Spectral Graph Theory for Polytopes

Martin Winter

Working group for Algorithmic and Discrete Mathematics

16. September, 2020
A Motivating Example
A curious observation ...

\[P \subset \mathbb{R}^3 \]
A curious observation ...

\[P \subset \mathbb{R}^3 \rightarrow G_P = (V, E) \]
A curious observation...

\[P \subseteq \mathbb{R}^3 \quad \rightarrow \quad G_P = (V, E) \quad \rightarrow \quad A \in \mathbb{R}^{8 \times 8} \]
A curious observation ...

\[P \subset \mathbb{R}^3 \rightarrow G_P = (V, E) \rightarrow A \in \mathbb{R}^{8 \times 8} \]
A curious observation ...

\[P \subset \mathbb{R}^3 \quad \rightarrow \quad G_P = (V, E) \quad \rightarrow \quad A \in \mathbb{R}^{8 \times 8} \]
A curious observation ...

\[P \subset \mathbb{R}^3 \quad \rightarrow \quad G_P = (V, E) \quad \rightarrow \quad A \in \mathbb{R}^{8 \times 8} \]
A curious observation ...

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & 1 \\
\end{bmatrix},
\begin{bmatrix}
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
-1 & -1 & 1 \\
\end{bmatrix},
\begin{bmatrix}
1 & 1 & -1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
-1 & -1 & 1 \\
\end{bmatrix} \in \mathbb{R}^8
\]
A Motivating Example

A curious observation ...

\[u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \in \mathbb{R}^8 \quad \rightarrow \quad \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \in \mathbb{R}^{8 \times 3} \]
A Motivating Example

A curious observation ...

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 1 & 1 \\
4 & 1 & 1 \\
5 & -1 & 1 \\
6 & -1 & 1 \\
7 & -1 & 1 \\
8 & -1 & 1 \\
\end{bmatrix}, \quad \begin{bmatrix}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 1 & -1 \\
4 & 1 & 1 \\
5 & -1 & 1 \\
6 & -1 & 1 \\
7 & -1 & -1 \\
8 & -1 & -1 \\
\end{bmatrix} \in \mathbb{R}^8 \quad \rightarrow \quad \begin{bmatrix}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 1 & 1 \\
4 & 1 & -1 \\
5 & -1 & 1 \\
6 & -1 & 1 \\
7 & -1 & -1 \\
8 & -1 & -1 \\
\end{bmatrix} \in \mathbb{R}^{8 \times 3}
\]
A curious observation ...

\[u_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \in \mathbb{R}^8 \quad \rightarrow \quad u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{8 \times 3} \]

\[v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^3 \]
A Motivating Example

A curious observation ...

\[
\begin{align*}
 u_1 &= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \\
 u_2 &= \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \\
 u_3 &= \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \\
 \in \mathbb{R}^8 &\rightarrow \\
 \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} &\in \mathbb{R}^{8 \times 3}
\end{align*}
\]

\[
\begin{align*}
 v_1 &= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \\
 v_2 &= \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}
\end{align*}
\]
A curious observation ...

\[u_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \quad u_2 \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad u_3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^8 \rightarrow \end{align*}

\[u_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \quad u_2 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad u_3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{8 \times 3} \]

\[v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \ldots \]
A Motivating Example

A curious observation ...

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
\end{bmatrix}
\begin{bmatrix}
 1 \\
 1 \\
 1 \\
\end{bmatrix},
\begin{bmatrix}
 1 \\
 1 \\
 1 \\
\end{bmatrix},
\begin{bmatrix}
 1 \\
 1 \\
 1 \\
\end{bmatrix}
\in \mathbb{R}^8 \rightarrow
\begin{bmatrix}
 u_1 & u_2 & u_3 \\
\end{bmatrix}
\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & -1 \\
 1 & -1 & 1 \\
\end{bmatrix},
\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & -1 \\
 1 & -1 & 1 \\
\end{bmatrix},
\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & -1 \\
 1 & -1 & 1 \\
\end{bmatrix}
\in \mathbb{R}^{8 \times 3}
\]

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
\end{bmatrix}
\begin{bmatrix}
 1 \\
 1 \\
 1 \\
\end{bmatrix},
\begin{bmatrix}
 1 \\
 1 \\
 1 \\
\end{bmatrix},
\begin{bmatrix}
 1 \\
 -1 \\
 -1 \\
\end{bmatrix}
\rightarrow
V \ni i \mapsto v_i \in \mathbb{R}^3
\]

A curious observation ...

Note: Works for many other polytopes too!
A curious observation ...

Note: Works for many other polytopes too!
A curious observation ...

