next up previous contents
Next: NFFT - nonequispaced fast Up: NDFT - nonequispaced discrete Previous: NDFT - nonequispaced discrete   Contents

Equispaced nodes

For $ d\in\ensuremath{\mathbb{N}},\;N_t=N\in 2\ensuremath{\mathbb{N}}$ , $ t=0,\hdots,d-1$ and $ M=N^d$ equispaced nodes $ \ensuremath{\boldsymbol{x}}_{\ensuremath{\boldsymbol{j}}}={1 \over N}\ensuremath{\boldsymbol{j}}$ , $ \ensuremath{\boldsymbol{j}} \in I_{\ensuremath{\boldsymbol{N}}}$ the computation of (2.3) is known as multivariate discrete Fourier transform (DFT). In this special case, the input data $ \hat{f}_{\ensuremath{\boldsymbol{k}}}$ are called discrete Fourier coefficients and the samples $ f_{\ensuremath{\boldsymbol{j}}}$ can be computed by the well known fast Fourier transform (FFT) with only $ {\cal O}(\vert I_{\ensuremath{\boldsymbol{N}}}\vert \log \vert I_{\ensuremath{\boldsymbol{N}}}\vert)$ arithmetic operations. Furthermore, one has the inversion formula

$\displaystyle \ensuremath{\boldsymbol{A}} \ensuremath{\boldsymbol{A}}^{{\vdash ...
...ol{A}}= \vert I_{\ensuremath{\boldsymbol{N}}}\vert \ensuremath{\boldsymbol{I}},$    

which does NOT hold true for the nonequispaced case in general.



Jens Keiner 2006-11-20