next up previous contents
Next: The window function Up: NFFT - nonequispaced fast Previous: NFFT - nonequispaced fast   Contents

The ansatz

One wants to approximate the trigonometric polynomial $ f$ in (2.4) by a linear combination of shifted 1-periodic window functions $ \tilde \varphi$ as

$\displaystyle s_1\left(x\right) := \sum_{l \in I_n} g_{l} \; \tilde \varphi\left(x - \frac{l}{n}\right) \, .$ (2.5)

With the help of an oversampling factor $ \sigma >1$ , the FFT length is given by $ n:=\sigma N$ .



Jens Keiner 2006-11-20