next up previous contents
Next: Fast Gauss transform Up: Applications Previous: Applications   Contents

Summation of smooth and singular kernels

We are interested in the fast evaluation of linear combinations of radial functions, i.e. the computation of

$\displaystyle g\left(\ensuremath{\boldsymbol{y}}_j\right) := \sum_{k=1}^N \alph...
...ensuremath{\boldsymbol{y}}_j-\ensuremath{\boldsymbol{x}}_k\right\Vert _2\right)$    

for $ j=1,\hdots,M$ and nodes $ \ensuremath{\boldsymbol{x}}_k, \ensuremath{\boldsymbol{y}}_j \in \ensuremath{\mathbb{R}}^d$ . For smooth kernels $ K$ with an additional parameter $ c>0$ , e.g. the Gaussian $ K(x)={\,\rm {e}}^{-x^2/c^2}$ , the multiquadric $ K(x)=\sqrt{x^2+c^2}$ or the inverse multiquadric $ K(x)=1/\sqrt{x^2+c^2}$ our algorithm requires $ {\cal O}(N+M)$ arithmetic operations. In the case of singular kernels $ K$ , e.g.,

$\displaystyle \frac{1}{x^2},\; \frac{1}{\vert x\vert}, \; \log \vert x\vert, \;...
...ert, \; \frac{1}{x}, \; \frac{\sin(c x)}{x},\; \frac{\cos(c x)}{x}, \; \cot(cx)$    

an additional regularisation procedure must be incorporated and the algorithm has the arithmetic complexity $ {\cal O}(N\log N+M)$ or $ {\cal O}(M\log M + N)$ if either the target nodes $ \ensuremath{\boldsymbol{y}}_j$ or the source nodes $ \ensuremath{\boldsymbol{x}}_k$ are ``reasonably uniformly distributed''.

Note that the proposed fast algorithm [49,50,23] generalises the diagonalisation of convolution matrices by Fourier matrices to the setting of arbitrary nodes. In particular, this yields nearly the same arithmetic complexity as the FMM [5] while allowing for an easy change of various kernels. A recent application in particle simulation is given in [43]. The directory applications/fastsum contains C and MATLAB programs that show how to use the fast summation method.


next up previous contents
Next: Fast Gauss transform Up: Applications Previous: Applications   Contents
Jens Keiner 2006-11-20