//#include <stdio.h>
#include <string.h>
#include <stdlib.h> // abs()
#include "render.h"
#include "RenderTabs.h"
#include "debug.h"
#include "pgmspace.h"
#include "SamData.h"
unsigned char wait1 = 7;
unsigned char wait2 = 6;
extern unsigned char A, X, Y;
extern unsigned char mem44;
extern unsigned char mem47;
extern unsigned char mem49;
extern unsigned char mem39;
extern unsigned char mem50;
extern unsigned char mem51;
extern unsigned char mem53;
extern unsigned char mem56;
extern unsigned char speed;
extern unsigned char pitch;
extern int singmode;
#define phonemeIndexOutput (samdata.sam.phonemeIndexOutput)
#define stressOutput (samdata.sam.stressOutput)
#define phonemeLengthOutput (samdata.sam.phonemeLengthOutput)
#define pitches (samdata.render.pitches)
#define frequency1 (samdata.render.frequency1)
#define frequency2 (samdata.render.frequency2)
#define frequency3 (samdata.render.frequency3)
#define amplitude1 (samdata.render.amplitude1)
#define amplitude2 (samdata.render.amplitude2)
#define amplitude3 (samdata.render.amplitude3)
#define sampledConsonantFlag (samdata.render.sampledConsonantFlag)
void AddInflection(unsigned char mem48, unsigned char phase1);
unsigned char trans(unsigned char mem39212, unsigned char mem39213);
// contains the final soundbuffer
extern int bufferpos;
//extern char *buffer;
//timetable for more accurate c64 simulation
const unsigned char timetable[5][5] PROGMEM =
{
{162, 167, 167, 127, 128},
{226, 60, 60, 0, 0},
{225, 60, 59, 0, 0},
{200, 0, 0, 54, 55},
{199, 0, 0, 54, 54}
};
// Scheiße!!
extern void i2s_write_sample_b(unsigned char);
//extern void (*outcb)(unsigned char);
static unsigned char oldtimetableindex = 0;
static unsigned char lastAry[5];
void Output8BitAry(int index, unsigned char ary[5])
{
int newbufferpos = bufferpos + pgm_read_byte(&timetable[oldtimetableindex][index]);
int bp0 = bufferpos / 50;
int bp1 = newbufferpos / 50;
int k=0,i;
for (i=bp0; i<bp1; i++, k++) i2s_write_sample_b(lastAry[k]);
memcpy(lastAry, ary, 5);
bufferpos = newbufferpos;
oldtimetableindex = index;
}
void Output8Bit(int index, unsigned char A)
{
unsigned char ary[5] = {A,A,A,A,A};
Output8BitAry(index, ary);
}
//written by me because of different table positions.
// mem[47] = ...
// 168=pitches
// 169=frequency1
// 170=frequency2
// 171=frequency3
// 172=amplitude1
// 173=amplitude2
// 174=amplitude3
unsigned char Read(unsigned char p, unsigned char Y)
{
switch(p)
{
case 168: return pitches[Y];
case 169: return frequency1[Y];
case 170: return frequency2[Y];
case 171: return frequency3[Y];
case 172: return amplitude1[Y];
case 173: return amplitude2[Y];
case 174: return amplitude3[Y];
}
//printf("Error reading to tables");
return 0;
}
void Write(unsigned char p, unsigned char Y, unsigned char value)
{
switch(p)
{
case 168: pitches[Y] = value; return;
case 169: frequency1[Y] = value; return;
case 170: frequency2[Y] = value; return;
case 171: frequency3[Y] = value; return;
case 172: amplitude1[Y] = value; return;
case 173: amplitude2[Y] = value; return;
case 174: amplitude3[Y] = value; return;
}
//printf("Error writing to tables\n");
}
// -------------------------------------------------------------------------
//Code48227
// Render a sampled sound from the sampleTable.
//
// Phoneme Sample Start Sample End
// 32: S* 15 255
// 33: SH 257 511
// 34: F* 559 767
// 35: TH 583 767
// 36: /H 903 1023
// 37: /X 1135 1279
// 38: Z* 84 119
// 39: ZH 340 375
// 40: V* 596 639
// 41: DH 596 631
//
// 42: CH
// 43: ** 399 511
//
// 44: J*
// 45: ** 257 276
// 46: **
//
// 66: P*
// 67: ** 743 767
// 68: **
//
// 69: T*
// 70: ** 231 255
// 71: **
//
// The SampledPhonemesTable[] holds flags indicating if a phoneme is
// voiced or not. If the upper 5 bits are zero, the sample is voiced.
