next up previous contents
Next: Equispaced nodes Up: Notation, the NDFT, and Previous: Notation, the NDFT, and   Contents

NDFT - nonequispaced discrete Fourier transform

The first problem to be addressed can be regarded as a matrix vector multiplication. For a finite number of given Fourier coefficients $ \hat f_{\ensuremath{\boldsymbol{k}}} \in \ensuremath{\mathbb{C}}$ , $ \ensuremath{\boldsymbol{k}}\in I_{\ensuremath{\boldsymbol{N}}}$ , we consider the evaluation of the trigonometric polynomial

$\displaystyle f\left(\ensuremath{\boldsymbol{x}}\right) := \sum_{\ensuremath{\b...
...\mbox{\scriptsize {i}}} \ensuremath{\boldsymbol{k}}\ensuremath{\boldsymbol{x}}}$ (2.1)

at given nonequispaced nodes $ \ensuremath{\boldsymbol{x}}_j \in \ensuremath{\mathbb{T}}^d$ . Thus, our concern is the evaluation of

$\displaystyle f_j = f\left(\ensuremath{\boldsymbol{x}}_j\right) := \sum_{\ensur...
...ox{\scriptsize {i}}} \ensuremath{\boldsymbol{k}}\ensuremath{\boldsymbol{x}}_j},$ (2.2)

$ j=0,\hdots,M-1$ . In matrix vector notation this reads

$\displaystyle \ensuremath{\boldsymbol{f}}=\ensuremath{\boldsymbol{A}} \ensuremath{\boldsymbol{\hat f}}$ (2.3)

where

$\displaystyle \ensuremath{\boldsymbol{f}}:=\left(f_j\right)_{j=0,\hdots,M-1},\q...
...l{k}}}\right)_{\ensuremath{\boldsymbol{k}}\in I_{\ensuremath{\boldsymbol{N}}}}.$    

The straightforward algorithm for computing this matrix vector product, which is called NDFT, takes $ {\cal O}(M \vert I_{\ensuremath{\boldsymbol{N}}}\vert)$ arithmetical operations.

A closely related matrix vector product is the adjoint NDFT

$\displaystyle \ensuremath{\boldsymbol{\hat h}}=\ensuremath{\boldsymbol{A}}^{{\v...
...ox{\scriptsize {i}}} \ensuremath{\boldsymbol{k}}\ensuremath{\boldsymbol{x}}_j},$    

where $ \ensuremath{\boldsymbol{A}}^{{\vdash \hspace*{-1.72mm} \dashv}}=\overline {\ensuremath{\boldsymbol{A}}}^{\top}$ denotes the conjugate transpose of the nonequispaced Fourier matrix $ \ensuremath{\boldsymbol{A}}$ .



Subsections
next up previous contents
Next: Equispaced nodes Up: Notation, the NDFT, and Previous: Notation, the NDFT, and   Contents
Jens Keiner 2006-11-20