next up previous
Next: CPU-time & Up: Examples Previous: Examples

Accuracy & $ m$

The accuracy of the Algorithm 1, measured by

$\displaystyle E_2=\frac{\Vert\mbox{\boldmath {${f}$}}- \mbox{\boldmath {${s}$}}...
...oldmath\scriptsize {${j}$}} \in I_M^1} \vert f_j\vert^2}\right)^{\frac{1}{2}}
$

and

$\displaystyle E_{\infty}=\frac{\Vert\mbox{\boldmath {${f}$}}- \mbox{\boldmath {...
...math\tiny {${N}$}}}} \vert\hat
f_{\mbox{\boldmath\scriptsize {${k}$}}}\vert}
$

is shown in Figure 3, see ./example/accuracy.

Figure: The error $ E_2$ (top) and $ E_{\infty }$ (bottom) with respect to $ m$, from left to right $ d=1,2,3$ ( $ N=2^{12},2^6,2^4,\, \sigma=2,\,M=10000$), for Kaiser Bessel- (circle), Sinc power- (x), B-Spline- ($ +$), and Gaussian window (triangle).
\includegraphics[width=4.8cm,height=4.8cm]{eps/accuracy1.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/accuracy2.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/accuracy3.eps}
\includegraphics[width=4.8cm,height=4.8cm]{eps/accuracy4.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/accuracy5.eps} \includegraphics[width=4.8cm,height=4.8cm]{eps/accuracy6.eps}



Stefan Kunis 2004-09-03