//
// Samples in the sampleTable are compressed, with bits being converted to
// bytes from high bit to low, as follows:
//
// unvoiced 0 bit -> X
// unvoiced 1 bit -> 5
//
// voiced 0 bit -> 6
// voiced 1 bit -> 24
//
// Where X is a value from the table:
//
// { 0x18, 0x1A, 0x17, 0x17, 0x17 };
//
// The index into this table is determined by masking off the lower
// 3 bits from the SampledPhonemesTable:
//
// index = (SampledPhonemesTable[i] & 7) - 1;
//
// For voices samples, samples are interleaved between voiced output.
// Code48227()
void RenderSample(unsigned char *mem66)
{
int tempA;
unsigned char phase1;
// current phoneme's index
mem49 = Y;
// mask low three bits and subtract 1 get value to
// convert 0 bits on unvoiced samples.
A = mem39&7;
X = A-1;
// store the result
mem56 = X;
// determine which offset to use from table { 0x18, 0x1A, 0x17, 0x17, 0x17 }
// T, S, Z 0 0x18
// CH, J, SH, ZH 1 0x1A
// P, F*, V, TH, DH 2 0x17
// /H 3 0x17
// /X 4 0x17
// get value from the table
mem53 = pgm_read_byte(tab48426+X); //tab48426[X];
mem47 = X; //46016+mem[56]*256
// voiced sample?
A = mem39 & 248;
if(A == 0)
{
// voiced phoneme: Z*, ZH, V*, DH
Y = mem49;
A = pitches[mem49] >> 4;
// jump to voiced portion
goto pos48315;
}
Y = A ^ 255;
pos48274:
// step through the 8 bits in the sample
mem56 = 8;
// get the next sample from the table
// mem47*256 = offset to start of samples
A = pgm_read_byte(sampleTable + mem47*256+Y); // sampleTable[mem47*256+Y];
pos48280:
// left shift to get the high bit
tempA = A;
A = A << 1;
//48281: BCC 48290
// bit not set?
if ((tempA & 128) == 0)
{
// convert the bit to value from table
X = mem53;
//mem[54296] = X;
// output the byte
Output8Bit(1, (X&0xf)*16);
// if X != 0, exit loop
if(X != 0) goto pos48296;
}
// output a 5 for the on bit
Output8Bit(2, 5*16);
//48295: NOP
pos48296:
X = 0;
// decrement counter
mem56--;
// if not done, jump to top of loop
if (mem56 != 0) goto pos48280;
// increment position
Y++;
if (Y != 0) goto pos48274;
// restore values and return
mem44 = 1;
Y = mem49;
return;
pos48315:
// handle voiced samples here
// number of samples?
phase1 = A ^ 255;
Y = *mem66;
do
{
//pos48321:
// shift through all 8 bits
mem56 = 8;
//A = Read(mem47, Y);
// fetch value from table
A = pgm_read_byte(sampleTable + mem47*256+Y); //sampleTable[mem47*256+Y];
// loop 8 times
//pos48327:
do
{
//48327: ASL A
//48328: BCC 48337
// left shift and check high bit
tempA = A;
A = A << 1;
if ((tempA & 128) != 0)
{
// if bit set, output 26
X = 26;
Output8Bit(3, (X&0xf)*16);
} else
{
//timetable 4
// bit is not set, output a 6
X=6;
Output8Bit(4, (X&0xf)*16);
}
mem56--;
} while(mem56 != 0);
// move ahead in the table
Y++;
// continue until counter done
phase1++;
} while (phase1 != 0);
// if (phase1 != 0) goto pos48321;
// restore values and return
A = 1;
mem44 = 1;
*mem66 = Y;
Y = mem49;
return;
}
// RENDER THE PHONEMES IN THE LIST
//
// The phoneme list is converted into sound through the steps:
//
// 1. Copy each phoneme <length> number of times into the frames list,
// where each frame represents 10 milliseconds of sound.
//
// 2. Determine the transitions lengths between phonemes, and linearly
// interpolate the values across the frames.
//
// 3. Offset the pitches by the fundamental frequency.
//
// 4. Render the each frame.
