗,M∗G(10)) is not larger than ten. In other words, sampling along the first
M∗G(10) multiples of the generating vector r∗ already guarantees a stable reconstruc-
tion of all multivariate trigonometric polynomials with frequencies supported on
Hd,γγγ

N . We specify the corresponding estimations of the condition numbers based on
the maximum Gerschgorin radius labeled with κ∗G(M

∗
G(10)) in column five. Column

six shows the corresponding exact condition numbers κ∗(M∗G(10)).
Regarding both tables, one observes that the values of M∗G(10) behave like
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Table 2 Cardinalities M∗(10), M∗G(10), and M∗∗(10) of generated sets generated by vectors r∗

that are found by minimizing ∆ for index sets I which are weighted hyperbolic crosses Hd,γγγ
48 with

weights γγγb = (3−1)s∈N and dimensions d = 2, . . . ,27; additionally, the condition numbers κ∗ and
upper bounds κ∗G of the corresponding matrices B(r∗,M∗G(10)) and B(r∗,M∗∗(10)), respectively

d |Hd,γγγb
48 | M∗(10) M∗G(10) κ∗G(M

∗
G(10)) κ∗(M∗G(10)) M∗∗(10) κ∗G(M

∗∗(10)) κ∗(M∗∗(10))

2 105 1 878 512 5.6271 1.8467 354 8.9423 1.7548
3 225 5 916 2 048 2.6898 1.4053 1 006 31.1502 1.9347
4 401 16 432 4 096 5.4966 1.9237 2 588 5.0743 1.4437
5 641 34 464 8 192 3.8947 1.7342 5 110 2.6683 1.2588
6 953 91 526 16 384 4.5491 1.9292 12 912 3.1832 1.6643
7 1 345 120 893 16 384 5.3483 1.8287 16 351 5.3015 1.8288
8 1 825 244 266 32 768 3.1868 1.7918 31 856 3.6431 1.7963
9 2 401 400 917 65 536 2.1847 1.5143 50 639 3.1209 1.6695

10 3 081 595 978 65 536 3.3692 1.8932 73 163 3.0289 1.7584
11 3 873 960 647 131 072 2.3670 1.5973 114 946 2.3611 1.5942
12 4 785 1 265 910 131 072 3.2820 1.9410 147 990 2.3929 1.6242
13 5 825 1 875 694 262 144 2.6817 1.7231 214 662 2.4461 1.5622
14 7 001 2 135 009 262 144 2.9406 1.7604 239 603 2.9177 1.7633
15 8 321 3 310 334 262 144 5.2203 2.8743 364 835 2.7691 1.7001
16 9 793 4 831 312 524 288 2.6954 1.6401 523 570 2.6728 1.6412
17 11 425 6 156 192 1 048 576 3.0616 1.8571 656 735 2.4556 1.7802
18 13 225 7 735 764 1 048 576 2.9312 1.8649 813 162 2.5909 1.8368
19 15 201 9 885 874 1 048 576 2.0752 1.6079 1 024 862 2.1632 1.5777
20 17 361 11 784 210 1 048 576 2.8501 2.0048 1 205 779 2.2593 1.6075
21 19 713 16 342 704 2 097 152 2.8862 1.8002 1 651 639 2.0994 1.5800
22 22 265 18 916 637 2 097 152 1.9674 1.5404 1 889 453 2.0036 1.5755
23 25 025 27 027 375 2 097 152 4.1966 2.7862 2 669 617 2.1054 1.6669
24 28 001 30 693 609 4 194 304 2.8452 1.8359 2 999 686 1.8831 1.5614
25 31 201 37 040 314 4 194 304 1.8965 1.5780 3 583 403 1.9974 1.6094
26 34 633 41 051 986 4 194 304 2.7275 1.8536 3 933 160 2.8633 1.8562
27 38 305 46 404 278 4 194 304 2.0293 1.6813 4 328 544 2.0485 1.5950

M∗G(10)∼M∗∗(10) :=

M∗(10)


⌊
|I|
2

⌋
∑
k=1

k−1


−1
 .

