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We present a new sampling method that allows for the unique reconstruction of
(sparse) multivariate trigonometric polynomials. The crucial idea is to use several
rank-1 lattices as spatial discretization in order to overcome limitations of a sin-
gle rank-1 lattice sampling method. The structure of the corresponding sampling
scheme allows for the fast computation of the evaluation and the reconstruction of
multivariate trigonometric polynomials, i.e., a fast Fourier transform. Moreover,
we present a first algorithm that constructs a reconstructing sampling scheme con-
sisting of several rank-1 lattices for arbitrary, given frequency index sets. Various
numerical tests indicate the advantages of the constructed sampling schemes.
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1 Introduction

Already in the 1950’s high-dimensional integration problems were treated using so called
rank-1 lattices as quasi Monte-Carlo rules, cf. [23] for an overview on the early work on
lattice rules. Many integration problems were tackled using the concept of rank-1 lattices
even in current papers. The main reason for most of the recent activities is the seminal result
of A. V. Reztsov and I. H. Sloan in [27]. They proved that a dimension incremental, so called
component–by–component, construction of a rank-1 lattice guarantees optimal errors for the
numerical integration of specific integrands.

However, in the 80’s V. N. Temlyakov [28] investigated the approximation properties of so
called Korobov lattices, that are in fact rank-1 lattices of a specific type, cf. [16]. The result
was unsatisfactory, since the upper bound of the approximation error was not nearly as good
as the optimal ones in relation to the number of used sampling values.

In the late 80’s and 90’s, the concept of sparse grids becomes very popular since the ap-
proximation of multivariate functions of dominating mixed smoothness from their function
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values at sparse grids is almost optimal, cf. e.g. [2, 29, 25, 7]. In addition to these considera-
tions there were developed fast algorithms for the evaluation of hyperbolic cross trigonometric
polynomials and their reconstruction from the sampling values at sparse grids, cf. [10, 8, 9].
Later on, the condition number of the corresponding linear mapping was investigated. It was
proved that the condition number increases significantly with growing problem sizes, cf. [14].
Hence, the computation of approximations based on noisy sampling values at sparse grids
may cause substantial errors.

In the years after the seminal results for integration lattices [27], several papers picked
up the idea of approximating functions using the sampling values along rank-1 lattices, cf.
[21, 30, 18, 19, 20, 22]. The error bounds for the approximation of functions of dominat-
ing mixed smoothness are almost similar to those of V. N. Temlyakov [28]. The crucial
innovation of the new papers about rank-1 lattices was that the used sampling schemes are
component–by–component constructed, i.e., the results offers a constructive method to built
up the sampling schemes that allow for the error estimates. However, the results in [13]
allowed for the considerations in [4], where a lower bound for the error of each sampling
operator that approximates functions of dominating mixed smoothness using sampling values
along rank-1 lattices is determined. The lower bounds are very close to the already known
upper bounds in terms of the number of used sampling values. Thus, there is no chance to get
nearly optimal worst case errors for sampling operators that uses all sampling values along a
single lattice.

The sensitivity against noise of the sparse grid sampling method as well as the necessarily
disproportional number of required sampling values for lattice methods call for new concepts
for the spatial discretization of functions of dominating mixed smoothness. The new ideas
should avoid the disadvantages and may combine the advantages of sparse grids and lattices,
i.e., we prefer low oversampling, robustness against noise, available fast algorithms.

In this paper we introduce such a new concept for the discretization of trigonometric poly-
nomials. Our new sampling method is motivated by the structure of sparse grids. A sparse
grid is a composition of specific rank-1 up to rank-d lattices, cf. [2, 31, 26], that are well-
suited in order to sample trigonometric polynomials with frequencies supported on hyperbolic
crosses. In the present paper, we introduce sampling schemes that are compositions of multi-
ple rank-1 lattices. We investigate necessary and sufficient conditions on the sampling scheme
in order to guarantee a unique reconstruction of multivariate trigonometric polynomials. It
should be noted at this point that we are interested in arbitrary multivariate trigonometric
polynomials, i.e., we do not restrict the frequency support to any structure.

Furthermore, we present fast algorithms, i.e., fast Fourier transforms (FFTs), that computes

• the evaluation of multivariate trigonometric polynomials at all sampling nodes, cf. Al-
gorithm 3, and

• the reconstruction of multivariate trigonometric polynomials from the function values
at the sampling nodes, cf. Section 4.

As a matter of course, we are interested in sampling sets that allow for the unique reconstruc-
tion of multivariate trigonometric polynomials supported on specific frequency index set. We
present a method, cf. Algorithm 5, that determines a set of rank-1 lattices that guarantees
the unique reconstruction of multivariate trigonometric polynomials supported on a given
frequency index set. The constructed sampling sets allow for a specific fast algorithm that
computes the reconstruction in a direct way, cf. Algorithm 6.
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The present paper deals only with multivariate trigonometric polynomials. We stress on
the fact that one may use the new sampling method in an adaptive way similar to the ideas
from [24]. Therein D. Potts and T. Volkmer presented a dimension incremental approach
in order to identify trigonometric polynomials, i.e., they determine the frequency support as
well as the frequencies of multivariate trigonometric polynomials. Certainly, one can also
use this algorithm to determine the significant frequencies of multivariate periodic functions.
Resulting trigonometric polynomials can be used as approximations of the treated functions.
The main ingredient of this approach is the usage of reconstructing sampling schemes for
trigonometric polynomials supported on arbitrary, multi-dimensional frequency index sets.
In [24], the authors made use of single rank-1 lattices as sampling schemes. Anyway, the
strategy introduced in the present paper may offer more suitable spatial discretizations, in
particular related to the number of used sampling values.

This paper is organized as follows. Section 2 describes the framework and reveals some
basic facts about sampling sets that are unions of single rank-1 lattices. The evaluation
of a trigonometric polynomial at these spatial discretizations is illustrated in Section 3. In
Section 4 we examine the Fourier matrix and determine necessary conditions for a unique re-
construction of trigonometric polynomials from sampling values along a set of rank-1 lattices.
Moreover, we present a deterministic approach in order to construct spatial discretizations for
hyperbolic cross trigonometric polynomials that allow for the unique reconstruction of these
polynomials. However, this approach does not promise the desired advantages. Subsequently,
we state an additional algorithm that determines reconstructing multiple rank-1 lattices for
arbitrary frequency index sets, i.e., spatial discretizations that consist of sets of rank-1 lattices
and allow for the unique reconstruction of trigonometric polynomials supported on the given
frequency index set. This algorithm constitutes the crucial idea of this paper. In Section
5 several numerical tests indicate preferable properties of the sampling method. Section 6
specifies the most important open questions on the presented approach and suggest some
potential solution approaches.

