/* quantize_pvt source file
* Copyright 1999-2002 Takehiro Tominaga
* Copyright 2000-2012 Robert Hegemann
* Copyright 2001 Naoki Shibata
* Copyright 2002-2005 Gabriel Bouvigne
*/
#include "lame.h"
#include "machine.h"
#include "encoder.h"
#include "util.h"
#include "quantize_pvt.h"
//#include "reservoir.h"
#include "lame-analysis.h"
#include <float.h>
#define NSATHSCALE 100 /* Assuming dynamic range=96dB, this value should be 92 */
/*
The following table is used to implement the scalefactor
partitioning for MPEG2 as described in section
2.4.3.2 of the IS. The indexing corresponds to the
way the tables are presented in the IS:
[table_number][row_in_table][column of nr_of_sfb]
*/
const char nr_of_sfb_block[6][3][4] = {
{
{6, 5, 5, 5},
{9, 9, 9, 9},
{6, 9, 9, 9}
},
{
{6, 5, 7, 3},
{9, 9, 12, 6},
{6, 9, 12, 6}
},
{
{11, 10, 0, 0},
{18, 18, 0, 0},
{15, 18, 0, 0}
},
{
{7, 7, 7, 0},
{12, 12, 12, 0},
{6, 15, 12, 0}
},
{
{6, 6, 6, 3},
{12, 9, 9, 6},
{6, 12, 9, 6}
},
{
{8, 8, 5, 0},
{15, 12, 9, 0},
{6, 18, 9, 0}
}
};
/* Table B.6: layer3 preemphasis */
const char pretab[SBMAX_l] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0
};
/*
Here are MPEG1 Table B.8 and MPEG2 Table B.1
-- Layer III scalefactor bands.
Index into this using a method such as:
idx = fr_ps->header->sampling_frequency
+ (fr_ps->header->version * 3)
*/
const scalefac_struct sfBandIndex[9] = {
{ /* Table B.2.b: 22.05 kHz */
{0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
522, 576},
{0, 4, 8, 12, 18, 24, 32, 42, 56, 74, 100, 132, 174, 192}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* Table B.2.c: 24 kHz */ /* docs: 332. mpg123(broken): 330 */
{0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 114, 136, 162, 194, 232, 278, 332, 394, 464,
540, 576},
{0, 4, 8, 12, 18, 26, 36, 48, 62, 80, 104, 136, 180, 192}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* Table B.2.a: 16 kHz */
{0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
522, 576},
{0, 4, 8, 12, 18, 26, 36, 48, 62, 80, 104, 134, 174, 192}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* Table B.8.b: 44.1 kHz */
{0, 4, 8, 12, 16, 20, 24, 30, 36, 44, 52, 62, 74, 90, 110, 134, 162, 196, 238, 288, 342, 418,
576},
{0, 4, 8, 12, 16, 22, 30, 40, 52, 66, 84, 106, 136, 192}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* Table B.8.c: 48 kHz */
{0, 4, 8, 12, 16, 20, 24, 30, 36, 42, 50, 60, 72, 88, 106, 128, 156, 190, 230, 276, 330, 384,
576},
{0, 4, 8, 12, 16, 22, 28, 38, 50, 64, 80, 100, 126, 192}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* Table B.8.a: 32 kHz */
{0, 4, 8, 12, 16, 20, 24, 30, 36, 44, 54, 66, 82, 102, 126, 156, 194, 240, 296, 364, 448, 550,
576},
{0, 4, 8, 12, 16, 22, 30, 42, 58, 78, 104, 138, 180, 192}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* MPEG-2.5 11.025 kHz */
{0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
522, 576},
{0 / 3, 12 / 3, 24 / 3, 36 / 3, 54 / 3, 78 / 3, 108 / 3, 144 / 3, 186 / 3, 240 / 3, 312 / 3,
402 / 3, 522 / 3, 576 / 3}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* MPEG-2.5 12 kHz */
{0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
522, 576},
{0 / 3, 12 / 3, 24 / 3, 36 / 3, 54 / 3, 78 / 3, 108 / 3, 144 / 3, 186 / 3, 240 / 3, 312 / 3,