We listed the values of M∗∗(10). The equispaced case discussed in the context of
(6) illustrates that this observation is being caused by the construction of the func-
tional ∆ from (3). We also computed the exact maximum Gerschgorin circle radii
ρ(r∗,M∗∗(10)), the estimator of the condition number κ∗G(M

∗∗(10)), and the ex-
act condition numbers κ∗(M∗∗(10)) of the corresponding matrices B(r∗,M∗∗(10)).
One obtains a few exceptions only where the maximum Gerschgorin circle radii
ρ(r∗,M∗∗(10)) strongly exceeds the bound 9

11 that guarantees an upper bound
κ∗G(M

∗∗(10)) of the condition number κ∗(M∗∗(10)) smaller or equal ten. Never-
theless, all exact condition numbers κ∗(M∗∗(10)) of the matrices B(r∗,M∗∗(10))
do not exceed three in Table 1 and two in Table 2, evidently.
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4.2 Randomly Chosen Index Sets

As described above, our approach finds stable spatial discretizations of trigonomet-
ric polynomials with frequencies supported on arbitrary known index sets I. So, we
consider index sets I randomly chosen from the d-dimensional cube [−128,128]d ⊂
Zd in Table 3. It presents results for several cardinalities of the index set I and di-
mensions d which are powers of two. The content of each column is as described
above. To achieve these results we increased the maximum number of the allowed
function evaluations. In higher dimensions, this seems to be necessary to suitably
decrease the diameter of the simplex in the used optimization method. For compa-
rability we chose this parameter independent on the dimension d. So we allowed at
most 30000 function evaluations to minimize ∆(r).

We see that in principle the cardinalities M∗(10), M∗G(10), and M∗∗(10) mildly
decrease with growing dimensions. In other words, an increasing number of degrees
of freedom of the functional ∆ results in a lower minimal value.

Furthermore, we observe a growing oversampling with increasing cardinality of
the index set I. For a doubled cardinality of I, the values of M∗(10), M∗G(10), and
M∗∗(10) increase approximately fourfold. Thus, the cardinalities of the found gen-
erated sets grow nearly quadratical in the cardinality of the index set I. Taking into
account some modifications of the results of Theorem 3.2 in [6], we also expect this
behavior for rank-1 lattices which bring a full column rank of the corresponding
Fourier matrix A. Accordingly, we expect to evaluate and reconstruct the multivari-
ate trigonometric polynomial with frequencies supported on I with a complexity of
O
(
|I|2 log |I|+(| logε|+d)|I|

)
. Precomputing the set Y and saving the necessar-

ily bijective mapping I → [0,1) : h 7→ h · r (mod 1) we reduce the complexity to
O
(
|I|2 log |I|+ | logε||I|

)
, which is independent of the spatial dimension d.

5 Summary

The concept of generated sets provides mildly oversampled and stable spatial dis-
cretizations for multivariate trigonometric polynomials with frequencies supported
on index sets I of reasonable cardinalities. In addition, the NFFT and some simple
precomputations allow for the fast evaluation of multivariate trigonometric polyno-
mials f at all sampling nodes of generated sets Λ(r,M). Assuming the condition
number cond2(B(r,M)) equal or near one, the conjugate gradient method using the
NFFT and its adjoint provide the fast, stable, and unique reconstruction of f from
samples along the generated set Λ(r,M). Our approach imposes only one impor-
tant condition on the generating vector r ∈ Rd : Successive elements of the one-
dimensional sampling scheme Y = {k · r mod 1 : k ∈ I} should have relatively
large distances.
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cussions. Moreover, he thanks the referees for their very useful suggestions for improvements



