ConicBundle
|
Header declaring the class CH_Matrix_Classes::Sparsesym for sparse symmetric matrices with Real elements. More...
#include "sparsmat.hxx"
Go to the source code of this file.
Classes | |
class | CH_Matrix_Classes::Sparsesym |
Matrix class of symmetric matrices with real values of type Real More... | |
Namespaces | |
CH_Matrix_Classes | |
Matrix Classes and Linear Algebra. See Matrix Classes (namespace CH_Matrix_Classes) for a quick introduction. | |
Functions | |
Matrix | CH_Matrix_Classes::diag (const Sparsesym &A) |
returns the diagonal of A as a dense Matrix vector | |
Sparsesym | CH_Matrix_Classes::sparseDiag (const Matrix &A, Real tol=SPARSE_ZERO_TOL) |
forms a sparse symmetrix matrix having vector A on its diagonal | |
void | CH_Matrix_Classes::swap (Sparsesym &A, Sparsesym &B) |
swap the content of the two sparse matrices A and B (involves no copying) | |
Sparsesym & | CH_Matrix_Classes::xeyapzb (Sparsesym &x, const Sparsesym &y, const Sparsesym &z, Real alpha=1., Real beta=1.) |
returns x= alpha*y+beta*z; x is initialized to the correct size | |
Sparsesym & | CH_Matrix_Classes::support_rankadd (const Matrix &A, Sparsesym &C, Real alpha=1., Real beta=0., int trans=0) |
returns C=beta*C+alpha*AA^T (or A^TA), but only on the current support of C | |
Real | CH_Matrix_Classes::ip (const Symmatrix &A, const Sparsesym &B) |
returns the usual inner product of A and B, i.e., the sum of A(i,j)*B(i,j) over all i,j | |
Sparsesym | CH_Matrix_Classes::abs (const Sparsesym &A) |
returns a Sparsesym with elements abs((*this)(i,j)) for all i,j | |
Real | CH_Matrix_Classes::trace (const Sparsesym &A) |
returns the sum of the diagonal elements A(i,i) over all i | |
Real | CH_Matrix_Classes::ip (const Sparsesym &A, const Sparsesym &B) |
returns the usual inner product of A and B, i.e., the sum of A(i,j)*B(i,j) over all i,j | |
Real | CH_Matrix_Classes::ip (const Matrix &A, const Sparsesym &B) |
returns the usual inner product of A and B, i.e., the sum of A(i,j)*B(i,j) over all i,j | |
Real | CH_Matrix_Classes::norm2 (const Sparsesym &A) |
returns the Frobenius norm of A, i.e., the square root of the sum of A(i,j)*A(i,j) over all i,j | |
Matrix | CH_Matrix_Classes::sumrows (const Sparsesym &A) |
returns a row vector holding the sum over all rows, i.e., (1 1 ... 1)*A | |
Real | CH_Matrix_Classes::sum (const Sparsesym &A) |
returns the sum over all elements of A, i.e., (1 1 ... 1)*A*(1 1 ... 1)^T | |
std::ostream & | CH_Matrix_Classes::operator<< (std::ostream &o, const Sparsesym &v) |
output format (lower triangle): nr nz \n i1 j1 val1\n i2 j2 val2\n ... inz jnz valnz\n | |
std::istream & | CH_Matrix_Classes::operator>> (std::istream &i, Sparsesym &v) |
input format (lower triangle): nr nz \n i1 j1 val1\n i2 j2 val2\n ... inz jnz valnz\n | |
Sparsesym & | CH_Matrix_Classes::xbpeya (Sparsesym &x, const Sparsesym &y, Real alpha=1., Real beta=0.) |
returns x= alpha*y+beta*x; if beta==0. then x is initialized to the correct size | |
Sparsesym | CH_Matrix_Classes::operator+ (const Sparsesym &A, const Sparsesym &B) |
returns a Sparsesym that equals A+B | |
Sparsesym | CH_Matrix_Classes::operator- (const Sparsesym &A, const Sparsesym &B) |
returns a Sparsesym that equals A-B | |
Sparsesym | CH_Matrix_Classes::operator* (const Sparsesym &A, Real d) |
returns a Sparsesym that equals A*d | |
Sparsesym | CH_Matrix_Classes::operator* (Real d, const Sparsesym &A) |
returns a Sparsesym that equals A*d | |
Sparsesym | CH_Matrix_Classes::operator/ (const Sparsesym &A, Real d) |
returns a Sparsesym that equals A/d; ATTENTION: no check for devision by zero More... | |
Matrix | CH_Matrix_Classes::operator* (const Sparsesym &A, const Matrix &B) |
returns a Matrix that equals A*B | |
Matrix | CH_Matrix_Classes::operator* (const Matrix &A, const Sparsesym &B) |
returns a Matrix that equals A*B | |
Matrix | CH_Matrix_Classes::operator+ (const Matrix &A, const Sparsesym &B) |
returns a Matrix that equals A+B | |
Matrix | CH_Matrix_Classes::operator+ (const Sparsesym &A, const Matrix &B) |
returns a Matrix that equals A+B | |
Matrix | CH_Matrix_Classes::operator- (const Matrix &A, const Sparsesym &B) |
returns a Matrix that equals A-B | |
Matrix | CH_Matrix_Classes::operator- (const Sparsesym &A, const Matrix &B) |
returns a Matrix that equals A-B | |
Real | CH_Matrix_Classes::ip (const Sparsesym &A, const Matrix &B) |
returns the usual inner product of A and B, i.e., the sum of A(i,j)*B(i,j) over all i,j | |
Sparsesym | CH_Matrix_Classes::transpose (const Sparsesym &A) |
returns a copy of A (drop it or use a constructor instead) More... | |
Matrix | CH_Matrix_Classes::sumcols (const Sparsesym &A) |
returns a column vector holding the sum over all columns, i.e., A*(1 1 ... 1)^T | |
Symmatrix | CH_Matrix_Classes::operator+ (const Sparsesym &A, const Symmatrix &B) |
returns a Symmatrix that equals A+B | |
Symmatrix | CH_Matrix_Classes::operator+ (const Symmatrix &A, const Sparsesym &B) |
returns a Symmatrix that equals A+B | |
Symmatrix | CH_Matrix_Classes::operator- (const Sparsesym &A, const Symmatrix &B) |
returns a Symmatrix that equals A-B | |
Symmatrix | CH_Matrix_Classes::operator- (const Symmatrix &A, const Sparsesym &B) |
returns a Symmatrix that equals A-B | |
Real | CH_Matrix_Classes::ip (const Sparsesym &A, const Symmatrix &B) |
returns the usual inner product of A and B, i.e., the sum of A(i,j)*B(i,j) over all i,j | |
Matrix | CH_Matrix_Classes::operator* (const Sparsesym &A, const Sparsemat &B) |
returns a Matrix that equals A*B | |
Matrix | CH_Matrix_Classes::operator* (const Sparsemat &A, const Sparsesym &B) |
returns a Matrix that equals A*B | |
Matrix | CH_Matrix_Classes::operator* (const Symmatrix &A, const Sparsemat &B) |
returns a Matrix that equals A*B | |
Matrix | CH_Matrix_Classes::operator* (const Sparsemat &A, const Symmatrix &B) |
returns a Matrix that equals A*B | |
Equal (Members) | |
int | CH_Matrix_Classes::equal (const Sparsesym &A, const Sparsesym &B, Real eqtol=1e-10) |
returns 1 if both matrices are identical, 0 otherwise | |
Header declaring the class CH_Matrix_Classes::Sparsesym for sparse symmetric matrices with Real elements.