Note: Works for many other polytopes too! But for which?
What I want to say ...

There is a construction ...

\[G \mapsto P \]

There is a phenomenon ...

\[P \mapsto G \mapsto P \]
A Motivating Example

What I want to say ...

There is a construction ...

\[G \mapsto P \]

EIGENPOLYTOPE

There is a phenomenon ...

\[P \leftrightarrow G \leftrightarrow P \]
What I want to say ...

There is a construction ...

\[G \mapsto P \]

\[\text{EIGENPOLYTOPE} \]

There is a phenomenon ...

\[P \mapsto G \mapsto P \]

\[\text{SPECTRAL POLYTOPE} \]
What I want to say ...

There is a construction ...

\[G \mapsto P \]

EIGENPOLYTOPE

There is a phenomenon ...

\[P \mapsto G \mapsto P \mapsto G \mapsto \cdots \]

SPECTRAL POLYTOPE
What I want to say ...

There is a construction ...

\[G \mapsto P \]

Eigenpolytope

There is a phenomenon ...

\[P \mapsto G \mapsto P \mapsto G \mapsto \cdots \]

Spectral Polytope

Eigenpolytopes
Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, ..., n\}$.

- Choose one of them, say θ_i of multiplicity d.

- Choose an orthonormal basis $u_1, ..., u_d \in \mathbb{R}^n$ of the θ_i-eigenspace and define the matrix $\Phi = \begin{bmatrix} | & | \\ u_1 & \cdots & u_d \end{bmatrix}$.

- Let $v_i \in \mathbb{R}^d$ be the i-th row of Φ.

- The θ_i-eigenpolytope of G is $P_G(\theta_i) := \text{conv} \{v_i \mid i \in V\} \subset \mathbb{R}^d$.
Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, \ldots, n\}$, whose eigenvalues are $\theta_1 > \theta_2 > \cdots > \theta_m$.
Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, ..., n\}$, whose eigenvalues are $\theta_1 > \theta_2 > \cdots > \theta_m$.

- Choose one of them, say θ_i of multiplicity d.
Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, \ldots, n\}$, whose eigenvalues are $\theta_1 > \theta_2 > \cdots > \theta_m$.

- Choose one of them, say θ_i of multiplicity d.

- Choose an orthonormal basis $u_1, \ldots, u_d \in \mathbb{R}^n$ of the θ_i-eigenspace.
Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, \ldots, n\}$, whose eigenvalues are $\theta_1 > \theta_2 > \cdots > \theta_m$.

- Choose one of them, say θ_i of multiplicity d.

- Choose an orthonormal basis $u_1, \ldots, u_d \in \mathbb{R}^n$ of the θ_i-eigenspace and define the matrix

$$\Phi := \begin{bmatrix} u_1 & \cdots & u_d \end{bmatrix} \in \mathbb{R}^{n \times d}$$
Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, \ldots, n\}$, whose eigenvalues are

$$\theta_1 > \theta_2 > \cdots > \theta_m.$$

- Choose one of them, say θ_i of multiplicity d.

- Choose an orthonormal basis $u_1, \ldots, u_d \in \mathbb{R}^n$ of the θ_i-eigenspace and define the matrix

$$\Phi := \begin{bmatrix} u_1 & \cdots & u_d \end{bmatrix} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}. $$

- Let $v_i \in \mathbb{R}^d$ be the i-th row of Φ.

Definition. (Eigenpolytope)

- Start with a graph $G = (V, E)$ with $V = \{1, \ldots, n\}$, whose eigenvalues are $\theta_1 > \theta_2 > \cdots > \theta_m$.

- Choose one of them, say θ_i of multiplicity d.

- Choose an orthonormal basis $u_1, \ldots, u_d \in \mathbb{R}^n$ of the θ_i-eigenspace and define the matrix
 $$\Phi := \begin{bmatrix} u_1 & \cdots & u_d \end{bmatrix} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}.$$

- Let $v_i \in \mathbb{R}^d$ be the i-th row of Φ.

