next up previous contents
Next: Iterative reconstruction in magnetic Up: Applications Previous: Fast Gauss transform   Contents

Summation of zonal functions on the sphere

Given $ M,N \in \ensuremath{\mathbb{N}}$ , arbitrary source nodes $ \ensuremath{\boldsymbol{\eta}}_k \in \S^2$ and real coefficients $ \alpha_k\in\ensuremath{\mathbb{R}}$ , evaluate the sum

$\displaystyle g\left(\ensuremath{\boldsymbol{\xi}}\right) := \sum_{k = 1}^N \al...
...eft(\ensuremath{\boldsymbol{\eta}}_k \cdot \ensuremath{\boldsymbol{\xi}}\right)$    

at the target nodes $ \ensuremath{\boldsymbol{\xi}}_j\in\S^2$ , $ j=1,\hdots,M$ . The naive approach for evaluating this sum takes $ {\cal O}(MN)$ floating point operations if we assume that the zonal function $ K$ can be evaluated in constant time or that all values $ K(\ensuremath{\boldsymbol{\eta}}_k \cdot \ensuremath{\boldsymbol{\xi}}_j)$ can be stored in advance.

In contrast, our scheme is based on the nonequispaced fast spherical Fourier transform, has arithmetic complexity $ {\cal O}(M+N)$ , and can be easily adapted to such different kernels $ K$ as

  1. the Poisson kernel $ Q_{h}:[-1,1] \rightarrow \ensuremath{\mathbb{R}}$ with $ h \in (0,1)$ given by

    $\displaystyle Q_{h}(x) := \frac{1}{4\pi} \frac{1-h^2}{\left(1-2 h x+h^2\right)^{3/2}},
$

  2. the singularity kernel $ S_{h}:[-1,1] \rightarrow \ensuremath{\mathbb{R}}$ with $ h \in (0,1)$ given by

    $\displaystyle S_{h}(x) := \frac{1}{2\pi} \frac{1}{\left(1-2 h x +h^2\right)^{1/2}},
$

  3. the locally supported kernel $ L_{h,\lambda}:[-1,1] \rightarrow \ensuremath{\mathbb{R}}$ with $ h \in (-1,1)$ and $ \lambda \in \mathbb{N}_0$ given by

    $\displaystyle L_{h,\lambda}(x) :=
\left\{\begin{array}{l@{\quad \text{if} \quad...
...h)^{\lambda+1}}\left(x-h\right)^{\lambda} &
h & < x \le& 1,
\end{array}\right.
$

    or
  4. the spherical Gaussian kernel $ G_{\sigma}:[-1,1] \rightarrow
\ensuremath{\mathbb{R}}$ with $ \sigma>0$

    $\displaystyle G_{\sigma}(x) := {\,\rm {e}}^{2\sigma x-2\sigma}\,.
$

For details see [31], all corresponding numerical examples can be found in applications /fastsumS2.


next up previous contents
Next: Iterative reconstruction in magnetic Up: Applications Previous: Fast Gauss transform   Contents
Jens Keiner 2006-11-20