2 Prerequisites

In this paper we deal with multivariate trigonometric polynomials

p : Td → C, x 7→
∑
k∈I

p̂ke2πik·x,

where Td ∼= [0, 1)d is the d-dimensional torus, the complex numbers (p̂k)k∈I ∈ C|I| are called
Fourier coefficients of p, and the frequency index set I ⊂ Zd is of finite cardinality. The term
k ·x =

∑d
j=1 kjxj is the usual scalar product of two d-dimensional vectors. Furthermore, the

space of all trigonometric polynomials supported on the frequency index set I is denoted by
ΠI := span{e2πik·x : k ∈ I}. The evaluation of the multivariate trigonometric polynomial p
at a finite set X ⊂ Td of sampling nodes is specified by the matrix-vector product

A(X , I)p̂ = p,

where p̂ = (p̂k)k∈I ∈ C|I| is the vector of the Fourier coefficients of the trigonometric polyno-
mial p, the right hand side p = (p(x))x∈X contains the function values of p at all nodes that
belong to the sampling set X , and the Fourier matrix A(X , I) is given by

A(X , I) =
(

e2πik·x
)
x∈X ,k∈I

.

3



As usual, we assume a fixed order of the elements of the sampling set X and the frequency
index set I in order to use the matrix-vector notation.

A very specific kind of sampling schemes are so-called rank-1 lattices

X = Λ(z,M) :=

{
j

M
z mod 1 : j = 0, . . . ,M − 1

}
⊂ Td,

which are well-investigated in the field of numerical integration, cf. [26, 5]. The d-dimensional
integer vector z ∈ Zd is called generating vector and the positive integer M ∈ N the lattice
size of the rank-1 lattice Λ(z,M). The author studied such sampling schemes for the re-
construction of trigonometric polynomials in [13]. Various specific examples illustrate the
advantages of rank-1 lattices for the unique reconstruction of trigonometric polynomials. The
main disadvantage of a single rank-1 lattice sampling is the necessarily growing oversampling,
i.e., M/|I| necessarily increases for growing |I| in order to ensure a unique reconstruction of
trigonometric polynomials supported on specifically structured frequency index sets I, e.g.,
hyperbolic cross frequency index sets I, cf. also [15, 12] for more details on this specific topic.

In order to overcome this problem, we would like to extend the method of rank-1 lattice
sampling in a more or less usual manner by sampling along multiple rank-1 lattices. The
corresponding sampling sets are joined rank-1 lattices

X = Λ(z1,M1, z2,M2, . . . ,zs,Ms) :=
s⋃
r=1

Λ(zr,Mr)

and we call such a construction multiple rank-1 lattice.
The 0 is contained in each of the rank-1 lattices Λ(zr,Mr), r = 1, . . . , s. Consequently,

the number of distinct elements in Λ(z1,M1, z2,M2, . . . ,zs,Ms) is bounded from above by
|Λ(z1,M1, z2,M2, . . . ,zs,Ms)| ≤ 1−s+

∑s
r=1Mr. Due to the fact that there may be 1 ≤ r1 <

r2 ≤ s such that |Λ(zr1 ,Mr1)∩Λ(zr2 ,Mr2)| > 1 or 1 ≤ r3 ≤ s such that |Λ(zr3 ,Mr3)| < Mr3 ,
we have to expect a lower number of elements within Λ(z1,M1, z2,M2, . . . ,zs,Ms) than the
upper bound promises. However, we do not care about duplicate rows within the Fourier
matrix with the exception of the duplicates that arises from x = 0. We define the Fourier
matrix

A := A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) :=



(
e

2πi j
M1

k·z1

)
j=0,...,M1−1,k∈I(

e
2πi j

M2
k·z2

)
j=1,...,M2−1,k∈I
...(

e2πi j
Ms

k·zs

)
j=1,...,Ms−1,k∈I


,

where we assume that the frequency indices k ∈ I are in a fixed order.
In the following, we prove some basics about multiple rank-1 lattices.

Lemma 2.1. Let Λ(z1,M1) and Λ(z2,M2) be two rank-1 lattices with relatively prime lattice
sizes M1 and M2. Then, the rank-1 lattice Λ(M2z1 +M1z2,M1M2) is a supset of Λ(z1,M1)
and Λ(z2,M2), respectively. Thus, the multiple rank-1 lattice Λ(z1,M1, z2,M2) ⊂ Λ(M2z1 +
M1z2,M1M2) is a subset of the rank-1 lattice Λ(M2z1 + M1z2,M1M2). Furthermore, the
cardinality of Λ(z1,M1, z2,M2) is given by |Λ(z1,M1)|+ |Λ(z2,M2)| − 1.
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Proof. Due to the coprimality of the numbers M1 and M2, the Chinese reminder theorem
implies that there exists one ` ∈ {0,M1M2 − 1} such that

` ≡ j1 (mod M1) and ` ≡ j2 (mod M2).

Consequently, we obtain

`(M2z1 +M1z2)

M1M2
mod 1 =

(
`z1

M1
+
`z2

M2

)
mod 1 =

(
j1z1

M1
mod 1 +

j2z2

M2
mod 1

)
mod 1.

This yields

`(M2z1 +M1z2)

M1M2
mod 1 =

j1z1

M1
mod 1 and

`(M2z1 +M1z2)

M1M2
mod 1 =

j2z2

M2
mod 1

for j2 = 0 and j1 = 0, respectively.
The coprimality of M1 and M2 directly implies that Λ(z1,M1) ∩ Λ(z2,M2) = {0} and the

assertion follows.

Corollary 2.2. Let the multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms) with pairwise coprime
lattice sizes M1, . . . ,Ms be given. Then, the cardinality of Λ(z1,M1, . . . ,zs,Ms) is given by

|Λ(z1,M1, . . . ,zs,Ms)| = 1− s+

s∑
r=1

|Λ(zr,Mr)|

and the embedding
Λ(z1,M1, . . . ,zs,Ms) ⊂ Λ(z,M)

holds, where the generating vector z =
∑s

r=1(
∏s
l=1
l 6=r

Ml)zr and the lattice size M =
∏s
r=1Mr

are explicitly given.

Proof. An iterative application of Lemma 2.1 yields the assertion.

As a consequence of Corollary 2.2, a multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms) with
pairwise coprime M1, . . . ,Ms and a full rank matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) is
a subset of the rank-1 lattice Λ(z,M), z =

∑s
r=1(

∏s
l=1
l 6=r

Ml)zr and M =
∏s
r=1Mr. The

matrix A(Λ(z,M), I) has full column rank and, in particular, pairwise orthogonal columns,
cf. [13, Lemma 3.1]. Further restrictions on the rank-1 lattices Λ(z1,M1), . . . ,Λ(zs,Ms)
allow for an easy determination of the number of distinct sampling values that are contained
in Λ(z1,M1, . . . ,zs,Ms).

Corollary 2.3. Under the assumptions of Corollary 2.2 and the additional requirements

• Mr is prime for all r = 1, . . . , s and

• 0 6= zr ∈ [0,Mr − 1]d ∩ Zd,

we conclude

|Λ(z1,M1, . . . ,zs,Ms)| = 1− s+
s∑
r=1

Mr.

