Navigation

Jump to main content
Nonequispaced fast Fourier transform
Fast Gauss transform
Fast Gauss transforms with complex parameters using NFFT

Fast Gauss transforms with complex parameters using NFFT

This library of C functions computes approximations of sums of the following form. Given complex coefficients $ \alpha_k \in \mathbb{C}$ and source knots $ x_k\in[-\frac{1}{4},\frac{1}{4}]$, our goal consists in the fast evaluation of the sum

$\displaystyle f(y)=\sum_{k=1}^N \alpha_k \rm {e}^{-\sigma\vert y-x_k\vert^2}$

at the target knots $ y_j \in [-\frac{1}{4},\frac{1}{4}]$, $ j=1,\ldots,M$, where $ \sigma = a + {\rm i} b$, $ a>0,b\in \mathbb{R}$ denotes a complex parameter.



The algorithms are implemented by Stefan Kunis in ./applications/fastgauss. Related paper are

oKunis, S., Potts, D. and Steidl, G.
Fast Gauss transforms with complex parameters using NFFTs.
J. Numer. Math. 14, 295-303.   (full paper ps, pdf),   2006