next up previous
Next: NFFT Up: NDFT Previous: Equispaced knots

Inverse NDFT

In general there is no simple inversion formula, hence one deals with the following reconstruction or recovery problem. Given the values $ f_j \in \mathbb{C}\; (j=0,\hdots,M-1)$ at non equispaced knots $ {x}$$ _j\; (j=0,\hdots,M-1)$, the aim is to reconstruct a trigonometric polynomial $ f$ resp. its Fourier-coefficients $ \hat f_{\mbox{\boldmath\scriptsize {${k}$}}}\;(\mbox{\boldmath {${k}$}} \in I_{\mbox{\boldmath\scriptsize {${N}$}}})$ with

$\displaystyle f\left(\mbox{\boldmath {${x}$}}_j\right)=\sum_{\mbox{\boldmath\sc...
...ldmath {${A}$}} \mbox{\boldmath {${\hat f}$}} \approx \mbox{\boldmath {${f}$}}.$    

Often, the number of nodes $ M$ and the dimension of the space of the polynomials $ N_{\text{\tiny $\Pi$}}$ do not coincide, i.e., the matrix $ {A}$ is rectangular. A standard method is to use the Moore-Penrose-pseudoinverse solution $ {\hat f}$$ ^{\dagger}$ which solves the general linear least squares problem, see e.g. [3, p. 15],

$\displaystyle \Vert$$\displaystyle \mbox{\boldmath {${\hat f}$}}$$\displaystyle \Vert _2 \rightarrow \min$   subject to$\displaystyle \quad
 \Vert$$\displaystyle \mbox{\boldmath {${f}$}}$$\displaystyle -$   $\displaystyle \mbox{\boldmath {${A}$}}$   $\displaystyle \mbox{\boldmath {${\hat f}$}}$$\displaystyle \Vert _2=\min$   for   $\displaystyle \mbox{\boldmath {${f}$}}$$\displaystyle \in \mathbb{C}^{M}.$    

Of course, computing the pseudoinverse by the singular value decomposition is very expensive here and no practical way at all.

For a comparative low polynomial degree $ N_{\text{\tiny $\Pi$}}<M$ the linear system $ {A}$   $ {\hat f}$$ \approx$   $ {f}$ is over-determined, so that in general the given data $ f_j\in \mathbb{C},\;j=0,\hdots,M-1,$ will be only approximated up to the residual $ {r}$$ :=$$ {f}$$ -$$ {A}$   $ {\hat f}$. One considers the weighted approximation problem

$\displaystyle \Vert$$\displaystyle \mbox{\boldmath {${f}$}}$$\displaystyle -$   $\displaystyle \mbox{\boldmath {${A}$}}$   $\displaystyle \mbox{\boldmath {${\hat f}$}}$$\displaystyle \Vert _{\mbox{\boldmath\scriptsize {${W}$}}} 
 = \left(\sum_{j=0}...
...)^{1/2}
 \stackrel{\mbox{\boldmath\scriptsize {${\hat f}$}}}{\rightarrow} \min,$    

which may incorporate weights $ w_j> 0$, $ {W}$$ :={\, \rm diag}(w_j)_{j=0,\ldots,M-1}$, to compensate for clusters in the sampling set $ {\cal X}$. This problem is equivalent to the weighted normal equation of first kind

$\displaystyle \mbox{\boldmath {${A}$}}$$\displaystyle ^{\rm H}$   $\displaystyle \mbox{\boldmath {${W}$}}$   $\displaystyle \mbox{\boldmath {${A}$}}$   $\displaystyle \mbox{\boldmath {${\hat f}$}}$$\displaystyle =$   $\displaystyle \mbox{\boldmath {${A}$}}$$\displaystyle ^{\rm H}$   $\displaystyle \mbox{\boldmath {${W}$}}$   $\displaystyle \mbox{\boldmath {${f}$}}$$\displaystyle .$ (2.3)

For a comparative high polynomial degree $ N_{\text{\tiny $\Pi$}}>M$ one expects to interpolate the given data $ f_j\in \mathbb{C},\;j=0,\hdots,M-1,$ exactly. The (consistent) linear system $ {A}$   $ {\hat f}$$ =$   $ {f}$ is under-determined. One considers the damped minimisation problem

$\displaystyle \Vert$$\displaystyle \mbox{\boldmath {${\hat f}$}}$$\displaystyle \Vert _{\mbox{\boldmath\scriptsize {${\hat W^{-1}}$}}} 
 =\left(\...
...x{\boldmath {${A}$}} \mbox{\boldmath {${\hat
 f}$}} = \mbox{\boldmath {${f}$}},$ (2.4)

which may incorporate 'damping factors' $ \hat w_{\mbox{\boldmath\scriptsize {${k}$}}}> 0$, $ {\hat W}$$ :=
{\, \rm diag}(\hat w_{\mbox{\boldmath\scriptsize {${k}$}}})_{\mbox{\boldmath\scriptsize {${k}$}}\in I_{\mbox{\boldmath\tiny {${N}$}}}}$. A smooth solution is favoured, i.e., a decay of the Fourier coefficients $ \hat f_{\mbox{\boldmath\scriptsize {${k}$}}},\;\mbox{\boldmath {${k}$}}\in I_{\mbox{\boldmath\scriptsize {${N}$}}}$, for decaying damping factors $ \hat w_{\mbox{\boldmath\scriptsize {${k}$}}}$. This problem is equivalent to the damped normal equation of second kind

$\displaystyle \mbox{\boldmath {${A}$}}$   $\displaystyle \mbox{\boldmath {${\hat W}$}}$   $\displaystyle \mbox{\boldmath {${A}$}}$$\displaystyle ^{\rm H}$   $\displaystyle \mbox{\boldmath {${\tilde f}$}}$$\displaystyle =$   $\displaystyle \mbox{\boldmath {${f}$}}$$\displaystyle ,$   $\displaystyle \mbox{\boldmath {${\hat f}$}}$$\displaystyle =$$\displaystyle \mbox{\boldmath {${\hat W}$}}$   $\displaystyle \mbox{\boldmath {${A}$}}$$\displaystyle ^{\rm H}$   $\displaystyle \mbox{\boldmath {${\tilde f}$}}$$\displaystyle .$ (2.5)


next up previous
Next: NFFT Up: NDFT Previous: Equispaced knots
Stefan Kunis 2004-09-03