402 / 3, 522 / 3, 576 / 3}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
},
{ /* MPEG-2.5 8 kHz */
{0, 12, 24, 36, 48, 60, 72, 88, 108, 132, 160, 192, 232, 280, 336, 400, 476, 566, 568, 570,
572, 574, 576},
{0 / 3, 24 / 3, 48 / 3, 72 / 3, 108 / 3, 156 / 3, 216 / 3, 288 / 3, 372 / 3, 480 / 3, 486 / 3,
492 / 3, 498 / 3, 576 / 3}
, {0, 0, 0, 0, 0, 0, 0} /* sfb21 pseudo sub bands */
, {0, 0, 0, 0, 0, 0, 0} /* sfb12 pseudo sub bands */
}
};
/* FIXME: move global variables in some struct */
FLOAT pow20[Q_MAX + Q_MAX2 + 1];
FLOAT ipow20[Q_MAX];
FLOAT pow43[PRECALC_SIZE];
/* initialized in first call to iteration_init */
#ifdef TAKEHIRO_IEEE754_HACK
FLOAT adj43asm[PRECALC_SIZE];
#else
FLOAT adj43[PRECALC_SIZE];
#endif
/*
compute the ATH for each scalefactor band
cd range: 0..96db
Input: 3.3kHz signal 32767 amplitude (3.3kHz is where ATH is smallest = -5db)
longblocks: sfb=12 en0/bw=-11db max_en0 = 1.3db
shortblocks: sfb=5 -9db 0db
Input: 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated)
longblocks: amp=1 sfb=12 en0/bw=-103 db max_en0 = -92db
amp=32767 sfb=12 -12 db -1.4db
Input: 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated)
shortblocks: amp=1 sfb=5 en0/bw= -99 -86
amp=32767 sfb=5 -9 db 4db
MAX energy of largest wave at 3.3kHz = 1db
AVE energy of largest wave at 3.3kHz = -11db
Let's take AVE: -11db = maximum signal in sfb=12.
Dynamic range of CD: 96db. Therefor energy of smallest audible wave
in sfb=12 = -11 - 96 = -107db = ATH at 3.3kHz.
ATH formula for this wave: -5db. To adjust to LAME scaling, we need
ATH = ATH_formula - 103 (db)
ATH = ATH * 2.5e-10 (ener)
*/
static FLOAT ATHmdct(SessionConfig_t const & cfg, FLOAT f)
{
FLOAT ath;
ath = ATHformula(cfg, f);
if (cfg.ATHfixpoint > 0) {
ath -= cfg.ATHfixpoint;
}
else {
ath -= NSATHSCALE;
}
ath += cfg.ATH_offset_db;
/* modify the MDCT scaling for the ATH and convert to energy */
ath = powf(10.0f, ath * 0.1f);
return ath;
}
static void
compute_ath(lame_internal_flags const& gfc)
{
SessionConfig_t const & cfg = gfc.cfg;
FLOAT *const ATH_l = gfc.ATH->l;
FLOAT *const ATH_psfb21 = gfc.ATH->psfb21;
FLOAT *const ATH_s = gfc.ATH->s;
FLOAT *const ATH_psfb12 = gfc.ATH->psfb12;
int sfb, i, start, end;
FLOAT ATH_f;
FLOAT const samp_freq = cfg.samplerate_out;
for (sfb = 0; sfb < SBMAX_l; sfb++) {
start = gfc.scalefac_band.l[sfb];
end = gfc.scalefac_band.l[sfb + 1];
ATH_l[sfb] = FLOAT_MAX;
for (i = start; i < end; i++) {
FLOAT const freq = i * samp_freq / (2 * 576);
ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
ATH_l[sfb] = Min(ATH_l[sfb], ATH_f);
}
}
for (sfb = 0; sfb < PSFB21; sfb++) {
start = gfc.scalefac_band.psfb21[sfb];
end = gfc.scalefac_band.psfb21[sfb + 1];
ATH_psfb21[sfb] = FLOAT_MAX;
for (i = start; i < end; i++) {
FLOAT const freq = i * samp_freq / (2 * 576);
ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
ATH_psfb21[sfb] = Min(ATH_psfb21[sfb], ATH_f);
}
}
for (sfb = 0; sfb < SBMAX_s; sfb++) {
start = gfc.scalefac_band.s[sfb];
end = gfc.scalefac_band.s[sfb + 1];
ATH_s[sfb] = FLOAT_MAX;
for (i = start; i < end; i++) {
FLOAT const freq = i * samp_freq / (2 * 192);
ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
