next up previous contents
Next: The case Up: NFFT - nonequispaced fast Previous: The first approximation -   Contents

The second approximation - cut-off in time/spatial domain

If $ \varphi $ is well localised in time/space domain $ \mathbb{R}$ it can be approximated by a function

$\displaystyle \psi\left(x\right)=\varphi\left(x\right) \chi_{[-{m \over n},{m \over n}]}\left(x\right)$    

with $ {\rm supp} \, \psi \, \left[-{m \over n},{m \over n}\right], \;m \ll
n,\; m\in \ensuremath{\mathbb{N}}$ . Again, one defines its one periodic version $ \tilde \psi$ with compact support in $ \ensuremath{\mathbb{T}}$ as

$\displaystyle \tilde \psi\left(x\right)=\sum_{r \in \ensuremath{\mathbb{Z}}} \psi\left(x+r\right).$    

With the help of the index set

$\displaystyle I_{n,m} \left(x_j\right) := \left\{ l \in I_n : n x_j - m \le l \le n x_j + m \right\}$    

an approximation to $ s_1$ is defined by

$\displaystyle s\left(x_j\right) := \sum_{l \in I_{n,m}\left(x_j\right) } g_l \, \tilde\psi\left(x_j - {l \over n}\right) \, .$ (2.8)

Note, that for fixed $ x_j\in \ensuremath{\mathbb{T}}$ , the above sum contains at most $ (2m+1)$ nonzero summands.

This approximation causes a truncation error.



Jens Keiner 2006-11-20