Proof. The additional requirements of the corollary guarantee |Λ(zr,Mr)| = Mr, r = 1, . . . , s.
Hence, the statement follows directly from Corollary 2.2.
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Algorithm 1 Single Lattice Based FFT (LFFT)

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd frequency index set
p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI

1: ĝ = (0)Ms−1
l=0

2: for each k ∈ I do
3: ĝk·zl mod Ml

= ĝk·zl mod Ml
+ p̂k

4: end for
5: p = iFFT 1D(ĝ)
6: p = Mp

Output: p = Ap̂ function values of p ∈ ΠI

Complexity: O (M logM + d|I|)

Algorithm 2 Adjoint Single Lattice Based FFT (aLFFT)

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd frequency index set

p =
(
p
(
j
M z
))

j=0,...,M−1
function values of p ∈ ΠI

1: ĝ = FFT 1D(p)
2: â = (0)k∈I
3: for each k ∈ I do
4: âk = âk + ĝk·zl mod Ml

5: end for

Output: â = A∗p evaluation of the adjoint Fourier matrix A∗

Complexity: O (M logM + d|I|)

3 Evaluation of Trigonometric Polynomials

The evaluation of a trigonometric polynomial at all nodes of a multiple rank-1 lattice
Λ(z1,M1, . . . ,zs,Ms) is simply the evaluation at the s different rank-1 lattices Λ(z1,M1),
. . . , Λ(zs,Ms). A corresponding fast Fourier transform is given by using s-times the evalua-
tion along a single rank-1 lattice, cf. Algorithm 1, which uses only a single one-dimensional
fast Fourier transform. The complexity of the fast evaluation at all nodes of the whole mul-
tiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms), cf. Algorithm 3, is bounded by terms contained in
O (
∑s

r=1Mr logMr + sd|I|). For details on the single rank-1 lattice Fourier transform confer
[21, 13].

The evaluation of multivariate trigonometric polynomials along multiple rank-1 lattices is
guaranteed by the indicated algorithm. Hence, we shift our attention to the reconstruction
problem, i.e., to necessary and sufficient conditions on the sampling set Λ(z1,M1, . . . ,zs,Ms)
such that each trigonometric polynomial p ∈ ΠI , that belongs to a given space of trigonometric
polynomials, is uniquely specified by its sampling values p(x), x ∈ Λ(z1,M1, . . . ,zs,Ms) along
the multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms). Moreover, we are interested in a fast and
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Algorithm 3 Evaluation at multiple rank-1 lattices

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(zl,Ml)
z1, . . . zs ∈ Zd generating vectors of Λ(zl,Ml)
I ⊂ Zd frequency index set
p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI

1: for l = 1, . . . , s do
2: pl=LFFT(Ml, zl, I, p̂)
3: end for
4: p = (p1[1], . . . ,p1[M1],p2[2], . . . ,p2[M2], . . . ,ps[2], . . .ps[Ms])

>

Output: p = Ap̂ function values of p ∈ ΠI

Complexity: O (
∑s

l=1Ml logMl + sd|I|)

unique reconstruction of each trigonometric polynomial p ∈ ΠI from its values along the
sampling set Λ(z1,M1, . . . ,zs,Ms).

4 Reconstruction Properties of Multiple Rank-1 Lattices

In order to investigate the reconstruction properties of a sampling set X ⊂ Td, |X | <∞, with
respect to a given frequency index set I, we have to consider the corresponding Fourier matrix
A(X , I). A unique reconstruction of all trigonometric polynomials p ∈ ΠI from the sampling
values (p(x))x∈X necessarily implies a full column rank of the matrix A(X , I). We may use
single rank-1 lattices Λ(z,M) as sampling set X , i.e., X = Λ(z,M). In [13], we investigated
necessary and sufficient conditions on the reconstruction property of single rank-1 lattices
Λ(z,M) as spatial discretizations. Roughly speaking, we may have to expect oversampling
that increase with growing cardinality of the frequency index set I, due to the group structure
of the lattice nodes.

Motivated by the construction idea of sparse grids, which are in general a union of different
lattices of several ranks, we will join a few rank-1 lattices as spatial discretization in order
to construct sampling schemes Λ(z1,M1, . . . ,zs,Ms) that guarantee full column ranks of the
Fourier matrices A(Λ(z1,M1, . . . ,zs,Ms), I) for given frequency index sets I. In general, we
are interested in practically suitable construction strategies of such multiple rank-1 lattices
Λ(z1,M1, . . . ,zs,Ms). We call a sampling set Λ(z1,M1, . . . ,zs,Ms) with

det (A∗(Λ(z1,M1, . . . ,zs,Ms), I)A(Λ(z1,M1, . . . ,zs,Ms), I)) > 0

a reconstructing multiple rank-1 lattice for the frequency index set I.

For a given frequency index set I and given sampling set Λ(z1,M1, . . . ,zs,Ms),
|Λ(z1,M1, . . . ,zs,Ms)| ≥ |I|, we can check the reconstruction property in different ways.
For instance, one can compute the echelon form or (lower bounds on) the smallest singular
value of the matrices A or A∗A in order to check whether the rank of the matrix is full or
not. We emphasize, that the complexity of the test methods is at least Ω

(
|I|2
)

and in the
case of the computation of lower bounds on the smallest singular values, cf. [32], the test may
fail.

However, if the matrix A is of full column rank, one can reconstruct the Fourier coefficients
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Algorithm 4 Adjoint evaluation at multiple rank-1 lattices

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(zl,Ml)
z1, . . . zs ∈ Zd generating vectors of Λ(zl,Ml)
I ⊂ Zd frequency index set

p =

 p1
...
ps

 sampling values of p ∈ ΠI ,

pl =
(
p( j
Ml
zl)
)
j=1−δ1,l, ...,Ml

1: â = (0)k∈I
2: for l = 1, . . . , s do
3: g = (δ1,lp[1],p[M1 + · · ·+Ml−1 − l + 3], . . . ,p[M1 + · · ·+Ml − l + 1])>

4: â = â+ aLFFT(Ml, zl, I, g)
5: end for

Output: â = A∗f result of adjoint matrix times vector product

Complexity: O (
∑s

l=1Ml logMl + sd|I|)

of a multivariate trigonometric polynomial p ∈ ΠI by solving the normal equation

A∗Ap̂ = A∗p.

Usually, one approximates the inverse of the matrix A∗A using a conjugate gradient method
and fast algorithms that compute the matrix-vector products associated with A and A∗, cf.
Algorithm 3 and Algorithm 4 associated with Algorithm 2. Thus, the fast reconstruction
of a trigonometric polynomial p ∈ ΠI using the samples along a reconstructing multiple
rank-1 lattice Λ(z1,M1, . . . ,zs,Ms) for I is guaranteed. Anyway, we are still interested in a
practically suitable construction strategy in order to determine reconstructing multiple rank-1
lattices Λ(z1,M1, . . . ,zs,Ms) for given frequency index sets I. In the following subsection, we
develop a deterministic construction of reconstructing multiple rank-1 lattices for hyperbolic
cross trigonometric polynomials. Subsequently, we present an approach that even works on
completely arbitrary frequency index sets.