ATH_s[sfb] = Min(ATH_s[sfb], ATH_f);
}
ATH_s[sfb] *= (gfc.scalefac_band.s[sfb + 1] - gfc.scalefac_band.s[sfb]);
}
for (sfb = 0; sfb < PSFB12; sfb++) {
start = gfc.scalefac_band.psfb12[sfb];
end = gfc.scalefac_band.psfb12[sfb + 1];
ATH_psfb12[sfb] = FLOAT_MAX;
for (i = start; i < end; i++) {
FLOAT const freq = i * samp_freq / (2 * 192);
ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
ATH_psfb12[sfb] = Min(ATH_psfb12[sfb], ATH_f);
}
/*not sure about the following */
ATH_psfb12[sfb] *= (gfc.scalefac_band.s[13] - gfc.scalefac_band.s[12]);
}
/* no-ATH mode:
* reduce ATH to -200 dB
*/
if (cfg.noATH) {
for (sfb = 0; sfb < SBMAX_l; sfb++) {
ATH_l[sfb] = 1E-20;
}
for (sfb = 0; sfb < PSFB21; sfb++) {
ATH_psfb21[sfb] = 1E-20;
}
for (sfb = 0; sfb < SBMAX_s; sfb++) {
ATH_s[sfb] = 1E-20;
}
for (sfb = 0; sfb < PSFB12; sfb++) {
ATH_psfb12[sfb] = 1E-20;
}
}
/* work in progress, don't rely on it too much
*/
gfc.ATH->floor = 10. * log10(ATHmdct(cfg, -1.));
/*
{ FLOAT g=10000, t=1e30, x;
for ( f = 100; f < 10000; f++ ) {
x = ATHmdct( cfg, f );
if ( t > x ) t = x, g = f;
}
printf("min=%g\n", g);
} */
}
static float const payload_long[2][4] =
{ {-0.000f, -0.000f, -0.000f, +0.000f}
, {-0.500f, -0.250f, -0.025f, +0.500f}
};
static float const payload_short[2][4] =
{ {-0.000f, -0.000f, -0.000f, +0.000f}
, {-2.000f, -1.000f, -0.050f, +0.500f}
};
/************************************************************************/
/* initialization for iteration_loop */
/************************************************************************/
void iteration_init(lame_internal_flags & gfc) {
SessionConfig_t const & cfg = gfc.cfg;
III_side_info_t & l3_side = gfc.l3_side;
FLOAT adjust, db;
int i, sel;
if (gfc.iteration_init_init == 0) {
gfc.iteration_init_init = 1;
l3_side.main_data_begin = 0;
compute_ath(gfc);
pow43[0] = 0.0;
for (i = 1; i < PRECALC_SIZE; i++)
pow43[i] = pow((FLOAT) i, FLOAT(4.0 / 3.0));
#ifdef TAKEHIRO_IEEE754_HACK
adj43asm[0] = 0.0;
for (i = 1; i < PRECALC_SIZE; i++)
adj43asm[i] = i - 0.5 - pow(0.5 * (pow43[i - 1] + pow43[i]), 0.75);
#else
for (i = 0; i < PRECALC_SIZE - 1; i++)
adj43[i] = (i + 1) - pow(0.5 * (pow43[i] + pow43[i + 1]), 0.75);
adj43[i] = 0.5;
#endif
for (i = 0; i < Q_MAX; i++)
ipow20[i] = pow(2.0, (double) (i - 210) * -0.1875);
for (i = 0; i <= Q_MAX + Q_MAX2; i++)
pow20[i] = pow(2.0, (double) (i - 210 - Q_MAX2) * 0.25);
huffman_init(gfc);
init_xrpow_core_init(gfc);
sel = 1;/* RH: all modes like vbr-new (cfgvbr == vbr_mt || cfgvbr == vbr_mtrh) ? 1 : 0;*/
/* long */
db = cfg.adjust_bass_db + payload_long[sel][0];
adjust = powf(10.f, db * 0.1f);
for (i = 0; i <= 6; ++i) {
gfc.sv_qnt.longfact[i] = adjust;
}
db = cfg.adjust_alto_db + payload_long[sel][1];
adjust = powf(10.f, db * 0.1f);
for (; i <= 13; ++i) {
gfc.sv_qnt.longfact[i] = adjust;
}
db = cfg.adjust_treble_db + payload_long[sel][2];
adjust = powf(10.f, db * 0.1f);
for (; i <= 20; ++i) {
gfc.sv_qnt.longfact[i] = adjust;
}
db = cfg.adjust_sfb21_db + payload_long[sel][3];
adjust = powf(10.f, db * 0.1f);
for (; i < SBMAX_l; ++i) {
gfc.sv_qnt.longfact[i] = adjust;
}
/* short */
db = cfg.adjust_bass_db + payload_short[sel][0];
adjust = powf(10.f, db * 0.1f);
