next up previous
Next: The first approximation - Up: NFFT Previous: The ansatz

The window function

Starting with a window function $ \varphi \in L_2\left(\mathbb{R}\right)$, one assumes that its 1-periodic version $ \tilde \varphi$, i.e.,

$\displaystyle \tilde \varphi\left(x\right):=\sum_{r \in \mathbb{Z}} \varphi\left(x+r\right)$    

has an uniformly convergent Fourier series and is well localised in the time/spatial domain $ \mathbb{T}$ and in the frequency domain $ \mathbb{Z}$. The periodic window function $ \tilde \varphi$ may be represented by its Fourier series

$\displaystyle \tilde \varphi\left(x\right)=
 \sum_{k\in \mathbb{Z}} c_k\left(\tilde\varphi\right) {\rm e}^{-2\pi{\mbox{\scriptsize {i}}} k x}$    

with the Fourier coefficients

$\displaystyle c_k\left( \tilde \varphi \right)
 :=\int\limits_{\mathbb{T}} \til...
...e {i}}} k x} \, {\rm d} x 
 = \hat \varphi \left(k\right),\quad k\in\mathbb{Z}.$    

Figure: From left to right: Gaussian window funtion $ \varphi $, its 1-periodic version $ \tilde \varphi$, and the integral Fourier-transform $ \hat \varphi$ (with pass, transition, and stop band) for $ N=24,\,\sigma=\frac{4}{3},\,n=32$.
\includegraphics[width=4.8cm,height=3.8cm]{eps/window_fct1.eps} \includegraphics[width=4.8cm,height=3.8cm]{eps/window_fct2.eps} \includegraphics[width=4.8cm,height=3.8cm]{eps/window_fct3.eps}



Stefan Kunis 2004-09-03