//void Code47574()
void Render()
{
unsigned char phase1 = 0; //mem43
unsigned char phase2 = 0;
unsigned char phase3 = 0;
unsigned char mem66 = 0;
unsigned char mem38 = 0;
unsigned char mem40 = 0;
unsigned char speedcounter = 0; //mem45
unsigned char mem48 = 0;
int i;
if (phonemeIndexOutput[0] == 255) return; //exit if no data
A = 0;
X = 0;
mem44 = 0;
// CREATE FRAMES
//
// The length parameter in the list corresponds to the number of frames
// to expand the phoneme to. Each frame represents 10 milliseconds of time.
// So a phoneme with a length of 7 = 7 frames = 70 milliseconds duration.
//
// The parameters are copied from the phoneme to the frame verbatim.
// pos47587:
do
{
// get the index
Y = mem44;
// get the phoneme at the index
A = phonemeIndexOutput[mem44];
mem56 = A;
// if terminal phoneme, exit the loop
if (A == 255) break;
// period phoneme *.
if (A == 1)
{
// add rising inflection
A = 1;
mem48 = 1;
//goto pos48376;
AddInflection(mem48, phase1);
}
/*
if (A == 2) goto pos48372;
*/
// question mark phoneme?
if (A == 2)
{
// create falling inflection
mem48 = 255;
AddInflection(mem48, phase1);
}
// pos47615:
// get the stress amount (more stress = higher pitch)
phase1 = pgm_read_byte(tab47492 + stressOutput[Y] + 1); // tab47492[stressOutput[Y] + 1];
// get number of frames to write
phase2 = phonemeLengthOutput[Y];
Y = mem56;
// copy from the source to the frames list
do
{
frequency1[X] = freq1data[Y]; // F1 frequency
frequency2[X] = freq2data[Y]; // F2 frequency
frequency3[X] = freq3data[Y]; // F3 frequency
amplitude1[X] = pgm_read_byte(&l1data[Y]); // F1 amplitude
amplitude2[X] = pgm_read_byte(&l2data[Y]); // F2 amplitude
amplitude3[X] = pgm_read_byte(&l3data[Y]); // F3 amplitude
sampledConsonantFlag[X] = pgm_read_byte(&sampledConsonantFlags[Y]); // phoneme data for sampled consonants
pitches[X] = pitch + phase1; // pitch
X++;
phase2--;
} while(phase2 != 0);
mem44++;
} while(mem44 != 0);
#if (debug)
PrintOutput(sampledConsonantFlag, frequency1, frequency2, frequency3, amplitude1, amplitude2, amplitude3, pitches);
#endif
// -------------------
//pos47694:
// CREATE TRANSITIONS
//
// Linear transitions are now created to smoothly connect the
// end of one sustained portion of a phoneme to the following
// phoneme.
//
// To do this, three tables are used:
//
// Table Purpose
// ========= ==================================================
// blendRank Determines which phoneme's blend values are used.
//
// blendOut The number of frames at the end of the phoneme that
// will be used to transition to the following phoneme.
//
// blendIn The number of frames of the following phoneme that
// will be used to transition into that phoneme.
//
// In creating a transition between two phonemes, the phoneme
// with the HIGHEST rank is used. Phonemes are ranked on how much
// their identity is based on their transitions. For example,
// vowels are and diphthongs are identified by their sustained portion,
// rather than the transitions, so they are given low values. In contrast,
// stop consonants (P, B, T, K) and glides (Y, L) are almost entirely
// defined by their transitions, and are given high rank values.
//
// Here are the rankings used by SAM:
//
// Rank Type Phonemes
// 2 All vowels IY, IH, etc.
// 5 Diphthong endings YX, WX, ER
// 8 Terminal liquid consonants LX, WX, YX, N, NX
// 9 Liquid consonants L, RX, W
// 10 Glide R, OH
// 11 Glide WH
// 18 Voiceless fricatives S, SH, F, TH
// 20 Voiced fricatives Z, ZH, V, DH
// 23 Plosives, stop consonants P, T, K, KX, DX, CH
// 26 Stop consonants J, GX, B, D, G
// 27-29 Stop consonants (internal) **
// 30 Unvoiced consonants /H, /X and Q*
// 160 Nasal M
//
// To determine how many frames to use, the two phonemes are
// compared using the blendRank[] table. The phoneme with the
// higher rank is selected. In case of a tie, a blend of each is used:
//
// if blendRank[phoneme1] == blendRank[phomneme2]
// // use lengths from each phoneme
// outBlendFrames = outBlend[phoneme1]
// inBlendFrames = outBlend[phoneme2]
// else if blendRank[phoneme1] > blendRank[phoneme2]
// // use lengths from first phoneme
// outBlendFrames = outBlendLength[phoneme1]
// inBlendFrames = inBlendLength[phoneme1]
// else
// // use lengths from the second phoneme
// // note that in and out are SWAPPED!