for (i = 0; i <= 2; ++i) {
gfc.sv_qnt.shortfact[i] = adjust;
}
db = cfg.adjust_alto_db + payload_short[sel][1];
adjust = powf(10.f, db * 0.1f);
for (; i <= 6; ++i) {
gfc.sv_qnt.shortfact[i] = adjust;
}
db = cfg.adjust_treble_db + payload_short[sel][2];
adjust = powf(10.f, db * 0.1f);
for (; i <= 11; ++i) {
gfc.sv_qnt.shortfact[i] = adjust;
}
db = cfg.adjust_sfb21_db + payload_short[sel][3];
adjust = powf(10.f, db * 0.1f);
for (; i < SBMAX_s; ++i) {
gfc.sv_qnt.shortfact[i] = adjust;
}
}
}
/************************************************************************
* allocate bits among 2 channels based on PE
* mt 6/99
* bugfixes rh 8/01: often allocated more than the allowed 4095 bits
************************************************************************/
int on_pe(lame_internal_flags & gfc, const FLOAT pe[][2], int targ_bits[2], int mean_bits, int gr, int cbr)
{
SessionConfig_t const & cfg = gfc.cfg;
int extra_bits = 0, tbits, bits;
int add_bits[2] = {0, 0};
int max_bits; /* maximum allowed bits for this granule */
int ch;
/* allocate targ_bits for granule */
gfc.ResvMaxBits(mean_bits, tbits, extra_bits, cbr);
max_bits = tbits + extra_bits;
if (max_bits > MAX_BITS_PER_GRANULE) /* hard limit per granule */
max_bits = MAX_BITS_PER_GRANULE;
for (bits = 0, ch = 0; ch < cfg.channels_out; ++ch) {
/******************************************************************
* allocate bits for each channel
******************************************************************/
targ_bits[ch] = Min(MAX_BITS_PER_CHANNEL, tbits / cfg.channels_out);
add_bits[ch] = targ_bits[ch] * pe[gr][ch] / 700.0 - targ_bits[ch];
/* at most increase bits by 1.5*average */
if (add_bits[ch] > mean_bits * 3 / 4)
add_bits[ch] = mean_bits * 3 / 4;
if (add_bits[ch] < 0)
add_bits[ch] = 0;
if (add_bits[ch] + targ_bits[ch] > MAX_BITS_PER_CHANNEL)
add_bits[ch] = Max(0, MAX_BITS_PER_CHANNEL - targ_bits[ch]);
bits += add_bits[ch];
}
if (bits > extra_bits && bits > 0) {
for (ch = 0; ch < cfg.channels_out; ++ch) {
add_bits[ch] = extra_bits * add_bits[ch] / bits;
}
}
for (ch = 0; ch < cfg.channels_out; ++ch) {
targ_bits[ch] += add_bits[ch];
extra_bits -= add_bits[ch];
}
for (bits = 0, ch = 0; ch < cfg.channels_out; ++ch) {
bits += targ_bits[ch];
}
if (bits > MAX_BITS_PER_GRANULE) {
int sum = 0;
for (ch = 0; ch < cfg.channels_out; ++ch) {
targ_bits[ch] *= MAX_BITS_PER_GRANULE;
targ_bits[ch] /= bits;
sum += targ_bits[ch];
}
assert(sum <= MAX_BITS_PER_GRANULE);
}
return max_bits;
}
void
reduce_side(int targ_bits[2], FLOAT ms_ener_ratio, int mean_bits, int max_bits)
{
int move_bits;
FLOAT fac;
assert(max_bits <= MAX_BITS_PER_GRANULE);
assert(targ_bits[0] + targ_bits[1] <= MAX_BITS_PER_GRANULE);
/* ms_ener_ratio = 0: allocate 66/33 mid/side fac=.33
* ms_ener_ratio =.5: allocate 50/50 mid/side fac= 0 */
/* 75/25 split is fac=.5 */
/* float fac = .50*(.5-ms_ener_ratio[gr])/.5; */
fac = .33 * (.5 - ms_ener_ratio) / .5;
if (fac < 0)
fac = 0;
if (fac > .5)
fac = .5;
/* number of bits to move from side channel to mid channel */
/* move_bits = fac*targ_bits[1]; */
move_bits = fac * .5 * (targ_bits[0] + targ_bits[1]);
if (move_bits > MAX_BITS_PER_CHANNEL - targ_bits[0]) {