4.1 A deterministic approach for hyperbolic crosses

In approximation considerations, trigonometric polynomials with frequencies supported on
specific index sets that consists of sets of anisotropic full grids has proved very beneficial. In
particular, the estimates of the errors of the approximation of periodic functions of dominating
mixed smoothness and hybrid mixed smoothness by (energy-norm based) hyperbolic cross
trigonometric polynomials are (nearly) optimal. For that reason, we treat a simple, obvious,
deterministic construction of multiple rank-1 lattices as sampling scheme for such polynomials
in this subsection. We restrict ourselves to dyadic hyperbolic crosses

Iddhc,N :=
⋃
l∈Nd

0
‖l‖1=n

Ĝl, Ĝl = Zd ∩
d

×
s=1

(−2ls−1, 2ls−1], (4.1)

N = 2n, n ∈ N0, and explain the idea, that generally succeeds for frequency index sets that
consists of sets of anisotropic full grids. The natural spatial discretization of trigonometric
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polynomials with frequencies supported on dyadic hyperbolic crosses Iddhc,N are given by
dyadic sparse grids

Sddhc,N :=
⋃
l∈Nd

0
‖l‖1=n

Gl, Gl =
d

×
s=1

{
0,

1

2ls
,

3

2ls
,

3

2ls
. . . ,

2ls − 1

2ls

}
.

The components of this construction are the full grids Gl, ‖l‖1 = n, in spatial domain. In
general, these full grids are not rank-1 lattices but rank-s lattices with s ∈ N up to d. In
order to determine a similar spatial discretization consisting of rank-1 lattices, we determine
the following frequency index set

Idpdhc,N :=
⋃
l∈Nd

0
‖l‖1=n

P̂l,

where the sets P̂l are given by

P̂l := Zd ∩
d

×
s=1

(
−pl,s

2
,
pl,s
2

)
and the numbers pl,s are determined by

pl,s :=

{
1 ls = 0

minp prime{p ∈ N : p > 2ls and p 6∈ {pl,t : t = 1, . . . , s− 1}} ls > 0.

Moreover, proper spatial full grid discretizations for P̂l are given by

Pl :=
d

×
s=1

{
0,

1

pl,s
,

3

pl,s
,

3

pl,s
. . . ,

pl,s − 1

pl,s

}
= Λ(zl,Ml),

where the lattice size Ml =
∏d
s=1 pl,s and the components zl,s of the generating vector zl

are determined by zl,s = Ml/pl,s. Thus, a suitable spatial discretization for trigonometric
polynomials supported on the frequency index set Idpdhc,N that consists of rank-1 lattices is
the union of all Pl

Sdpdhc,N :=
⋃
l∈Nd

0
‖l‖1=n

Pl.

Due to Bertrand’s postulate the numbers pl,s are bounded from above by pl,s < 2ls+s, and thus

|P̂l| = |Pl| ≤ 2‖l‖1+d(d+1)/2 holds. Accordingly, the cardinality of the spatial discretization
Sdpdhc,N is bounded from above by Cdn

d−12n, which has the same dependence on N = 2n as

known for Sddhc,N .

We assume that the matrix A(Sdpdhc,N , I
d
pdhc,N ) is of full column rank. Accordingly, the

sampling values of a trigonometric polynomial with frequencies supported on the dyadic
hyperbolic cross Iddhc,N at the sparse grid Sdpdhc,N completely determines the frequency values

of this trigonometric polynomial since the embeddings Iddhc,N ⊂ Idpdhc,N hold.
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Remark 4.1. Clearly, the full grids P̂l may be more close to the grids Ĝl if we choose the
edge lengths pl,s relatively prime for fixed l and s = 1, . . . , d. The advantage of this approach
may be lower cardinalities of the full grids Pl in spatial domain. The lattices Pl would be
rank-1 lattices, nevertheless.

Remark 4.2. Since we are interested in sampling sets that avoid the disadvantages of
rank-1 lattices (increasing oversampling) and sparse grids (growing condition numbers of the
Fourier matrices), we considered these characteristics in more detail. Similar to the matri-

ces A
(
Sddhc,N , I

d
dhc,N

)
, the Fourier matrices A

(
Sdpdhc,N , I

d
dhc,N

)
seem to suffer from growing

condition numbers in general, cf. Section 5.2 and Figure 5.3.

Due to the fact that the numerical tests suggest that there is no significant advantage
of the sampling sets Sdpdhc,N compared to the sparse grids Sddhc,N , we do not consider this
approach in more detail. Instead, we present the crucial idea of this paper that allows for the
construction of suitable spatial discretizations even for arbitrary multivariate trigonometric
polynomials.

4.2 Construction of reconstructing multiple rank-1 lattices for arbitrary
frequency index sets

In this subsection we characterize an algorithm that determines reconstructing multiple rank-1
lattices for given frequency index sets I ⊂ Zd, |I| <∞. Accordingly, we assume the frequency
index set I of finite cardinality being given and fixed. We suggest to reconstruct a trigono-
metric polynomial p ∈ ΠI step by step. Independent of the structure of the frequency index
set I, we fix a lattice size M1 ∼ |I| and a generating vector z1 ∈ [1,M1 − 1]d and reconstruct
only these frequencies p̂k that can be uniquely reconstructed by means of the sampling values
along the used rank-1 lattice. The indices k of these frequencies p̂k are simply given by

I1 = {k ∈ I : k · z1 6≡ h · z1 mod M1 for all h ∈ I \ {k}}.

Assuming that the frequencies (p̂k)k∈I1 are already determined, we have to reconstruct a
trigonometric polynomial p1 ∈ ΠI\I1 supported by the frequency index set I \ I1 now. We
determine the sampling values of this trigonometric polynomial by

p1(x) = p(x)−
∑
k∈I1

p̂ke2πik·x.

We apply this strategy successively as long as there are frequencies that need to be recon-
structed.

Algorithm 5 indicates one possibility of an algorithm that determines a set of rank-1 lattices
that allows for the application of the mentioned reconstruction strategy. Some basic points
are given by

• considering each prime number as lattice size not more than once [Line 5 to 9],

• applying a component–by–component (CBC) strategy, if possible [Lines 10 to 13],

• applying the strategy indicated above [Lines 14 to 24].
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Algorithm 5 Determining reconstructing multiple rank-1 lattices

Input: I ⊂ Zd frequency index set
σ ∈ R oversampling factor σ ≥ 1
n ∈ N number of random test vectors

1: l = 1
2: Mcandidates = ∅
3: while |I| > 1 do
4: s = l
5: M = nextprime(σ|I|)
6: while M ∈Mcandidates do
7: M = nextprime(M)
8: end while
9: Mcandidates = Mcandidates ∪ {M}

10: if M > max
{
|I|2
2 + 2,max {2‖k‖∞ : k ∈ I}

}
then

11: determine zl using the CBC method from [13] such that Λ(zl,M) is a reconstructing
rank-1 lattice for I

12: Ml = M
13: I = ∅
14: else
15: for j = 1, . . . , n do
16: choose random integer vector vj ∈ [1,M − 1]d

17: compute Kj = |I \ {k ∈ I : ∃h ∈ I \ {k} with k · vj ≡ h · vj (mod M)}|
18: end for
19: if maxj∈{1,...,n}Kj > 0 then
20: determine a zl = vj0 such that Kj0 = maxj∈{1,...,n}Kj

21: Ml = M
22: I = {k ∈ I : ∃h ∈ I \ {k} with k · zl ≡ h · zl (mod Ml)}
23: l = l + 1
24: end if
25: end if
26: end while
Output: M1, . . . ,Ms lattice sizes of rank-1 lattices and

z1, . . . ,zs generating vectors of rank-1 lattices such that
Λ(z1,M1, . . . ,zs,Ms) is a reconstructing multiple rank-1 lattice

Obviously, if the branch consisting of the CBC strategy is involved, the algorithm immedi-
ately terminates. Since we deal with each prime number only once and the condition in Line
10 is bounded from above for each subset of a given frequency index set I of finite cardinality,
the CBC strategy branch will sooner or later be involved in the case that the algorithm does
not terminate using only the branch depending on randomness.