14 Lutz Kämmerer

Table 3 Cardinalities M∗(10), M∗G(10), and M∗∗(10) of generated sets generated by vectors r∗
that are found by minimizing ∆ for index sets I of dimensions d = 2n, n = 1, . . . ,8. Elements of I
taken from [−128,128]d ∩Zd uniformly at random; additionally, condition numbers κ∗ and upper
bounds κ∗G of the corresponding matrices B(r∗,M∗G(10)) and B(r∗,M∗∗(10)), respectively

d |I| M∗(10) M∗G(10) κ∗G(M
∗
G(10)) κ∗(M∗G(10)) M∗∗(10) κ∗G(M

∗∗(10)) κ∗(M∗∗(10))

2 750 195 091 32 768 1.8286 1.4154 29 988 2.1015 1.6151
4 750 196 928 32 768 2.8119 1.9440 30 271 3.9359 2.2560
8 750 166 797 32 768 1.9991 1.5679 25 639 2.2685 1.7329

16 750 144 334 16 384 7.0620 2.8097 22 186 2.5448 1.7345
32 750 104 756 16 384 2.8085 1.6086 16 102 2.6035 1.6000
64 750 61 856 8 192 7.7925 2.0178 9 508 5.9218 1.8894

128 750 62 873 8 192 8.3523 2.1612 9 664 6.1158 1.9719
256 750 54 611 8 192 5.3793 1.8811 8 394 5.3329 1.9067

2 1 500 412 137 65 536 1.7069 1.2490 57 257 1.8188 1.3153
4 1 500 851 612 131 072 2.3944 1.8503 118 313 3.6857 2.4721
8 1 500 647 439 65 536 5.0975 3.2850 89 947 3.4072 1.8601

16 1 500 619 395 65 536 6.2502 3.2448 86 051 2.2943 1.7509
32 1 500 411 622 65 536 2.0989 1.5788 57 185 2.6901 1.7571
64 1 500 324 658 32 768 6.7930 2.6120 45 104 2.5211 1.7025

128 1 500 254 375 32 768 3.2401 1.8037 35 339 2.6962 1.8009
256 1 500 226 842 32 768 3.5078 1.8600 31 514 3.4103 1.8070

2 3 000 547 361 65 536 1.9555 1.2360 69 367 2.0029 1.2113
4 3 000 3 265 505 262 144 8.4853 6.5363 413 838 2.6677 2.4452
8 3 000 3 078 366 262 144 8.7348 4.9750 390 122 2.4379 2.0957

16 3 000 2 434 510 262 144 3.0088 2.6453 308 526 2.0252 1.8461
32 3 000 1 675 774 262 144 1.9351 1.6033 212 371 2.2124 1.6160
64 3 000 1 213 198 131 072 5.4684 2.8743 153 749 2.5438 1.7883

128 3 000 1 034 141 131 072 2.3803 1.6471 131 057 2.3964 1.6471
256 3 000 805 916 131 072 3.1876 1.8898 102 134 2.7344 1.7359

2 6 000 674 627 65 536 6.0235 1.6905 78 593 6.9360 1.5907
4 6 000 13 250 802 1 048 576 7.2950 6.1781 1 543 707 2.9009 2.6842
8 6 000 11 501 870 2 097 152 1.8113 1.5978 1 339 958 4.3485 2.9201

16 6 000 10 191 192 1 048 576 3.2384 2.8720 1 187 265 2.3771 2.1829
32 6 000 7 573 185 1 048 576 2.3761 1.7520 882 269 2.1095 1.8821
64 6 000 5 661 152 524 288 6.4483 3.8637 659 519 2.2256 1.7379

128 6 000 3 777 565 524 288 2.2653 1.6630 440 083 2.1709 1.6788
256 6 000 3 311 017 524 288 2.6142 1.8378 385 730 2.3017 1.6661

and he gratefully acknowledges support by German Research Foundation within the project KU
2557/1-1.

References

1. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)
2. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing lattice rules based on weighted degree of ex-

actness and worst case error. Computing 87, 63 – 89 (2010)
3. Cools, R., Sloan, I.H.: Minimal cubature formulae of trigonometric degree. Math. Comp. 65,

1583 – 1600 (1996)
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