// outBlendFrames = inBlendLength[phoneme2]
// inBlendFrames = outBlendLength[phoneme2]
//
// Blend lengths can't be less than zero.
//
// Transitions are assumed to be symetrical, so if the transition
// values for the second phoneme are used, the inBlendLength and
// outBlendLength values are SWAPPED.
//
// For most of the parameters, SAM interpolates over the range of the last
// outBlendFrames-1 and the first inBlendFrames.
//
// The exception to this is the Pitch[] parameter, which is interpolates the
// pitch from the CENTER of the current phoneme to the CENTER of the next
// phoneme.
//
// Here are two examples. First, For example, consider the word "SUN" (S AH N)
//
// Phoneme Duration BlendWeight OutBlendFrames InBlendFrames
// S 2 18 1 3
// AH 8 2 4 4
// N 7 8 1 2
//
// The formant transitions for the output frames are calculated as follows:
//
// flags ampl1 freq1 ampl2 freq2 ampl3 freq3 pitch
// ------------------------------------------------
// S
// 241 0 6 0 73 0 99 61 Use S (weight 18) for transition instead of AH (weight 2)
// 241 0 6 0 73 0 99 61 <-- (OutBlendFrames-1) = (1-1) = 0 frames
// AH
// 0 2 10 2 66 0 96 59 * <-- InBlendFrames = 3 frames
// 0 4 14 3 59 0 93 57 *
// 0 8 18 5 52 0 90 55 *
// 0 15 22 9 44 1 87 53
// 0 15 22 9 44 1 87 53
// 0 15 22 9 44 1 87 53 Use N (weight 8) for transition instead of AH (weight 2).
// 0 15 22 9 44 1 87 53 Since N is second phoneme, reverse the IN and OUT values.
// 0 11 17 8 47 1 98 56 * <-- (InBlendFrames-1) = (2-1) = 1 frames
// N
// 0 8 12 6 50 1 109 58 * <-- OutBlendFrames = 1
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
//
// Now, consider the reverse "NUS" (N AH S):
//
// flags ampl1 freq1 ampl2 freq2 ampl3 freq3 pitch
// ------------------------------------------------
// N
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61 Use N (weight 8) for transition instead of AH (weight 2)
// 0 5 6 5 54 0 121 61 <-- (OutBlendFrames-1) = (1-1) = 0 frames
// AH
// 0 8 11 6 51 0 110 59 * <-- InBlendFrames = 2
// 0 11 16 8 48 0 99 56 *
// 0 15 22 9 44 1 87 53 Use S (weight 18) for transition instead of AH (weight 2)
// 0 15 22 9 44 1 87 53 Since S is second phoneme, reverse the IN and OUT values.
// 0 9 18 5 51 1 90 55 * <-- (InBlendFrames-1) = (3-1) = 2
// 0 4 14 3 58 1 93 57 *
// S
// 241 2 10 2 65 1 96 59 * <-- OutBlendFrames = 1
// 241 0 6 0 73 0 99 61
A = 0;
mem44 = 0;
mem49 = 0; // mem49 starts at as 0
X = 0;
while(1) //while No. 1
{
// get the current and following phoneme
Y = phonemeIndexOutput[X];
A = phonemeIndexOutput[X+1];
X++;
// exit loop at end token
if (A == 255) break;//goto pos47970;
// get the ranking of each phoneme
X = A;
mem56 = pgm_read_byte(blendRank+A); //blendRank[A];
A = pgm_read_byte(blendRank+Y); //blendRank[Y];
// compare the rank - lower rank value is stronger
if (A == mem56)
{
// same rank, so use out blend lengths from each phoneme
phase1 = pgm_read_byte(outBlendLength+Y);//outBlendLength[Y];
phase2 = pgm_read_byte(outBlendLength+X);//outBlendLength[X];
} else
if (A < mem56)
{
// first phoneme is stronger, so us it's blend lengths
phase1 = pgm_read_byte(inBlendLength+X);//inBlendLength[X];
phase2 = pgm_read_byte(outBlendLength+X);//outBlendLength[X];
} else
{
// second phoneme is stronger, so use it's blend lengths
// note the out/in are swapped
phase1 = pgm_read_byte(outBlendLength+Y);//outBlendLength[Y];
phase2 = pgm_read_byte(inBlendLength+Y);//inBlendLength[Y];
}
Y = mem44;
A = mem49 + phonemeLengthOutput[mem44]; // A is mem49 + length
mem49 = A; // mem49 now holds length + position
A = A + phase2; //Maybe Problem because of carry flag
//47776: ADC 42
speedcounter = A;
mem47 = 168;
phase3 = mem49 - phase1; // what is mem49
A = phase1 + phase2; // total transition?
