Seminar on Applications of Hodge modules to birational geometry
Chemnitz-Leipzig-Berlin, Fall term 2019/2020
The aim of this seminar is to study the paper "Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities " by Christian Schnell
and Stefan Kebekus, and in particular to understand how the formalism of mixed Hodge modules
by Morihiko Saito can be applied to rather classical problems in birational geometry.
More details,
and references can be found here.
Schedule
- 29.11.2019 (MPI Leipzig, Inselstr. 22, room E1 05)
- 10:30-12:00 Christian Lehn (TU Chemnitz): Motivation of the problem, overview, and older results
- 12:00-14:00 Lunch
- 14:00-15:30 Valeria Bertini (TU Chemnitz): Birational geometry, singularities, and examples, reformulation of the problem
- 16:00-17:30 Patrick Graf (Universität Bayreuth): The quasi-projective case II and applications to Zariski Lipman
- 13.12.2019 (TU Chemnitz, Reichenhainer Str., Weinhold-Bau, room 059)
- 09:30-10.30 Kurt Gottwald (TU Chemnitz): A vanishing theorem for certain perverse sheaves
- 10:45-12:15 András Lőrincz (MPI Leipzig): Background on D-modules
- 12:30-14:00 Lunch
- 14:00-15:30 Thomas Krämer (HU Berlin): Categories of filtered D-modules
- 16:00-17:30 Christian Lehn (TU Chemnitz): Definition and main properties of mixed Hodge modules
- 24.01.2020 (HU Berlin, Rudower Chaussee 25, room 3.006)
- 09:30-11.00 Thomas Reichelt (Universität Heidelberg): The extension problem for pure resp. mixed Hodge modules
- 11:15-12:45 Bruno Klingler (HU Berlin): Proof of Theorem 1.4
- 12:45-14:00 Lunch
- 14:00-15:30 Yajnaseni Dutta (Universität Bonn): Proof of Theorem 1.1
- 16:00-17:30 Christian Sevenheck (TU Chemnitz): Logarithmic differentials
Organisers
Supported by: