next up previous contents
Next: Computing an inverse transform Up: Examples Previous: Computation time vs. problem   Contents

Accuracy vs. window function and cut-off parameter $ m$

The accuracy of the Algorithm 1, measured by

$\displaystyle E_2=\frac{\Vert\ensuremath{\boldsymbol{f}}- \ensuremath{\boldsymb...
...l{x}}_j\right)\vert^2}/{\sum_{j=0}^{M-1} \vert f_j\vert^2}\right)^{\frac{1}{2}}$    

and

$\displaystyle E_{\infty}=\frac{\Vert\ensuremath{\boldsymbol{f}}- \ensuremath{\b...
..._{\ensuremath{\boldsymbol{N}}}} \vert\hat f_{\ensuremath{\boldsymbol{k}}}\vert}$    

is shown in Figure 5.1.

Figure 5.1: The error $ E_2$ (top) and $ E_{\infty }$ (bottom) with respect to $ m$ , from left to right $ d=1,2,3$ ( $ N=2^{12},2^6,2^4,\, \sigma=2,\,M=10000$ ), for Kaiser Bessel- (circle), Sinc- (x), B-Spline- ($ +$ ), and Gaussian window (triangle).
\includegraphics[width=4.8cm]{images/accuracy1} \includegraphics[width=4.8cm]{images/accuracy2} \includegraphics[width=4.8cm]{images/accuracy3}
\includegraphics[width=4.8cm]{images/accuracy4} \includegraphics[width=4.8cm]{images/accuracy5} \includegraphics[width=4.8cm]{images/accuracy6}



Jens Keiner 2006-11-20