mem38 = A;
X = A;
X -= 2;
if ((X & 128) == 0)
do //while No. 2
{
//pos47810:
// mem47 is used to index the tables:
// 168 pitches[]
// 169 frequency1
// 170 frequency2
// 171 frequency3
// 172 amplitude1
// 173 amplitude2
// 174 amplitude3
mem40 = mem38;
if (mem47 == 168) // pitch
{
// unlike the other values, the pitches[] interpolates from
// the middle of the current phoneme to the middle of the
// next phoneme
unsigned char mem36, mem37;
// half the width of the current phoneme
mem36 = phonemeLengthOutput[mem44] >> 1;
// half the width of the next phoneme
mem37 = phonemeLengthOutput[mem44+1] >> 1;
// sum the values
mem40 = mem36 + mem37; // length of both halves
mem37 += mem49; // center of next phoneme
mem36 = mem49 - mem36; // center index of current phoneme
A = Read(mem47, mem37); // value at center of next phoneme - end interpolation value
//A = mem[address];
Y = mem36; // start index of interpolation
mem53 = A - Read(mem47, mem36); // value to center of current phoneme
} else
{
// value to interpolate to
A = Read(mem47, speedcounter);
// position to start interpolation from
Y = phase3;
// value to interpolate from
mem53 = A - Read(mem47, phase3);
}
//Code47503(mem40);
// ML : Code47503 is division with remainder, and mem50 gets the sign
// calculate change per frame
{signed char m53 = (signed char)mem53;
mem50 = mem53 & 128;
mem51 = (unsigned char)abs(m53) % mem40; //abs((char)m53) % mem40;
mem53 = (unsigned char)(m53/mem40);}
// interpolation range
X = mem40; // number of frames to interpolate over
Y = phase3; // starting frame
// linearly interpolate values
mem56 = 0;
//47907: CLC
//pos47908:
while(1) //while No. 3
{
A = Read(mem47, Y) + mem53; //carry alway cleared
mem48 = A;
Y++;
X--;
if(X == 0) break;
mem56 += mem51;
if (mem56 >= mem40) //???
{
mem56 -= mem40; //carry? is set
//if ((mem56 & 128)==0)
if ((mem50 & 128)==0)
{
//47935: BIT 50
//47937: BMI 47943
if(mem48 != 0) mem48++;
} else mem48--;
}
//pos47945:
Write(mem47, Y, mem48);
} //while No. 3
//pos47952:
mem47++;
//if (mem47 != 175) goto pos47810;
} while (mem47 != 175); //while No. 2
//pos47963:
mem44++;
X = mem44;
} //while No. 1
//goto pos47701;
//pos47970:
// add the length of this phoneme
mem48 = mem49 + phonemeLengthOutput[mem44];
// ASSIGN PITCH CONTOUR
//
// This subtracts the F1 frequency from the pitch to create a
// pitch contour. Without this, the output would be at a single
// pitch level (monotone).
// don't adjust pitch if in sing mode
if (!singmode)
{
// iterate through the buffer
for(i=0; i<256; i++) {
// subtract half the frequency of the formant 1.
// this adds variety to the voice
pitches[i] -= (frequency1[i] >> 1);
}
}
phase1 = 0;
phase2 = 0;
phase3 = 0;
mem49 = 0;
speedcounter = 72; //sam standard speed
// RESCALE AMPLITUDE
//
// Rescale volume from a linear scale to decibels.
