next up previous
Next: Bibliography Up: Examples Previous: CPU-time &


Reconstruction of functions

The usage of the inverse NFFT is e.g. shown in ./example/interpolation_1d, Figure 6, and ./example/glacier, Figure 7. For theoretical result see [16].
Figure: Real part of different interpolation polynomials for $ N=20$ for the function $ \sqrt {2}x_{+}^{1/2}$ sampled at $ M=10$ nodes; $ 10$ iterations and the six kernels: Dirichlet, Fejer, Jackson ($ m=2$), Jackson ($ m=4$), Sobolev ($ \alpha =1$), and inverse multi-quadric-type ( $ c=1,\,\mu=2$).
\includegraphics[width=4cm]{eps/interpolation_1d_0.eps} \includegraphics[width=4cm]{eps/interpolation_1d_1.eps} \includegraphics[width=4cm]{eps/interpolation_1d_2.eps}
\includegraphics[width=4cm]{eps/interpolation_1d_3.eps} \includegraphics[width=4cm]{eps/interpolation_1d_4.eps} \includegraphics[width=4cm]{eps/interpolation_1d_5.eps}

Figure: Reconstruction of the glacier data set vol87.dat from [11] with radial ( $ \hat w_{\mbox{\boldmath\scriptsize{${k}$}}}=\hat w_{\Vert\mbox{\boldmath\scriptsize{${k}$}}\Vert _2}$) inverse multi-quadric-type damping factors ( $ c=1,\,\mu=1.4$); $ M=8345$ nodes, $ N=256$, $ 40$ iterations.
\includegraphics[width=6cm]{eps/glacier1.eps} \includegraphics[width=6cm]{eps/glacier2.eps}



Stefan Kunis 2004-09-03