next up previous
Next: Reconstruction of functions Up: Examples Previous: Accuracy &

CPU-time & $ N$

Figure 4 compares computational times for both the NDFT and the NFFT, see ./example/timing.
Figure: The elapsed CPU-time with respect to $ N$ for Kaiser Bessel window, parameters $ m=6,\, \sigma=2,\, M=N$; left, $ d=1$: NDFT (circle), NFFT (no precomputation, x), NFFT (simple interface, $ +$), NFFT (maximum precomputation, triangle); middle, $ d=2$: NDFT (circle), NFFT (simple interface, $ +$); right, $ d=3$: NDFT (circle), NFFT (simple interface, $ +$).
\includegraphics[width=4.8cm,height=4.8cm]{eps/timing1.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/timing2.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/timing3.eps}

Figure 5 compares computational times for single steps of the NFFT, see ./example/timing.

Figure: The elapsed CPU-time with respect to $ N$ for Kaiser Bessel window, parameters $ d=2,\,m=6,\, \sigma\ge2,\, M=N$; from left to right: multiplication with $ {D}$, $ {F}$, and $ {B}$ respectively; no precomputation (x), simple interface ($ +$), and maximum precomputation (triangle).
\includegraphics[width=4.8cm,height=4.8cm]{eps/timing4.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/timing5.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/timing6.eps}



Stefan Kunis 2004-09-03