- The θ_i-eigenpolytope of G is
 $$P_G(\theta_i) := \text{conv}\{v_i \mid i \in V\} \subset \mathbb{R}^d.$$
Example: cube graph

\[\text{Spec("cube graph")} = \{ 3^1, 1^3, (-1)^3, (-3)^1 \} \]
Example: cube graph

\[\text{Spec(”cube graph”)} = \{3^1, 1^3, (-1)^3, (-3)^1\} \]
Example: cube graph

\[\text{Spec(“cube graph”)} = \{ 3^1, 1^3, (-1)^3, (-3)^1 \} \]
Example: cube graph

\[\text{Spec("cube graph") } = \{ 3^1, 1^3, (-1)^3, (-3)^1 \} \]
Example: cube graph

\[\text{Spec}("\text{cube graph}") = \{ 3^1, 1^3, (-1)^3, (-3)^1 \} \]
Example: dodecahedron graph

\[\text{Spec(”dodecahedron graph”) } = \{ 3^1, \sqrt{5}^3, 1^5, 0^4, (-2)^4, (-\sqrt{5})^3 \} \]
Example: dodecahedron graph

$$\text{Spec}("dodecahedron graph") = \{3^1, \sqrt{5}^3, 1^5, 0^4, (-2)^4, (-\sqrt{5})^3\}$$
Example: dodecahedron graph

\[\text{Spec}("dodecahedron graph") = \{ 3^1, \sqrt{5}^3, 1^5, 0^4, (-2)^4, (-\sqrt{5})^3 \} \]
Example: dodecahedron graph

$$\text{Spec} \left(\text{"dodecahedron graph"} \right) = \{ 3^1, \sqrt{5}^3, 1^5, 0^4, (-2)^4, (-\sqrt{5})^3 \}$$
Example: dodecahedron graph

$$\text{Spec("dodecahedron graph")} = \{3^1, \sqrt{5}^3, 1^5, 0^4, (-2)^4, (-\sqrt{5})^3\}$$
Other (non-)examples

Not spectral:

- Most prisms, e.g. edge-graph of triangle prism has spectrum
 \{3, 1, 1, 0, 2, (−2)^2\}
- Most neighborly polytopes.
Other (non-)examples

Not spectral:

- most prisms, e.g. edge-graph of triangle prism has spectrum

\[\{3^1, 1^1, 0^2, (-2)^2 \} \]
Other (non-)examples

Not spectral:

- most prisms, e.g. edge-graph of triangle prism has spectrum
 \[\{ 3^1, 1^1, 0^2, (-2)^2 \} , \]

- most neighborly polytopes.
Other (non-)examples

Not spectral:

- most prisms, e.g. edge-graph of triangle prism has spectrum
 \[\{ 3^1, 1^1, 0^2, (-2)^2 \}, \]

- most neighborly polytopes.

Eigenpolytopes:
Other (non-)examples

Not spectral:

- most prisms, e.g. edge-graph of triangle prism has spectrum
 \[\{3^1, 1^1, 0^2, (-2)^2\}, \]
- most neighborly polytopes.

Eigenpolytopes:

- permutahedra (spectral),
Other (non-)examples

Not spectral:
- most prisms, e.g. edge-graph of triangle prism has spectrum
 \[\{ 3^1, 1^1, 0^2, (-2)^2 \}, \]
- most neighborly polytopes.

Eigenpolytopes:
- permutahedra (spectral),
Other (non-)examples

Not spectral:

- most prisms, e.g. edge-graph of *triangle prism* has spectrum
 \[\{ 3^1, 1^1, 0^2, (-2)^2 \}, \]

- most neighborly polytopes.

Eigenpolytopes:

- permutahedra (spectral),
- the traveling salesman polytope,
Other (non-)examples

Not spectral:
- most prisms, e.g. edge-graph of triangle prism has spectrum
 \[\{ 3^1, 1^1, 0^2, (-2)^2 \} , \]
- most neighborly polytopes.

Eigenpolytopes:
- permutahedra (spectral),
- the traveling salesperson polytope,
- the Birkhoff polytope,
Other (non-)examples

Not spectral:
- most prisms, e.g. edge-graph of *triangle prism* has spectrum
 \[\{ 3^1, 1^1, 0^2, (-2)^2 \} , \]
- most neighborly polytopes.

Eigenpolytopes:
- permutahedra (spectral),
- the traveling salesperson polytope,
- the Birkhoff polytope,
- ...

Eigenpolytopes
Balanced and Spectral Polytopes
Balanced polytopes

A balanced polytope $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$ and vertices $v_i \in \mathbb{R}^d$ for $i \in V$.

Definition. (balanced polytope)

P is called **balanced** for some $\theta \in \mathbb{R}$ if

$$\sum_{j \in N(i)} v_j = \theta v_i, \quad \text{for all } i \in V.$$
Balanced and Spectral Polytopes

Balanced polytopes

\(P \subset \mathbb{R}^d \) with edge-graph \(G_P = (V, E) \) and vertices \(v_i \in \mathbb{R}^d \) for \(i \in V \).