//
//amplitude rescaling
for(i=255; i>=0; i--)
{
amplitude1[i] = pgm_read_byte(amplitudeRescale + amplitude1[i]);//amplitudeRescale[amplitude1[i]];
amplitude2[i] = pgm_read_byte(amplitudeRescale + amplitude2[i]);//amplitudeRescale[amplitude2[i]];
amplitude3[i] = pgm_read_byte(amplitudeRescale + amplitude3[i]);//amplitudeRescale[amplitude3[i]];
}
Y = 0;
A = pitches[0];
mem44 = A;
X = A;
mem38 = A - (A>>2); // 3/4*A ???
#if (debug)
PrintOutput(sampledConsonantFlag, frequency1, frequency2, frequency3, amplitude1, amplitude2, amplitude3, pitches);
#endif
// PROCESS THE FRAMES
//
// In traditional vocal synthesis, the glottal pulse drives filters, which
// are attenuated to the frequencies of the formants.
//
// SAM generates these formants directly with sin and rectangular waves.
// To simulate them being driven by the glottal pulse, the waveforms are
// reset at the beginning of each glottal pulse.
//finally the loop for sound output
//pos48078:
while(1)
{
// get the sampled information on the phoneme
A = sampledConsonantFlag[Y];
mem39 = A;
// unvoiced sampled phoneme?
A = A & 248;
if(A != 0)
{
// render the sample for the phoneme
RenderSample(&mem66);
// skip ahead two in the phoneme buffer
Y += 2;
mem48 -= 2;
} else
{
// simulate the glottal pulse and formants
unsigned char ary[5];
unsigned int p1 = phase1 * 256; // Fixed point integers because we need to divide later on
unsigned int p2 = phase2 * 256;
unsigned int p3 = phase3 * 256;
int k;
for (k=0; k<5; k++) {
signed char sp1 = (signed char)pgm_read_byte(&sinus[0xff & (p1>>8)]);
signed char sp2 = (signed char)pgm_read_byte(&sinus[0xff & (p2>>8)]);
signed char rp3 = (signed char)pgm_read_byte(&rectangle[0xff & (p3>>8)]);
signed int sin1 = sp1 * ((unsigned char)amplitude1[Y] & 0x0f);
signed int sin2 = sp2 * ((unsigned char)amplitude2[Y] & 0x0f);
signed int rect = rp3 * ((unsigned char)amplitude3[Y] & 0x0f);
signed int mux = sin1 + sin2 + rect;
mux /= 32;
mux += 128; // Go from signed to unsigned amplitude
ary[k] = mux;
p1 += ((int)frequency1[Y]) * 256 / 4; // Compromise, this becomes a shift and works well
p2 += ((int)frequency2[Y]) * 256 / 4;
p3 += ((int)frequency3[Y]) * 256 / 4;
}
// output the accumulated value
Output8BitAry(0, ary);
speedcounter--;
if (speedcounter != 0) goto pos48155;
Y++; //go to next amplitude
// decrement the frame count
mem48--;
}
// if the frame count is zero, exit the loop
if(mem48 == 0) return;
speedcounter = speed;
pos48155:
// decrement the remaining length of the glottal pulse
mem44--;
// finished with a glottal pulse?
if(mem44 == 0)
{
pos48159:
// fetch the next glottal pulse length
A = pitches[Y];
mem44 = A;
A = A - (A>>2);
mem38 = A;
// reset the formant wave generators to keep them in
// sync with the glottal pulse
phase1 = 0;
phase2 = 0;
phase3 = 0;
continue;
}
// decrement the count
mem38--;
// is the count non-zero and the sampled flag is zero?
if((mem38 != 0) || (mem39 == 0))
{
// reset the phase of the formants to match the pulse
phase1 += frequency1[Y];
phase2 += frequency2[Y];
phase3 += frequency3[Y];
continue;
}
// voiced sampled phonemes interleave the sample with the
// glottal pulse. The sample flag is non-zero, so render
// the sample for the phoneme.