move_bits = MAX_BITS_PER_CHANNEL - targ_bits[0];
}
if (move_bits < 0)
move_bits = 0;
if (targ_bits[1] >= 125) {
/* dont reduce side channel below 125 bits */
if (targ_bits[1] - move_bits > 125) {
/* if mid channel already has 2x more than average, dont bother */
/* mean_bits = bits per granule (for both channels) */
if (targ_bits[0] < mean_bits)
targ_bits[0] += move_bits;
targ_bits[1] -= move_bits;
}
else {
targ_bits[0] += targ_bits[1] - 125;
targ_bits[1] = 125;
}
}
move_bits = targ_bits[0] + targ_bits[1];
if (move_bits > max_bits) {
targ_bits[0] = (max_bits * targ_bits[0]) / move_bits;
targ_bits[1] = (max_bits * targ_bits[1]) / move_bits;
}
assert(targ_bits[0] <= MAX_BITS_PER_CHANNEL);
assert(targ_bits[1] <= MAX_BITS_PER_CHANNEL);
assert(targ_bits[0] + targ_bits[1] <= MAX_BITS_PER_GRANULE);
}
/**
* Robert Hegemann 2001-04-27:
* this adjusts the ATH, keeping the original noise floor
* affects the higher frequencies more than the lower ones
*/
FLOAT
athAdjust(FLOAT a, FLOAT x, FLOAT athFloor, float ATHfixpoint)
{
/* work in progress
*/
FLOAT const o = 90.30873362f;
FLOAT const p = (ATHfixpoint < 1.f) ? 94.82444863f : ATHfixpoint;
FLOAT u = FAST_LOG10_X(x, 10.0f);
FLOAT const v = a * a;
FLOAT w = 0.0f;
u -= athFloor; /* undo scaling */
if (v > 1E-20f)
w = 1.f + FAST_LOG10_X(v, 10.0f / o);
if (w < 0)
w = 0.f;
u *= w;
u += athFloor + o - p; /* redo scaling */
return powf(10.f, 0.1f * u);
}
/*************************************************************************/
/* calc_xmin */
/*************************************************************************/
/*
Calculate the allowed distortion for each scalefactor band,
as determined by the psychoacoustic model.
xmin(sb) = ratio(sb) * en(sb) / bw(sb)
returns number of sfb's with energy > ATH
*/
int
calc_xmin(lame_internal_flags const &gfc,
III_psy_ratio const *const ratio, gr_info & cod_info, FLOAT * pxmin)
{
SessionConfig_t const & cfg = gfc.cfg;
int sfb, gsfb, j = 0, ath_over = 0, k;
ATH_t const *const ATH = gfc.ATH;
const FLOAT *const xr = cod_info.xr;
int max_nonzero;
for (gsfb = 0; gsfb < cod_info.psy_lmax; gsfb++) {
FLOAT en0, xmin;
FLOAT rh1, rh2, rh3;
int width, l;
xmin = athAdjust(ATH->adjust_factor, ATH->l[gsfb], ATH->floor, cfg.ATHfixpoint);
xmin *= gfc.sv_qnt.longfact[gsfb];
width = cod_info.width[gsfb];
rh1 = xmin / width;
#ifdef DBL_EPSILON
rh2 = DBL_EPSILON;
#else
rh2 = 2.2204460492503131e-016;
#endif
en0 = 0.0;
for (l = 0; l < width; ++l) {
FLOAT const xa = xr[j++];
FLOAT const x2 = xa * xa;
en0 += x2;
rh2 += (x2 < rh1) ? x2 : rh1;
}
if (en0 > xmin)
ath_over++;
if (en0 < xmin) {
rh3 = en0;
}
else if (rh2 < xmin) {
rh3 = xmin;
}
else {
rh3 = rh2;
}
xmin = rh3;
{
FLOAT const e = ratio->en.l[gsfb];
if (e > 1e-12f) {
FLOAT x;
x = en0 * ratio->thm.l[gsfb] / e;
x *= gfc.sv_qnt.longfact[gsfb];
if (xmin < x)
xmin = x;
}
}
xmin = Max(xmin, DBL_EPSILON);
cod_info.energy_above_cutoff[gsfb] = (en0 > xmin+1e-14f) ? 1 : 0;
*pxmin++ = xmin;
} /* end of long block loop */
/*use this function to determine the highest non-zero coeff */
max_nonzero = 0;
for (k = 575; k > 0; --k) {
if (fabs(xr[k]) > 1e-12f) {
max_nonzero = k;
break;
}
}
if (cod_info.block_type != SHORT_TYPE) { /* NORM, START or STOP type, but not SHORT */