Definition. (balanced polytope)

\(P \) is called **balanced** for some \(\theta \in \mathbb{R} \) if

\[
\sum_{j \in N(i)} v_j = \theta v_i, \quad \text{for all } i \in V.
\]

\[
A \Psi = \theta \Psi, \quad \Psi := \begin{bmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{bmatrix}
\]

Consequences:

\(\theta \) is an eigenvalue of \(G \), and

\(\text{the columns of } \Psi \text{ are } \theta \text{-eigenvectors, or} \)

\(\text{span } \Psi \subseteq \text{Eig } G(\theta) \).
Balanced polytopes

\(P \subset \mathbb{R}^d \) with edge-graph \(G_P = (V, E) \) and vertices \(v_i \in \mathbb{R}^d \) for \(i \in V \).

Definition. (balanced polytope)

\(P \) is called *balanced* for some \(\theta \in \mathbb{R} \) if

\[
\sum_{j \in N(i)} v_j = \theta v_i, \quad \text{for all } i \in V.
\]

\[
\begin{bmatrix}
\vdots \\
v_1 \\
\vdots \\
v_n
\end{bmatrix}
\]

Consequences:

\(\theta \) is an eigenvalue of \(G \), and

\[
A \Psi = \theta \Psi
\]

\(\Psi := \begin{bmatrix}
\vdots \\
v_1 \\
\vdots \\
v_n
\end{bmatrix} \)
Balanced and Spectral Polytopes

Balanced polytopes

\(P \subset \mathbb{R}^d \) with edge-graph \(G_P = (V, E) \) and vertices \(v_i \in \mathbb{R}^d \) for \(i \in V \).

Definition. (balanced polytope)

\(P \) is called balanced for some \(\theta \in \mathbb{R} \) if

\[
\sum_{j \in N(i)} v_j = \theta v_i, \quad \text{for all } i \in V.
\]

Consequences:

- \(\theta \) is an eigenvalue of \(G \), and
- the columns of \(\Psi \) are \(\theta \)-eigenvectors, or

\[
\text{span } \Psi \subseteq \text{Eig}_G(\theta).
\]
Balanced polytopes

$P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$ and vertices $v_i \in \mathbb{R}^d$ for $i \in V$.

Definition. (balanced polytope)

P is called balanced for some $\theta \in \mathbb{R}$ if

$$\sum_{j \in N(i)} v_j = \theta v_i, \quad \text{for all } i \in V.$$

Consequences:

- θ is an eigenvalue of G, and
- the columns of Ψ are θ-eigenvectors, or

$$\text{span } \Psi = \text{Eig}_G(\theta).$$
Definition. (spectral polytope)

P is called *spectral* for some $\theta \in \mathbb{R}$ if

$$\text{span } \Psi = \text{Eig}_G(\theta).$$
Spectral polytopes

Definition. (spectral polytope)

P is called *spectral* for some $\theta \in \mathbb{R}$ if

$$\text{span } \Psi = \text{Eig}_G(\theta).$$

\iff P is the eigenpolytope of its edge-graph (in the right way).
Spectral polytopes

Definition. (spectral polytope)

P is called *spectral* for some $\theta \in \mathbb{R}$ if

$$\text{span } \Psi = \text{Eig}_G(\theta).$$

$\iff P$ is the eigenpolytope of its edge-graph (in the right way).

Theorem. (W., 2020)

If P is spectral, then

...
Spectral polytopes

Definition. (spectral polytope)

P is called *spectral* for some $\theta \in \mathbb{R}$ if

$$\text{span } \Psi = \text{Eig}_G(\theta).$$

\iff P is the eigenpolytope of its edge-graph (in the right way).

Theorem. *(W., 2020)*

If P is spectral, then

- P is uniquely determined by its edge-graph (up to scale and orientation),
Spectral polytopes

Definition. (spectral polytope)

P is called *spectral* for some $\theta \in \mathbb{R}$ if

$$\text{span } \Psi = \text{Eig}_G(\theta).$$

$\iff P$ is the eigenpolytope of its edge-graph (in the right way).

Theorem. (W., 2020)

If P is spectral, then

- P is uniquely determined by its edge-graph (up to scale and orientation),
- P realizes all the symmetries of its edge-graph.
Spectral polytopes

Definition. *(spectral polytope)*

P is called *spectral* for some $\theta \in \mathbb{R}$ if

$$\text{span } \Psi = \text{Eig}_G(\theta).$$

$\iff P$ is the eigenpolytope of its edge-graph (in the right way).

Theorem. *(W., 2020)*

If P is spectral, then

- P is uniquely determined by its edge-graph (up to scale and orientation),
- P realizes all the symmetries of its edge-graph.

Question: Can we classify spectral polytopes?
Spectral graphs

Definition. (spectral graph)

G is *spectral* if it is the edge-graph of a spectral polytope.
Spectral graphs

Definition. (spectral graph)

G is *spectral* if it is the edge-graph of a spectral polytope.

