next up previous
Next: Direct NDFT Up: Notation, the NDFT and Previous: Notation, the NDFT and

NDFT

Let the torus

$\displaystyle {\mathbb{T}}^d:= \left\{ \mbox{\boldmath {${x}$}}=\left(x_t\right...
...in \mathbb{R}^d: - \frac{1}{2} \le x_t < \frac{1}{2},\; t=0,\hdots,d-1 \right\}$    

of dimension $ d$ be given. It will serve as domain where the non equispaced knots $ {x}$ are taken from. Thus, the sampling set is given by $ {\cal X}:=\{$$ {x}$$ _j \in {\mathbb{T}}^d:\,j=0,\hdots,M-1\}$.

The space of all ($ d$-variate, one-periodic) functions $ f: {\mathbb{T}}^d \rightarrow \mathbb{C}$ is restricted to the space of $ d$-variate trigonometric polynomials

$\displaystyle {\rm span}\left({\rm e}^{-2\pi{\mbox{\scriptsize {i}}} \mbox{\bol...
...}:\,\mbox{\boldmath {${k}$}} \in I_{\mbox{\boldmath\scriptsize {${N}$}}}\right)$    

with degree $ N_t\; (t=0,\hdots,d-1)$ in the $ t$-th dimension. Possible frequencies $ {k}$ are collected in the multi index set

$\displaystyle I_{\mbox{\boldmath\scriptsize {${N}$}}} := \left\{ \mbox{\boldmat...
...mathbb{Z}^d: - \frac{N_t}{2} \le k_t < \frac{N_t}{2} ,\;t=0,\hdots,d-1\right\},$    

where $ {N}$$ =\left(N_t\right)_{t=0,\hdots,d-1}$ is the multi bandlimit. The dimension of the space of $ d$-variate trigonometric polynomials is given by $ N_{\text{\tiny $\Pi$}}=\prod\limits_{t=0}^{d-1} N_t$.

The inner product between the frequency $ {k}$ and the time/spatial knot $ {x}$ is defined in the usual way by $ {k}$   $ {x}$$ :=k_0 x_0 + k_1 x_1 +\hdots+ k_{d-1} x_{d-1}$. Furthermore, two vectors may be linked by the pointwise product $ {\sigma}$$ \odot$   $ {N}$$ :=\left(\sigma_0 N_0, \sigma_1 N_1, \hdots, \sigma_{d-1} N_{d-1}, \right)^{\rm T}$ with its inverse $ {N}$$ ^{-1}:=\left(\frac{1}{N_0}, \frac{1}{N_1}, \hdots, \frac{1}{N_{d-1}} \right)^{\rm T}$.

For clarity of presentation the multiindex $ {k}$ adresses elements of vectors and matrices as well, i.e., the plain index $ k_{\text{\tiny $\Pi$}}:=\sum_{t=0}^{d-1} (k_t+\frac{N_t}{2}) \prod_{t'=t+1}^{d-1} N_{t'}$ is not used here.



Subsections
next up previous
Next: Direct NDFT Up: Notation, the NDFT and Previous: Notation, the NDFT and
Stefan Kunis 2004-09-03