max_nonzero |= 1; /* only odd numbers */
}
else {
max_nonzero /= 6; /* 3 short blocks */
max_nonzero *= 6;
max_nonzero += 5;
}
if (gfc.sv_qnt.sfb21_extra == 0 && cfg.samplerate_out < 44000) {
int const sfb_l = (cfg.samplerate_out <= 8000) ? 17 : 21;
int const sfb_s = (cfg.samplerate_out <= 8000) ? 9 : 12;
int limit = 575;
if (cod_info.block_type != SHORT_TYPE) { /* NORM, START or STOP type, but not SHORT */
limit = gfc.scalefac_band.l[sfb_l]-1;
}
else {
limit = 3*gfc.scalefac_band.s[sfb_s]-1;
}
if (max_nonzero > limit) {
max_nonzero = limit;
}
}
cod_info.max_nonzero_coeff = max_nonzero;
for (sfb = cod_info.sfb_smin; gsfb < cod_info.psymax; sfb++, gsfb += 3) {
int width, b, l;
FLOAT tmpATH;
tmpATH = athAdjust(ATH->adjust_factor, ATH->s[sfb], ATH->floor, cfg.ATHfixpoint);
tmpATH *= gfc.sv_qnt.shortfact[sfb];
width = cod_info.width[gsfb];
for (b = 0; b < 3; b++) {
FLOAT en0 = 0.0, xmin = tmpATH;
FLOAT rh1, rh2, rh3;
rh1 = tmpATH / width;
#ifdef DBL_EPSILON
rh2 = DBL_EPSILON;
#else
rh2 = 2.2204460492503131e-016;
#endif
for (l = 0; l < width; ++l) {
FLOAT const xa = xr[j++];
FLOAT const x2 = xa * xa;
en0 += x2;
rh2 += (x2 < rh1) ? x2 : rh1;
}
if (en0 > tmpATH)
ath_over++;
if (en0 < tmpATH) {
rh3 = en0;
}
else if (rh2 < tmpATH) {
rh3 = tmpATH;
}
else {
rh3 = rh2;
}
xmin = rh3;
{
FLOAT const e = ratio->en.s[sfb][b];
if (e > 1e-12f) {
FLOAT x;
x = en0 * ratio->thm.s[sfb][b] / e;
x *= gfc.sv_qnt.shortfact[sfb];
if (xmin < x)
xmin = x;
}
}
xmin = Max(xmin, DBL_EPSILON);
cod_info.energy_above_cutoff[gsfb+b] = (en0 > xmin+1e-14f) ? 1 : 0;
*pxmin++ = xmin;
} /* b */
if (cfg.use_temporal_masking_effect) {
if (pxmin[-3] > pxmin[-3 + 1])
pxmin[-3 + 1] += (pxmin[-3] - pxmin[-3 + 1]) * gfc.cd_psy->decay;
if (pxmin[-3 + 1] > pxmin[-3 + 2])
pxmin[-3 + 2] += (pxmin[-3 + 1] - pxmin[-3 + 2]) * gfc.cd_psy->decay;
}
} /* end of short block sfb loop */
return ath_over;
}
static FLOAT
calc_noise_core_c(const gr_info & cod_info, int *startline, int l, FLOAT step)
{
FLOAT noise = 0;
int j = *startline;
const int *const ix = cod_info.l3_enc;
if (j > cod_info.count1) {
while (l--) {
FLOAT temp;
temp = cod_info.xr[j];
j++;
noise += temp * temp;
temp = cod_info.xr[j];
j++;
noise += temp * temp;
}
}
else if (j > cod_info.big_values) {
FLOAT ix01[2];
ix01[0] = 0;
ix01[1] = step;
while (l--) {
FLOAT temp;
temp = fabs(cod_info.xr[j]) - ix01[ix[j]];
j++;
noise += temp * temp;
temp = fabs(cod_info.xr[j]) - ix01[ix[j]];
j++;
noise += temp * temp;
}
}
else {
while (l--) {
FLOAT temp;
temp = fabs(cod_info.xr[j]) - pow43[ix[j]] * step;
j++;
noise += temp * temp;
temp = fabs(cod_info.xr[j]) - pow43[ix[j]] * step;
j++;
noise += temp * temp;
}
}
*startline = j;
return noise;
}
/*************************************************************************/
/* calc_noise */
/*************************************************************************/
/* -oo dB => -1.00 */
/* - 6 dB => -0.97 */
/* - 3 dB => -0.80 */
/* - 2 dB => -0.64 */
/* - 1 dB => -0.38 */
/* 0 dB => 0.00 */
/* + 1 dB => +0.49 */
/* + 2 dB => +1.06 */
/* + 3 dB => +1.68 */
/* + 6 dB => +3.69 */
/* +10 dB => +6.45 */
int
calc_noise(gr_info const & cod_info,
FLOAT const *l3_xmin,
