next up previous
Next: About this document ... Up: nfft2 Previous: Reconstruction of functions

Bibliography

1
R. Bass and K. Gröchenig.
Random sampling of multivariate trigonometric polynomials.
SIAM J. Math. Anal., to appear.

2
G. Beylkin.
On the fast Fourier transform of functions with singularities.
Appl. Comput. Harmon. Anal., 2:363 - 381, 1995.

3
A. Björck.
Numerical Methods for Least Squares Problems.
SIAM, Philadelphia, 1996.

4
A. J. W. Duijndam and M. A. Schonewille.
Nonuniform fast Fourier transform.
Geophysics, 64:539 - 551, 1999.

5
A. Dutt and V. Rokhlin.
Fast Fourier transforms for nonequispaced data.
SIAM J. Sci. Stat. Comput., 14:1368 - 1393, 1993.

6
B. Elbel and G. Steidl.
Fast Fourier transform for nonequispaced data.
In C. K. Chui and L. L. Schumaker, editors, Approximation Theory IX, Nashville, 1998. Vanderbilt University Press.

7
H. Feichtinger, K. Gröchenig, and T. Strohmer.
Efficient numerical methods in non-uniform sampling theory.
Numer. Math., 69:423 - 440, 1995.

8
J. A. Fessler and B. P. Sutton.
Nonuniform fast Fourier transforms using min-max interpolation.
IEEE Trans. Signal Process., 51:560 - 574, 2003.

9
K. Fourmont.
Schnelle Fourier-Transformation bei nichtäquidistanten Gittern und tomographische Anwendungen.
Dissertation, Universität Münster, 1999.

10
K. Fourmont.
Non equispaced fast Fourier transforms with applications to tomography.
J. Fourier Anal. Appl., 9:431 - 450, 2003.

11
R. Franke.
http://www.math.nps.navy.mil/~rfranke/README.

12
M. Frigo and S. G. Johnson.
FFTW, a C subroutine library.
http://www.fftw.org/.

13
L. Greengard and J.-Y. Lee.
Accelerating the nonuniform fast fourier transform.
SIAM Rev., 46:443 - 454, 2004.

14
M. Hanke.
Conjugate gradient type method for ill-posed problems.
Wiley, New York, 1995.

15
J. I. Jackson.
Selection of a convolution function for Fourier inversion using gridding.
IEEE Trans. Med. Imag., 10:473 - 478, 1991.

16
S. Kunis and D. Potts.
Stability results for scattered data interpolation by trigonometric polynomials.
Preprint, Univ. Lübeck, A-04-12, 2004.

17
N. Nguyen and Q. H. Liu.
The regular Fourier matrices and nonuniform fast Fourier transforms.
SIAM J. Sci. Comput., 21:283 - 293, 1999.

18
A. Nieslony and G. Steidl.
Approximate factorizations of Fourier matrices with nonequispaced knots.
Linear Algebra Appl., 266:337 - 351, 2003.

19
J. Pelt.
Fast computation of trigonometric sums with applications to frequency analysis of astronomical data.
In D. Maoz, A. Sternberg, and E. Leibowitz, editors, Astronomical Time Series, pages 179 - 182, Kluwer, 1997.

20
D. Potts, G. Steidl, and M. Tasche.
Fast Fourier transforms for nonequispaced data: A tutorial.
In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern Sampling Theory: Mathematics and Applications, pages 247 - 270, Boston, 2001. Birkhäuser.

21
R. A. Scramek and F. R. Schwab.
Imaging.
In R. Perley, F. R. Schwab, and A. Bridle, editors, Astronomical Society of the Pacific Conference, volume 6, pages 117 - 138, 1988.

22
G. Steidl.
A note on fast Fourier transforms for nonequispaced grids.
Adv. Comput. Math., 9:337 - 353, 1998.

23
A. F. Ware.
Fast approximate Fourier transforms for irregularly spaced data.
SIAM Rev., 40:838 - 856, 1998.



Stefan Kunis 2004-09-03