PublikationenArtikel
-
Michael Quellmalz:
The Funk-Radon transform for hyperplane sections through a common point
Analysis and Mathematical Physics 10(38), 2020. doi:10.1007/s13324-020-00383-2 (Open Access). (pdf)
-
Michael Quellmalz, Ralf Hielscher und Alfred K. Louis:
The cone-beam transform and spherical convolution operators
Inverse Problems 34 (2018) 105006. doi:10.1088/1361-6420/aad679
ArXiv preprint: 1803.10515. (pdf)
-
Ralf Hielscher, Daniel Potts und Michael Quellmalz:
An SVD in Spherical Surface Wave Tomography
In: Bernd Hofmann, Antonio Leitao and Jorge P. Zubelli (Eds.). New Trends in Parameter Identification for Mathematical Models, p. 121-144, Birkhäuser Basel, 2018. doi:10.1007/978-3-319-70824-9_7
ArXiv preprint: 1706.05284. (pdf)
-
Michael Quellmalz:
A generalization of the Funk–Radon transform
Inverse Problems 33 (2017) 035016. doi:10.1088/1361-6420/33/3/035016 (pdf)
-
Ralf Hielscher und Michael Quellmalz:
Reconstructing a Function on the Sphere from Its Means Along Vertical Slices
Inverse Problems and Imaging 10(3), 2016.
doi:10.3934/ipi.2016018 (pdf)
-
Ralf Hielscher und Michael Quellmalz:
Optimal Mollifiers for Spherical Deconvolution
Inverse Problems 31 (2015) 085001. doi:10.1088/0266-5611/31/8/085001 (pdf)
Abschlussarbeiten
-
Michael Quellmalz:
Reconstructing Functions on the Sphere from Circular Means
Dissertation, Universitätsverlag Chemnitz, 2019.
ISBN 978-3-96100-116-3
urn:nbn:de:bsz:ch1-qucosa2-384068 (pdf)
-
Michael Quellmalz:
Inversion of the Circular Average Transform on the Sphere
Diplomarbeit, Technische Universität Chemnitz, 2014. (pdf)
The Funk-Radon transform for hyperplane sections through a common point
Analysis and Mathematical Physics 10(38), 2020. doi:10.1007/s13324-020-00383-2 (Open Access). (pdf)
The cone-beam transform and spherical convolution operators
Inverse Problems 34 (2018) 105006. doi:10.1088/1361-6420/aad679
ArXiv preprint: 1803.10515. (pdf)
An SVD in Spherical Surface Wave Tomography
In: Bernd Hofmann, Antonio Leitao and Jorge P. Zubelli (Eds.). New Trends in Parameter Identification for Mathematical Models, p. 121-144, Birkhäuser Basel, 2018. doi:10.1007/978-3-319-70824-9_7
ArXiv preprint: 1706.05284. (pdf)
A generalization of the Funk–Radon transform
Inverse Problems 33 (2017) 035016. doi:10.1088/1361-6420/33/3/035016 (pdf)
Reconstructing a Function on the Sphere from Its Means Along Vertical Slices
Inverse Problems and Imaging 10(3), 2016. doi:10.3934/ipi.2016018 (pdf)
Optimal Mollifiers for Spherical Deconvolution
Inverse Problems 31 (2015) 085001. doi:10.1088/0266-5611/31/8/085001 (pdf)
-
Michael Quellmalz:
Reconstructing Functions on the Sphere from Circular Means
Dissertation, Universitätsverlag Chemnitz, 2019.
ISBN 978-3-96100-116-3
urn:nbn:de:bsz:ch1-qucosa2-384068 (pdf)
Inversion of the Circular Average Transform on the Sphere
Diplomarbeit, Technische Universität Chemnitz, 2014. (pdf)