In each step that does not determine the generating vector zl using the CBC strategy, we
are interested in a rank-1 lattice that allows for the reconstruction of as many as possible fre-
quencies of a subset of I. For that reason, we check a few generating vectors for their number
of reconstructible frequency indices in Algorithm 5 and choose one of the most successful one,
cf. Line 15 to 23.
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We show that Algorithm 5 determines a sampling set such that Λ(z1,M1, . . . ,zs,Ms) im-
plies a full column rank matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I).

Lemma 4.3. Let the matrix B ∈ Cn×m of the following form

B =

(
B1 B2

B3 B4

)
be given. The matrices B1 ∈ Cn1×m1, . . . , B4 ∈ Cn2×m2 are submatrices of B, i.e., n =
n1 + n2 and m = m1 +m2. In addition, we assume that

• B1 has full column rank, i.e., the columns of B1 are linear independent,

• B4 has full column rank, i.e., the columns of B4 are linear independent, and

• the columns of B2 are not in the span of the columns of B1.

Then the matrix B has full column rank.

Proof. The matrix B ∈ Cn×m, n ≥ m, has full column rank iff the columns of the matrix B
are all linear independent, i.e. the formula

m∑
j=1

λjbj = 0 (4.2)

has the unique solution λ = 0. We will exploit the full column rank of the matrix B1 ∈
Cn1×m1 , n1 ≥ m1, and, thus, we consider the sum

m∑
j=1

λjb
′
j = 0,

where b′j = (bj,l)
n1

l=1 are vectors consisting of the first n1 elements of the vectors bj . Due to
the fact that the columns of B2 ∈ Cn1×m2 are not in the span of the columns of B1 and the
columns of B1 are linear independent, we achieve λj = 0 for all j = 1, . . . ,m1.

Accordingly, (4.2) simplifies to
m∑

j=m1+1

λjbj = 0.

For the remaining vectors bj , j = m1 + 1, . . . ,m, we know that the vectors of the last
m2 components of bj are linear independent and, consequently, we obtain λj = 0 for all
j = 1, . . . ,m.

Theorem 4.4. Algorithm 5 determines sampling sets such that the corresponding Fourier
matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) is a full column rank matrix.

Proof. In order to exploit Lemma 4.3 we will need to rearrange the order of the columns
of A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) in a suitable way. We assume that M1, . . . ,Ms and
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z1, . . . ,zs is the output of Algorithm 5. Consequently, we can determine the following fre-
quency index sets

I{1 = {k ∈ I : ∃h ∈ I \ {k} with k · z1 ≡ h · z1 (mod M1)} and I1 = I \ I{1 ,
I{2 = {k ∈ I{1 : ∃h ∈ I{1 \ {k} with k · z2 ≡ h · z2 (mod M2)} and I2 = I{1 \ I{2 ,

...
...

I{s = {k ∈ I{s−1 : ∃h ∈ I{s−1 \ {k} with k · zs ≡ h · zs (mod Ms)} = ∅ and Is = I{s−1 \ I{s .

The resulting frequency index sets Ij , j = 1, . . . , s, are a disjoint partition of I. We rearrange
the columns of the matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) and we achieve a matrix

Ã :=

 K1,1 . . . K1,s

...
. . .

...
Ks,1 . . . Ks,s

 ,

where the submatrices Kr,l are given by Kr,l :=
(

e2πi j
Mr

k·zr

)
j=1−δ1,r,...,Mr−1,k∈Il

, (r, l) ∈

[1, s]2 ∩ N2.

We define the matrices

Ãl :=
(
Kr,t

)
r=1,...,l, t=1,...,l

=

 Ãl−1

K1,l

...

K l−1,l

K l,1 . . . K l,l−1 K l,l

 ,

which are in fact submatrices of Ã. In particular, we obtain Ã1 = K1,1 and Ãs = Ã.

In the following, we conclude the full column rank of Ãl from the full column rank of Ãl−1,
the full column rank of K l,l, and the linear independence of each column of the matrix K1,l

...

K l−1,l


and all columns of the matrix Ãl−1, cf. Lemma 4.3.

We start with l = 1, i.e., Ã1 = K1,1. Since Λ(z1,M1) is a reconstructing rank-1 lattice for
I1, the matrix Ã1 has linear independent columns. Due to the construction of I1 and I{1 , each
column of one of the matrices K1,r, r = 2, . . . , s, is not in the span of the columns of K1,1.

We prove the full rank of Ãl, l = 2, . . . , s, inductively. For that, we assume Ãl−1 to be of
full column rank. Additionally, we know that K l,l is of full column rank, since Λ(zl,Ml) is a
reconstructing rank-1 lattice for Il. In order to apply Lemma 4.3, we have to show, that no
column of the matrix  K1,l

...

K l−1,l

 (4.3)
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is a linear combination of the columns of Ãl−1. We assume the contrary, i.e., let k ∈ Il be a
frequency index, ak the corresponding column of the matrix in (4.3), such that

ak = Ãl−1λ =

 K1,1 . . . K1,l−1

... . . .
...

K l−1,1 . . . K l−1,l−1


 λ1

...
λl−1

 , (4.4)

where we look for the vectors λr ∈ C|Ir|, r = 1, . . . , l − 1. We solve this linear equation
recursively. The first M1 rows of ak are not in the span of the pairwise orthogonal columns
of K1,1 and the columns of the first M1 rows of K1,r, r = 2, . . . , l− 1 are also not in the span
of the columns of K1,1. Consequently, we observe that λ1 = 0 ∈ C|I1| holds. Accordingly,
the solution of (4.4) is given by

λ := (λ>1 , . . . ,λ
>
l−1)> = (0, . . . , 0︸ ︷︷ ︸

|I1| times

,λ>2 , . . . ,λ
>
l−1)>

and we search for the solution of

ak =

 K1,2 . . . K1,l−1

... . . .
...

K l−1,2 . . . K l−1,l−1


 λ2

...
λl−1

 .

Next, we consider the rows numbered by M1 + 1, . . . ,M1 +M2 − 1 and obtain

(ak,j)
−1+M1+M2
j=1+M1

=
(
K2,2, . . . ,K2,l−1

) λ2
...

λl−1

 .

Since Λ(z2,M2) is a reconstructing rank-1 lattice for I2 and there is no k′ ∈
⋃l
j=3 Ij that

aliases to a frequency index k′′ ∈ I2 with respect to Λ(z2,M2), we obtain the result λ2 =
(0, . . . , 0)> ∈ C|I2|. These considerations lead inductively to the formulas

(ak,j)
1−t+

∑t
r=1Mr

j=3−t+
∑t−1

r=1Mr
=
(
Kt,t, . . . ,Kt,l−1

) λt
...

λl−1

 , t = 1, . . . , l − 1

and the result λt = 0 ∈ C|It|, t = 1, . . . , l − 1, in (4.4), which implies ak = 0 and is in
contradiction to ‖ak‖1 = 1− (l − 1) +

∑l−1
r=1Mr > 0.

Consequently, we apply Lemma 4.3 on the matrix Ãl and observe the full column rank of
Ãl, in particular for l = s.

Algorithm 5 determines a reconstructing sampling scheme for all multivariate trigonomet-
ric polynomials with frequencies supported on the index set I. Moreover, the idea behind
Algorithm 5 is the stepwise reconstruction of trigonometric polynomials as mentioned above.
Accordingly, we indicate the corresponding reconstruction strategy in Algorithm 6, where we
use Algorithms 1 and 2 in order to compute the required single lattice based discrete Fourier
transforms. As a consequence, we achieve a computational complexity of this algorithm which
is bounded by C (

∑s
l=1Ml logMl + s(d+ log |I|)|I|), where the term C does not depend on

the multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms), the frequency index set I, or the spatial
dimension d.
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Algorithm 6 Direct reconstruction of trigonometric polynomials p ∈ ΠI from samples along
reconstructing multiple rank-1 lattices that are determined by Algorithm 5

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(zl,Ml)
z1, . . . zs ∈ Zd generating vectors of Λ(zl,Ml)
I ⊂ Zd frequency index set

p =

 p1
...
ps

 sampling values of p ∈ ΠI ,

pl =
(
p( j
Ml
zl)
)
j=1−δ1,l, ...,Ml

1: IR = {}
2: p̂ = (0)k∈I
3: for l = 1, . . . , s do
4: Il = {k ∈ I \ IR : k · zl 6≡ h · zl (mod Ml) for all h ∈ I \ (IR ∪ {k})}
5: gl = (p[1],p[3− l +

∑l−1
r=1Mr], . . . ,p[1− l +

∑l
r=1Mr])

> − LFFT(Ml, zl, IR, (p̂k)k∈IR)
6: (p̂k)k∈Il = aLFFT(Ml, zl, Il, gl)
7: IR = IR ∪ Il
8: end for

Output: p̂ = (A∗A)−1A∗p Fourier coefficients of p ∈ ΠI

Complexity: O (
∑s

l=1Ml logMl + s(d+ log |I|)|I|)

5 Numerics

We use Algorithm 5 with oversampling parameter σ = 1 and we choose n = 10d in order to
determine the multiple rank-1 lattices that are used in our numerical examples. We computed
the numerical tests on a compute server that has four Intel Xeon CPU E5-4640 2.40GHz 8-
core, 512 GB RAM, running Matlab-R2015a on openSUSE Linux 13.1. In order to capture
the computational times we restrict the number of used CPU to one using the parameter
-singleCompThread for Matlab. The sparse grid Fourier transforms (HCFFT) are computed
using the HCFFT from the NHCFFT toolbox, cf. [6].

5.1 Axis Crosses

We consider so-called axis crosses of a specific width N = 2n, n ∈ N0, defined by

I = Idac,N := {k ∈ Zd : ‖k‖∞ = ‖k‖1 ≤ 2n}

as frequency index sets. One can use sampling values along single rank-1 lattices Λ(z,M)
for the reconstruction of multivariate trigonometric polynomials supported on axis crosses,
cf. [13, Ex. 3.27]. The main disadvantage of this approach is the necessary oversampling,
i.e., one needs at least |Λ(z,M)| ≥ (N + 1)2 sampling values in order to ensure a unique
reconstruction of trigonometric polynomials p ∈ ΠIdac,N

. We compare this lower bound on

the number of sampling values to the number of frequency indices within Idac,N . This yields
oversampling factors of

|Λ(z,M)|
|Idac,N |

≥ (N + 1)2

2dN + 1
≥ N

2d

and thus the oversampling increases linearly in N .
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Figure 5.1: Oversampling factors of reconstructing multiple rank-1 lattices for axis crosses
Idac,N .
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Figure 5.2: Oversampling factors of reconstructing multiple rank-1 lattices for dyadic hyper-
bolic crosses Iddhc,N .

On the other hand, we want to use multiple rank-1 lattices as spatial discretizations. Our
numerical tests, illustrated in Figure 5.1, allows for the conjecture that the oversampling
factors stagnate for growing width N of the considered axis crosses of fixed dimension d.
Moreover, we observe small oversampling factors which are always below three. For compar-
ison, sampling along a reconstructing single rank-1 lattice necessarily implies oversampling
factors greater than 400 for N ≥ 214 and all dimensions 2 ≤ d ≤ 20.

5.2 Dyadic Hyperbolic Crosses

In this section, we consider so-called dyadic hyperbolic crosses I = Iddhc,N , cf. (4.1), where
the number N = 2n, n ∈ N0, is a power of two.

We applied Algorithm 5 to dyadic hyperbolic crosses of different refinements and dimensions
in order to determine reconstructing multiple rank-1 lattices. The resulting oversampling
factors slightly grows with respect to the refinement and dimension, cf. Figure 5.2. We
observe that the oversampling factors seem to stagnate. More precisely, Euler’s number e
bounds them from above in all our numerical tests.

In the following, we compare three different sampling methods in order to reconstruct
multivariate trigonometric polynomials with frequencies supported on dyadic hyperbolic cross
index sets:
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Figure 5.3: Six-dimensional hyperbolic cross fast Fourier transforms for comparison.

• Sampling along sparse grids (HCFFT, cf. [10]),

• sampling along reconstructing single rank-1 lattices (LFFT, cf. [12]),

• sampling along multiple rank-1 lattices found by Algorithm 5 (MLFFT).

Our numerical tests illustrate the characteristics of the discrete Fourier transforms (condi-
tion number of A(X , I), spent oversampling |X |/|I|), and the computational times of the
corresponding fast algorithms.

Fixed Dimension d = 6

Since we are interested in numerical tests that visualize in some sense the asymptotic behavior
of the three different sampling methods, we fix the moderate dimension d = 6. Thus, we can
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compute condition numbers even for moderate refinements N = 2n up to N = 1024, cf. Figure
5.3. We observe, that the discrete Fourier transform based on multiple rank-1 lattice sampling
requires only low oversampling factors and that the corresponding Fourier matrices are well-
conditioned. Moreover, the computational complexity of the fast Algorithm of the Fourier
transform (MLFFT) is illustrated and at least almost as good as the computational complexity
of the HCFFT with respect to N . We emphasize, that the computational complexity is
described by the slopes of the given plots that show the computational times, independent
from constant factors caused by hardware or software specifications. Accordingly, the MLFFT
seems to avoid both the disadvantage of the HCFFT (growing condition numbers, cf. [14])
and the disadvantage of the LFFT (growing oversampling factors and the associated fast
growing computational times, cf. [15]).

