Next: About this document ...
Up: nfft2
Previous: Reconstruction of functions
- 1
-
R. Bass and K. Gröchenig.
Random sampling of multivariate trigonometric polynomials.
SIAM J. Math. Anal., to appear.
- 2
-
G. Beylkin.
On the fast Fourier transform of functions with singularities.
Appl. Comput. Harmon. Anal., 2:363 - 381, 1995.
- 3
-
A. Björck.
Numerical Methods for Least Squares Problems.
SIAM, Philadelphia, 1996.
- 4
-
A. J. W. Duijndam and M. A. Schonewille.
Nonuniform fast Fourier transform.
Geophysics, 64:539 - 551, 1999.
- 5
-
A. Dutt and V. Rokhlin.
Fast Fourier transforms for nonequispaced data.
SIAM J. Sci. Stat. Comput., 14:1368 - 1393, 1993.
- 6
-
B. Elbel and G. Steidl.
Fast Fourier transform for nonequispaced data.
In C. K. Chui and L. L. Schumaker, editors, Approximation Theory
IX, Nashville, 1998. Vanderbilt University Press.
- 7
-
H. Feichtinger, K. Gröchenig, and T. Strohmer.
Efficient numerical methods in non-uniform sampling theory.
Numer. Math., 69:423 - 440, 1995.
- 8
-
J. A. Fessler and B. P. Sutton.
Nonuniform fast Fourier transforms using min-max interpolation.
IEEE Trans. Signal Process., 51:560 - 574, 2003.
- 9
-
K. Fourmont.
Schnelle Fourier-Transformation bei nichtäquidistanten
Gittern und tomographische Anwendungen.
Dissertation, Universität Münster, 1999.
- 10
-
K. Fourmont.
Non equispaced fast Fourier transforms with applications to
tomography.
J. Fourier Anal. Appl., 9:431 - 450, 2003.
- 11
-
R. Franke.
http://www.math.nps.navy.mil/~rfranke/README.
- 12
-
M. Frigo and S. G. Johnson.
FFTW, a C subroutine library.
http://www.fftw.org/.
- 13
-
L. Greengard and J.-Y. Lee.
Accelerating the nonuniform fast fourier transform.
SIAM Rev., 46:443 - 454, 2004.
- 14
-
M. Hanke.
Conjugate gradient type method for ill-posed problems.
Wiley, New York, 1995.
- 15
-
J. I. Jackson.
Selection of a convolution function for Fourier inversion using
gridding.
IEEE Trans. Med. Imag., 10:473 - 478, 1991.
- 16
-
S. Kunis and D. Potts.
Stability results for scattered data interpolation by trigonometric
polynomials.
Preprint, Univ. Lübeck, A-04-12, 2004.
- 17
-
N. Nguyen and Q. H. Liu.
The regular Fourier matrices and nonuniform fast Fourier
transforms.
SIAM J. Sci. Comput., 21:283 - 293, 1999.
- 18
-
A. Nieslony and G. Steidl.
Approximate factorizations of Fourier matrices with nonequispaced
knots.
Linear Algebra Appl., 266:337 - 351, 2003.
- 19
-
J. Pelt.
Fast computation of trigonometric sums with applications to frequency
analysis of astronomical data.
In D. Maoz, A. Sternberg, and E. Leibowitz, editors, Astronomical Time Series, pages 179 - 182, Kluwer, 1997.
- 20
-
D. Potts, G. Steidl, and M. Tasche.
Fast Fourier transforms for nonequispaced data: A tutorial.
In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern
Sampling Theory: Mathematics and Applications, pages 247 - 270, Boston,
2001. Birkhäuser.
- 21
-
R. A. Scramek and F. R. Schwab.
Imaging.
In R. Perley, F. R. Schwab, and A. Bridle, editors, Astronomical
Society of the Pacific Conference, volume 6, pages 117 - 138, 1988.
- 22
-
G. Steidl.
A note on fast Fourier transforms for nonequispaced grids.
Adv. Comput. Math., 9:337 - 353, 1998.
- 23
-
A. F. Ware.
Fast approximate Fourier transforms for irregularly spaced data.
SIAM Rev., 40:838 - 856, 1998.
Stefan Kunis
2004-09-03