next up previous contents
Next: Library Up: Solver - inverse transforms Previous: Least squares   Contents

Interpolation

For a comparative high polynomial degree $ \vert I_{\ensuremath{\boldsymbol{N}}}\vert>M$ one expects to interpolate the given data $ y_j\in
\ensuremath{\mathbb{C}},\;j=0,\hdots,M-1,$ exactly. The (consistent) linear system (3.2) is under-determined. One considers the damped minimisation problem

$\displaystyle \Vert\ensuremath{\boldsymbol{\hat f}}\Vert _{\ensuremath{\boldsym...
...}}} \right)^{1/2} \stackrel{\ensuremath{\boldsymbol{\hat f}}}{\rightarrow} \min$   subject to$\displaystyle \quad \ensuremath{\boldsymbol{A}} \ensuremath{\boldsymbol{\hat f}} = \ensuremath{\boldsymbol{y}},$    

which may incorporate 'damping factors' $ \hat w_{\ensuremath{\boldsymbol{k}}}> 0$ , $ \ensuremath{\boldsymbol{\hat W}}:=
{\, \rm diag}(\hat w_{\ensuremath{\boldsymbol{k}}})_{\ensuremath{\boldsymbol{k}}\in I_{\ensuremath{\boldsymbol{N}}}}$ . A smooth solution is favoured, i.e., a decay of the Fourier coefficients $ \hat
f_{\ensuremath{\boldsymbol{k}}},\;\ensuremath{\boldsymbol{k}}\in I_{\ensuremath{\boldsymbol{N}}}$ , for decaying damping factors $ \hat w_{\ensuremath{\boldsymbol{k}}}$ . This interpolation problem is equivalent to the damped normal equation of second kind

$\displaystyle \ensuremath{\boldsymbol{A}} \ensuremath{\boldsymbol{\hat W}} \ens...
...bol{A}}^{{\vdash \hspace*{-1.72mm} \dashv}} \ensuremath{\boldsymbol{\tilde f}}.$ (3.4)

Applying the conjugate gradient scheme to (3.4) yields the following Algorithm 8.
\begin{algorithm}
% latex2html id marker 1366
[ht!]
\caption{Conjugate gradient...
...\end{algorithmic} Output: $\ensuremath{\boldsymbol{\hat f}}_{l}$
\end{algorithm}



Jens Keiner 2006-11-20