In addition, we tested the approach considered in Section 4.1 (pHCFFT), where we con-
struct a sparse grid like sampling scheme consisting of boxes with edge lengths that are
prime numbers. However, we plotted only the condition numbers of the Fourier matrices
A(S6

pdhc,N , I
6
dhc,N ), cf. Figure 5.3. These condition numbers behaves similar to the condition

numbers belonging to the HCFFT, and thus are the problematic properties of the pHCFFT.
Moreover, the oversampling factors S6

pdhc,N/I
6
dhc,N , that are not plotted, are relatively large

up to 175.

Fixed Refinement N = 22, . . . , 25

In [15, Fig. 4.2] the authors compared the computational times of sampling along sparse
grids to sampling along reconstructing single rank-1 lattices. The lesson of this figure is clear:
Unique sampling along reconstructing single rank-1 lattices may be not optimal due to the
fact that the number of necessarily used sampling values, cf. [12], may be not optimal, in
general.

Similar to this, we illustrate the computational times of different fast algorithms in Figure
5.4. More precisely, we mapped the computational times of the

• hyperbolic cross fast Fourier transform (HCFFT), i.e., the fast algorithm for the eval-
uation of hyperbolic cross trigonometric polynomials at all nodes of a sparse grid and
the fast algorithm for the reconstruction of hyperbolic cross trigonometric polynomials
from the sampling values at sparse grid nodes,

• multiple lattice fast Fourier transform (MLFFT) applied to hyperbolic cross trigonomet-
ric polynomials, i.e., the fast algorithm for the evaluation of multivariate trigonometric
polynomials at all nodes of a reconstructing multiple rank-1 lattice and different fast
algorithms for the reconstruction of multivariate trigonometric polynomials from the
sampling values at a reconstructing multiple rank-1 lattice.

In addition to the direct reconstruction, cf. Algorithm 6, we applied a CG method with
starting vector p̂ = 0 and a CG method with starting vector p̂ that is the result of the direct
reconstruction. We are interested in the application of such a CG method since the direct
reconstruction suffers from growing relative errors

err2 :=
‖ ˜̂p− p̂0‖2
‖p̂0‖2

, (5.1)
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Figure 5.4: Computational times in seconds of the fast algorithms computing the dyadic hy-
perbolic cross discrete Fourier transforms with respect to the problem size |Iddhc,N |.

where ˜̂p is the result of the reconstruction from sampling values of the hyperbolic cross trigono-
metric polynomial with frequencies p̂0, cf. Figure 5.5. This figure also contains the relative
errors of the fast reconstruction method from sampling values at sparse grids (HCFFT). We
point out that this fast algorithm also suffers from growing relative errors. We did not apply
a conjugate gradient method on the HCFFT since we expect huge computational costs due
to the expected number of iterations of the CG method which is indicated by the growing
condition numbers of the corresponding Fourier matrices.

19



104

3

501

6

2 586

11

13 852

19

63 671

30

10−15

10−13

10−11

|Iddhc,16|
d

er
r 2

N = 16

272

3

1 683

6

11 584

11

69 460

18

347 392

27

10−15

10−13

10−11

10−9

|Iddhc,32|
d

er
r 2

N = 32

HCFFT direct reconstruction MLFFT direct reconstruction & CG

MLFFT direct reconstruction MLFFT reconstruction only CG
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most three (filled markers) and nine (unfilled markers). Filled markers: CG with
starting vector zero, unfilled markers: CG with starting vector from Algorithm 6.

The runtimes of the new fast algorithms (MLFFT) behave similar to the runtimes of the
HCFFT with respect to the dimension d, cf. Figure 5.4. Even the CG methods have a similar
runtime behavior, which is caused by the extremely slow-growing number of iterations of the
CG method, cf. Figure 5.6. Furthermore, Figure 5.6 indicates that the number of iterations
slightly depends on the size of the matrices A(Λ(z1,M1, . . . ,zs,Ms), I

d
dhc,N ) but not on the

dimension d or the refinement parameter N , which is in accordance with the observation of
stagnating condition numbers of the matricesA(Λ(z1,M1, . . . ,zs,Ms), I

d
dhc,N ), cf. Figure 5.7.
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5.3 Random frequency index sets

The complexity of the new fast Fourier transform algorithms, cf. Algorithms 3, 4, and 6,
mainly depends on the number s of rank-1 lattices that are joined in order to build the multiple
rank-1 lattice Λ(z1,M1, . . . ,zs,Ms). We demonstrate the behavior of s for ten-dimensional
randomly chosen frequency index sets. Each component of the indices k ∈ I ⊂ Z10 are
rounded values that are chosen from a normal distribution with mean zero and variance
10 000.

We considered frequency index sets I of different cardinalities which are powers of two,
i.e. |I| ∈ {2, 4, 8, . . . , 220}. We produced 1 000 different frequency index sets for each of
the cardinalities and constructed one reconstructing multiple rank-1 lattice for each of the
frequency index sets. Figure 5.8 plots the cardinality of the frequency index set I against the
maximal number s, the minimal number s, and the average of the numbers s that occurred
in our numerical tests. We observe that the number s behave logarithmically with respect to
the cardinality of I. We would like to point out that we observed a similar behavior in all
numerical tests that we treated before.

Furthermore, the oversampling factors
∑s

r=1Mr/|I| are less than Euler’s number e. In addi-
tion, we computed the condition numbers of the Fourier matrices A(Λ(z1,M1, . . . ,zs,Ms), I)
for the cases |I| ≤ 212 and obtained low condition numbers less than 16. The average of the
condition numbers were less than seven in each of the cases |I| = 2n, n = 1, . . . , 12.

5.4 Approximation experiment

The main focus of the paper is the reconstruction of trigonometric polynomials. Nevertheless,
we would like to demonstrate the approximation properties of the new sampling method based
on an example. We choose the scaled periodized (tensor product) kink function

gd : Td → R, gd(x) =
d∏
s=1

(
53/415

4
√

3
max

{
1

5
−
(
xs −

1

2

)2

, 0

})
, (5.2)
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Figure 5.8: Indices s of reconstructing multiple rank-1 lattices for randomly chosen ten-
dimensional frequency index sets I.

that is already treated in numerical tests for the single rank-1 lattice sampling methods in [4,
Sec. 8] and the integration approach in [11, Sec. 6.2]. However, the function has norm one
within L2(Td) and belongs to the function space

Hαmix(Td) :=

f ∈ L2(Td) : ‖f |Hαmix(Td)‖2 :=
∑
k∈Zd

|f̂k|2
d∏
s=1

(1 + |ks|2)α <∞

 ,

for each α < 3/2. We consider the sampling operator SXI : L2(Td)→ ΠI that is given by

SXI f := min
t∈ΠI

∥∥(f(x)− t(x))x∈X
∥∥
`2(|X |) , f ∈ L2(Td). (5.3)

The solution of (5.3) is computed using the normal equation

A∗(X , I)A(X , I)t̂ = A∗(X , I)g, t̂ =
(
t̂k
)
k∈I , g = (g(x))x∈X

or, in the case of a full column rank matrix A(X , I),

t̂ = (A∗(X , I)A(X , I))−1A∗(X , I)g,

equivalently.