FLOAT * distort, calc_noise_result * const res, calc_noise_data * prev_noise)
{
int sfb, l, over = 0;
FLOAT over_noise_db = 0;
FLOAT tot_noise_db = 0; /* 0 dB relative to masking */
FLOAT max_noise = -20.0; /* -200 dB relative to masking */
int j = 0;
const int *scalefac = cod_info.scalefac;
res->over_SSD = 0;
for (sfb = 0; sfb < cod_info.psymax; sfb++) {
int const s =
cod_info.global_gain - (((*scalefac++) + (cod_info.preflag ? pretab[sfb] : 0))
<< (cod_info.scalefac_scale + 1))
- cod_info.subblock_gain[cod_info.window[sfb]] * 8;
FLOAT const r_l3_xmin = 1.f / *l3_xmin++;
FLOAT distort_ = 0.0f;
FLOAT noise = 0.0f;
if (prev_noise && (prev_noise->step[sfb] == s)) {
/* use previously computed values */
j += cod_info.width[sfb];
distort_ = r_l3_xmin * prev_noise->noise[sfb];
noise = prev_noise->noise_log[sfb];
}
else {
FLOAT const step = POW20(s);
l = cod_info.width[sfb] >> 1;
if ((j + cod_info.width[sfb]) > cod_info.max_nonzero_coeff) {
int usefullsize;
usefullsize = cod_info.max_nonzero_coeff - j + 1;
if (usefullsize > 0)
l = usefullsize >> 1;
else
l = 0;
}
noise = calc_noise_core_c(cod_info, &j, l, step);
if (prev_noise) {
/* save noise values */
prev_noise->step[sfb] = s;
prev_noise->noise[sfb] = noise;
}
distort_ = r_l3_xmin * noise;
/* multiplying here is adding in dB, but can overflow */
noise = FAST_LOG10(Max(distort_, 1E-20f));
if (prev_noise) {
/* save noise values */
prev_noise->noise_log[sfb] = noise;
}
}
*distort++ = distort_;
if (prev_noise) {
/* save noise values */
prev_noise->global_gain = cod_info.global_gain;;
}
/*tot_noise *= Max(noise, 1E-20); */
tot_noise_db += noise;
if (noise > 0.0) {
int tmp;
tmp = Max((int) (noise * 10 + .5), 1);
res->over_SSD += tmp * tmp;
over++;
/* multiplying here is adding in dB -but can overflow */
/*over_noise *= noise; */
over_noise_db += noise;
}
max_noise = Max(max_noise, noise);
}
res->over_count = over;
res->tot_noise = tot_noise_db;
res->over_noise = over_noise_db;
res->max_noise = max_noise;
return over;
}
/************************************************************************
*
* set_pinfo()
*
* updates plotting data
*
* Mark Taylor 2000-??-??
*
* Robert Hegemann: moved noise/distortion calc into it
*
************************************************************************/
static void
set_pinfo(lame_internal_flags const &gfc,
gr_info & cod_info, const III_psy_ratio * const ratio, const int gr, const int ch)
{
SessionConfig_t const & cfg = gfc.cfg;
int sfb, sfb2;
int j, i, l, start, end, bw;
FLOAT en0, en1;
FLOAT const ifqstep = (cod_info.scalefac_scale == 0) ? .5 : 1.0;
int const *const scalefac = cod_info.scalefac;
FLOAT l3_xmin[SFBMAX], xfsf[SFBMAX];
calc_noise_result noise;
(void) calc_xmin(gfc, ratio, cod_info, l3_xmin);
(void) calc_noise(cod_info, l3_xmin, xfsf, &noise, 0);
j = 0;
sfb2 = cod_info.sfb_lmax;
if (cod_info.block_type != SHORT_TYPE && !cod_info.mixed_block_flag)
sfb2 = 22;
for (sfb = 0; sfb < sfb2; sfb++) {
start = gfc.scalefac_band.l[sfb];
end = gfc.scalefac_band.l[sfb + 1];
bw = end - start;
for (en0 = 0.0; j < end; j++)
en0 += cod_info.xr[j] * cod_info.xr[j];
en0 /= bw;
/* convert to MDCT units */
en1 = 1e15; /* scaling so it shows up on FFT plot */