RenderSample(&mem66);
goto pos48159;
} //while
}
// Create a rising or falling inflection 30 frames prior to
// index X. A rising inflection is used for questions, and
// a falling inflection is used for statements.
void AddInflection(unsigned char mem48, unsigned char phase1)
{
int Atemp;
//pos48372:
// mem48 = 255;
//pos48376:
// store the location of the punctuation
mem49 = X;
A = X;
Atemp = A;
// backup 30 frames
A = A - 30;
// if index is before buffer, point to start of buffer
if (Atemp <= 30) A=0;
X = A;
// FIXME: Explain this fix better, it's not obvious
// ML : A =, fixes a problem with invalid pitch with '.'
while( (A=pitches[X]) == 127) X++;
pos48398:
//48398: CLC
//48399: ADC 48
// add the inflection direction
A += mem48;
phase1 = A;
// set the inflection
pitches[X] = A;
pos48406:
// increment the position
X++;
// exit if the punctuation has been reached
if (X == mem49) return; //goto pos47615;
if (pitches[X] == 255) goto pos48406;
A = phase1;
goto pos48398;
}
/*
SAM's voice can be altered by changing the frequencies of the
mouth formant (F1) and the throat formant (F2). Only the voiced
phonemes (5-29 and 48-53) are altered.
*/
// mouth formants (F1) 5..29
const unsigned char mouthFormants5_29[30] PROGMEM = {
0, 0, 0, 0, 0, 10,
14, 19, 24, 27, 23, 21, 16, 20, 14, 18, 14, 18, 18,
16, 13, 15, 11, 18, 14, 11, 9, 6, 6, 6};
// throat formants (F2) 5..29
const unsigned char throatFormants5_29[30] PROGMEM = {
255, 255,
255, 255, 255, 84, 73, 67, 63, 40, 44, 31, 37, 45, 73, 49,
36, 30, 51, 37, 29, 69, 24, 50, 30, 24, 83, 46, 54, 86};
// there must be no zeros in this 2 tables
// formant 1 frequencies (mouth) 48..53
const unsigned char mouthFormants48_53[6] PROGMEM = {19, 27, 21, 27, 18, 13};
// formant 2 frequencies (throat) 48..53
const unsigned char throatFormants48_53[6] PROGMEM = {72, 39, 31, 43, 30, 34};
void SetMouthThroat(unsigned char mouth, unsigned char throat)
{
unsigned char initialFrequency;
unsigned char newFrequency = 0;
//unsigned char mouth; //mem38880
//unsigned char throat; //mem38881
unsigned char pos = 5; //mem39216
//pos38942:
// recalculate formant frequencies 5..29 for the mouth (F1) and throat (F2)
while(pos != 30)
{
// recalculate mouth frequency
initialFrequency = pgm_read_byte(&mouthFormants5_29[pos]);
if (initialFrequency != 0) newFrequency = trans(mouth, initialFrequency);
freq1data[pos] = newFrequency;
// recalculate throat frequency
initialFrequency = pgm_read_byte(&throatFormants5_29[pos]);
if(initialFrequency != 0) newFrequency = trans(throat, initialFrequency);
freq2data[pos] = newFrequency;
pos++;
}
//pos39059:
// recalculate formant frequencies 48..53
pos = 48;
Y = 0;
while(pos != 54)
{
// recalculate F1 (mouth formant)
initialFrequency = pgm_read_byte(&mouthFormants48_53[Y]);
newFrequency = trans(mouth, initialFrequency);
freq1data[pos] = newFrequency;
// recalculate F2 (throat formant)
initialFrequency = pgm_read_byte(&throatFormants48_53[Y]);
newFrequency = trans(throat, initialFrequency);
freq2data[pos] = newFrequency;
Y++;
pos++;
}
}
//return = (mem39212*mem39213) >> 1
unsigned char trans(unsigned char mem39212, unsigned char mem39213)
{
//pos39008:
unsigned char carry;
int temp;
unsigned char mem39214, mem39215;
A = 0;
mem39215 = 0;
mem39214 = 0;
X = 8;
do
{
carry = mem39212 & 1;
mem39212 = mem39212 >> 1;
if (carry != 0)
{
/*
39018: LSR 39212
39021: BCC 39033
*/
carry = 0;
A = mem39215;
temp = (int)A + (int)mem39213;
A = A + mem39213;
if (temp > 255) carry = 1;
mem39215 = A;
}
temp = mem39215 & 1;
mem39215 = (mem39215 >> 1) | (carry?128:0);
carry = temp;
//39033: ROR 39215
X--;
} while (X != 0);
temp = mem39214 & 128;
mem39214 = (mem39214 << 1) | (carry?1:0);
carry = temp;
temp = mem39215 & 128;
mem39215 = (mem39215 << 1) | (carry?1:0);
carry = temp;
return mem39215;
}
Vorgefundene Kodierung: UTF-8 | 0
|