Since the function gd ∈ H
3/2−ε
mix (Td), ε > 0 arbitrarily small, is of dominating mixed smooth-

ness, hyperbolic cross trigonometric polynomials offer suitable approximations of the func-
tions gd. For that reason, we choose dyadic hyperbolic crosses Iddhc,N of different refinements
N = 2n, n ∈ N0, as frequency index sets, search for reconstructing multiple rank-1 lattices

for Iddhc,N , and compute both, the approximations S
Sd
dhc,N

Iddhc,N
based on sampling values given at

sparse grids Sddhc,N and the approximations S
Λ(z1,M1,...,zs,Ms)

Iddhc,N
based on sampling values given

at the nodes along reconstructing multiple rank-1 lattices. We compare the results in Figure
5.9.

To this end, we fixed the dimensions d = 3, 6, 10 and the parameters n up to 19 and plotted
the L2(Td) errors. On the one hand, the usage of multiple rank-1 lattices has a favorable
pre-asymptotic behavior in our experiment. This effect is caused by the structure of the test
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Figure 5.9: L2(Td) sampling error and number of sampling points for the approximation of
the kink function gd from (5.2).

function, since it is zero at the boundary of Td and the sparse grid nodes are just on the
boundary as long as the refinement parameter n is not at least as big as the dimension d. On
the other hand, the multiple rank-1 lattice approach seems to be competitive even for higher
refinements. The gray lines illustrates the best known upper bounds for the approximation
error of the sparse grid sampling method up to constants that depend only on the dimension
d and the smoothness parameter 3/2, cf. [3, Thm. 6.10]. We stress the fact, that the
approximation theory is primarily interested in the slopes of the plots in Figure 5.9. In our
example, we notice that the slopes of the error curves of the sampling method along multiple
rank-1 lattices are almost identical to those of the best known upper error bounds for sparse
grids—at least for dimension d = 3.

At this point, we refer to the numerical tests in [4] and, in particular, for comparison to Fig.
8.1b and 8.2b therein. These plots show the sampling error of SX

Iddhc,N
g3 and SX

Iddhc,N
g6, where

X is a reconstructing single rank-1 lattice for Iddhc,N . In accordance with the theoretical results
of [4], the single rank-1 lattice approach is not able to compete with sparse grid methods in
terms of the asymptotics of the approximation errors.

6 Pending issues

We presented a non-deterministic construction of sampling schemes for trigonometric poly-
nomials in Algorithm 5. Various numerical tests promise excellent characteristics of this
approach such as

• small oversampling factors |X |/|I|,
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• fast evaluating as well as reconstructing algorithms,

• stability of the Fourier matrices,

• suitable approximation properties for functions of dominating mixed smoothness.

All those issues could not be clarified within this paper. Nevertheless, we would like to discuss
known concepts that may lead to meaningful results in future research.

In order to achieve a reconstructing multiple rank-1 lattice for the frequency index set I,
we need at most s ≤ |I| rank-1 lattices, since each used rank-1 lattice uniquely reconstructs
at least one frequency index of the current subset of I in Algorithm 5. The lattice size of

each used rank-1 lattice is bounded by Mub < 2 max
{
|I|2
2 + 2,max {2‖k‖∞ : k ∈ I}

}
due to

Bertrand’s postulate. Assuming max {2‖k‖∞ : k ∈ I} ≤ |I|2/2 + 2, we determine a maximal
size of the multiple rank-1 lattice of approximately |I|3. This estimate is indeed unsatisfactory.
A highly promising ansatz for lower, meaningful estimates of the number of needed sampling
nodes may be adapted from recently published results dealing with straight-line programs,
see e.g. [1]. These results are also necessary in order to clarify the complexity of a unique
reconstruction using Algorithm 6.

Moreover, Algorithm 5 ensures that a matrix A(Λ(z1,M1, . . . ,zs,Ms), I) consists of rows
of the matrix A(Λ(z,M), I), where z and M are specified in Corollary 2.3 and each row of
A(Λ(z,M), I) occurs at most once in A(Λ(z1,M1, . . . ,zs,Ms), I). The matrix A(Λ(z,M), I)
has orthogonal columns, and thus we can understand the sampling along the multiple rank-1
lattice Λ(z1,M1, . . . ,zs,Ms) as structured subsampling of the single rank-1 lattice Λ(z,M).
Anyway, this point of view coincides with the considerations in [17, Sec. 2] called “random
Fourier measurements” with the difference that multiple rank-1 lattices does not allow for
a randomly chosen subset of the rows of A(Λ(z,M), I). An appropriate adaption of the
results in [17] may allow for a suitable estimate of the condition number of the Fourier matrix
A(Λ(z1,M1, . . . ,zs,Ms), I) applying its restricted isometry property, cf. [17, Def. 2.1].

The fourth item above addresses the quality of the sampling operator in specific approx-
imation situations. In this context, the approximation of functions of dominating mixed
smoothness is of main interest. Each sampling operator acting on all sampling values along
single rank-1 lattices can not yield optimal results, cf. [4]. However, V. N. Temlyakov [28]
shows the boundedness of the corresponding sampling operators already in 1986. Related re-
sults may be also possible for multiple rank-1 lattices. The estimates of the singular values—at
least the smallest one—of the matrices A(Λ(z1,M1, . . . ,zs,Ms), I) is one essential ingredi-
ent in order to proof a similar statement. Certainly, this estimate is closely related to the
third item above that calls for usable upper bounds on the condition numbers of the matrices
A(Λ(z1,M1, . . . ,zs,Ms), I).

7 Conclusion

The paper presents a new sampling method that allows for the unique sampling of sparse
multivariate trigonometric polynomials. The main idea is to sample along more than one
lattice grid similar to the sparse grids. In contrast to sparse grids we restrict the used lat-
tices to rank-1 lattices. The constructive idea that determines reconstructing multiple rank-1
lattices, cf. Algorithm 5, allows for another point of view. The resulting multiple rank-1
lattices Λ(z1,M1, . . . ,zs,Ms) are subsampling schemes of huge single reconstructing rank-1
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lattices Λ(z,M) for the frequency index set I, where z and M are specified in Corollary
2.2. The Fourier matrix A(Λ(z,M), I) that belongs to this huge rank-1 lattice Λ(z,M) has
orthogonal columns. All numerical tests indicate that the reconstructing multiple rank-1 lat-
tice Λ(z1,M1, . . . ,zs,Ms) is a stable subsampling scheme of the corresponding reconstructing
rank-1 lattice Λ(z,M).
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