gfc.pinfo->en[gr][ch][sfb] = en1 * en0;
gfc.pinfo->xfsf[gr][ch][sfb] = en1 * l3_xmin[sfb] * xfsf[sfb] / bw;
if (ratio->en.l[sfb] > 0 && !cfg.ATHonly)
en0 = en0 / ratio->en.l[sfb];
else
en0 = 0.0;
gfc.pinfo->thr[gr][ch][sfb] = en1 * Max(en0 * ratio->thm.l[sfb], gfc.ATH->l[sfb]);
/* there is no scalefactor bands >= SBPSY_l */
gfc.pinfo->LAMEsfb[gr][ch][sfb] = 0;
if (cod_info.preflag && sfb >= 11)
gfc.pinfo->LAMEsfb[gr][ch][sfb] = -ifqstep * pretab[sfb];
if (sfb < SBPSY_l) {
assert(scalefac[sfb] >= 0); /* scfsi should be decoded by caller side */
gfc.pinfo->LAMEsfb[gr][ch][sfb] -= ifqstep * scalefac[sfb];
}
} /* for sfb */
if (cod_info.block_type == SHORT_TYPE) {
sfb2 = sfb;
for (sfb = cod_info.sfb_smin; sfb < SBMAX_s; sfb++) {
start = gfc.scalefac_band.s[sfb];
end = gfc.scalefac_band.s[sfb + 1];
bw = end - start;
for (i = 0; i < 3; i++) {
for (en0 = 0.0, l = start; l < end; l++) {
en0 += cod_info.xr[j] * cod_info.xr[j];
j++;
}
en0 = Max(en0 / bw, 1e-20);
/* convert to MDCT units */
en1 = 1e15; /* scaling so it shows up on FFT plot */
gfc.pinfo->en_s[gr][ch][3 * sfb + i] = en1 * en0;
gfc.pinfo->xfsf_s[gr][ch][3 * sfb + i] = en1 * l3_xmin[sfb2] * xfsf[sfb2] / bw;
if (ratio->en.s[sfb][i] > 0)
en0 = en0 / ratio->en.s[sfb][i];
else
en0 = 0.0;
if (cfg.ATHonly || cfg.ATHshort)
en0 = 0;
gfc.pinfo->thr_s[gr][ch][3 * sfb + i] =
en1 * Max(en0 * ratio->thm.s[sfb][i], gfc.ATH->s[sfb]);
/* there is no scalefactor bands >= SBPSY_s */
gfc.pinfo->LAMEsfb_s[gr][ch][3 * sfb + i]
= -2.0 * cod_info.subblock_gain[i];
if (sfb < SBPSY_s) {
gfc.pinfo->LAMEsfb_s[gr][ch][3 * sfb + i] -= ifqstep * scalefac[sfb2];
}
sfb2++;
}
}
} /* block type short */
gfc.pinfo->LAMEqss[gr][ch] = cod_info.global_gain;
gfc.pinfo->LAMEmainbits[gr][ch] = cod_info.part2_3_length + cod_info.part2_length;
gfc.pinfo->LAMEsfbits[gr][ch] = cod_info.part2_length;
gfc.pinfo->over[gr][ch] = noise.over_count;
gfc.pinfo->max_noise[gr][ch] = noise.max_noise * 10.0;
gfc.pinfo->over_noise[gr][ch] = noise.over_noise * 10.0;
gfc.pinfo->tot_noise[gr][ch] = noise.tot_noise * 10.0;
gfc.pinfo->over_SSD[gr][ch] = noise.over_SSD;
}
/************************************************************************
*
* set_frame_pinfo()
*
* updates plotting data for a whole frame
*
* Robert Hegemann 2000-10-21
*
************************************************************************/
void
set_frame_pinfo(lame_internal_flags & gfc, const III_psy_ratio ratio[2][2])
{
SessionConfig_t const & cfg = gfc.cfg;
int ch;
int gr;
/* for every granule and channel patch l3_enc and set info
*/
for (gr = 0; gr < cfg.mode_gr; gr++) {
for (ch = 0; ch < cfg.channels_out; ch++) {
gr_info & cod_info = gfc.l3_side.tt[gr][ch];
int scalefac_sav[SFBMAX];
memcpy(scalefac_sav, cod_info.scalefac, sizeof(scalefac_sav));
/* reconstruct the scalefactors in case SCFSI was used
*/
if (gr == 1) {
int sfb;
for (sfb = 0; sfb < cod_info.sfb_lmax; sfb++) {
if (cod_info.scalefac[sfb] < 0) /* scfsi */
cod_info.scalefac[sfb] = gfc.l3_side.tt[0][ch].scalefac[sfb];
}
}
set_pinfo(gfc, cod_info, &ratio[gr][ch], gr, ch);
memcpy(cod_info.scalefac, scalefac_sav, sizeof(scalefac_sav));
} /* for ch */
} /* for gr */
}
Vorgefundene Kodierung: UTF-8 | 0
|