next up previous contents
Next: The first approximation - Up: NFFT - nonequispaced fast Previous: The ansatz   Contents

The window function

Starting with a reasonable window function $ \varphi:\ensuremath{\mathbb{R}}\rightarrow\ensuremath{\mathbb{R}}$ , one assumes that its 1-periodic version $ \tilde \varphi$ , i.e.

$\displaystyle \tilde \varphi\left(x\right):=\sum_{r \in \ensuremath{\mathbb{Z}}} \varphi\left(x+r\right)$    

has an uniformly convergent Fourier series and is well localised in the time/spatial domain $ \ensuremath{\mathbb{T}}$ and in the frequency domain $ \mathbb{Z}$ . The periodic window function $ \tilde \varphi$ may be represented by its Fourier series

$\displaystyle \tilde \varphi\left(x\right)= \sum_{k\in \ensuremath{\mathbb{Z}}} c_k\left(\tilde\varphi\right) {\rm e}^{-2\pi{\mbox{\scriptsize {i}}} k x}$    

with the Fourier coefficients

$\displaystyle c_k\left( \tilde \varphi \right) :=\int\limits_{\ensuremath{\math...
...} \, {\rm d} x = \hat \varphi \left(k\right),\quad k\in\ensuremath{\mathbb{Z}}.$    

Figure 2.1: From left to right: Gaussian window function $ \varphi $ , its 1-periodic version $ \tilde \varphi$ , and the integral Fourier-transform $ \hat \varphi$ (with pass, transition, and stop band) for $ N=24,\,\sigma=\frac{4}{3},\,n=32$ .
\includegraphics[width=4.8cm,height=3.8cm]{images/window_fct1} \includegraphics[width=4.8cm,height=3.8cm]{images/window_fct2} \includegraphics[width=4.8cm,height=3.8cm]{images/window_fct3}



Jens Keiner 2006-11-20