$\iff G$ is the edge-graph of its eigenpolytope (in the right way).
Spectral graphs

Definition. *(spectral graph)*

G is *spectral* if it is the edge-graph of a spectral polytope.

$\iff G$ is the edge-graph of its eigenpolytope (in the right way).

Alternative:

Definition. *(spectral graph, graph theory version)*

G is *spectral* if

$\forall i \in V$ there is an eigenvector $u \in \mathbb{R}^n$ with unique largest component u_i,

$\forall i, j \in E \iff$ there is an eigenvector $u \in \mathbb{R}^n$ with only largest components u_i and u_j.
Spectral graphs

Definition. (spectral graph)

G is *spectral* if it is the edge-graph of a spectral polytope.

$\iff G$ is the edge-graph of its eigenpolytope (in the right way).

Alternative:

Definition. (spectral graph, *graph theory version*)

G is *spectral* if

1. for all $i \in V$ there is an eigenvector $u \in \mathbb{R}^n$ with unique largest component u_i,
Spectral graphs

Definition. (spectral graph)

G is spectral if it is the edge-graph of a spectral polytope.

$\iff G$ is the edge-graph of its eigenpolytope (in the right way).

Alternative:

Definition. (spectral graph, graph theory version)

G is spectral if

- for all $i \in V$ there is an eigenvector $u \in \mathbb{R}^n$ with unique largest component u_i,
- $ij \in E \iff$ there is an eigenvector $u \in \mathbb{R}^n$ with only largest components u_i and u_j.
Spectral graphs

Definition. (spectral graph)

\(G \) is *spectral* if it is the edge-graph of a spectral polytope.

\[\iff G \text{ is the edge-graph of its eigenpolytope (in the right way)}. \]

Alternative:

Definition. (spectral graph, *graph theory version*)

\(G \) is *spectral* if

1. for all \(i \in V \) there is an eigenvector \(u \in \mathbb{R}^n \) with unique largest component \(u_i \),
2. \(ij \in E \iff \) there is an eigenvector \(u \in \mathbb{R}^n \) with only largest components \(u_i \) and \(u_j \).

Question: Can we classify spectral graphs?
Characterizing Spectral Polytopes
A geometric characterization

Let $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$, and vertices $v_i, i \in V$.

$$P^\circ = \{ x \in \mathbb{R}^d \mid \langle v_i, x \rangle \leq 1 \text{ for } i = 1, \ldots, n \}.$$
A geometric characterization

Let $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$, and vertices $v_i, i \in V$.

$$P^\circ(c) = \{ x \in \mathbb{R}^d \mid \langle v_i, x \rangle \leq c_i \text{ for } i = 1, \ldots, n \}.$$

with $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$.
A geometric characterization

Let $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$, and vertices $v_i, i \in V$.

$$P^\circ(c) = \{ x \in \mathbb{R}^d \mid \langle v_i, x \rangle \leq c_i \text{ for } i = 1, \ldots, n \}.$$

with $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$. Then $P^\circ = P^\circ(1, \ldots, 1)$.
A geometric characterization

Let $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$, and vertices $v_i, i \in V$.

$$P^\circ(c) = \{x \in \mathbb{R}^d \mid \langle v_i, x \rangle \leq c_i \text{ for } i = 1, \ldots, n\}.$$

with $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$. Then $P^\circ = P^\circ(1, \ldots, 1)$.
A geometric characterization

Let $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$, and vertices $v_i, i \in V$.

$$P^\circ(c) = \{ x \in \mathbb{R}^d \mid \langle v_i, x \rangle \leq c_i \text{ for } i = 1, \ldots, n \}.$$

with $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$. Then $P^\circ = P^\circ(1, \ldots, 1)$.
A geometric characterization

Let $P \subset \mathbb{R}^d$ with edge-graph $G_P = (V, E)$, and vertices $v_i, i \in V$.

$$P^\circ(c) = \{ x \in \mathbb{R}^d \mid \langle v_i, x \rangle \leq c_i \text{ for } i = 1, \ldots, n \}.$$

with $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$. Then $P^\circ = P^\circ(1, \ldots, 1)$.

![Diagram showing geometric characterization of spectral polytopes](image)
A geometric characterization

Theorem. (W., 2020, based on IZMESTIEV, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \left. \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \right|_{c=(1,\ldots,1)}.$$
A geometric characterization

Theorem. (W., 2020, based on Izmestiev, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \bigg|_{c=(1,\ldots,1)}.$$

If it holds

(i)

(ii)

then P is spectral.
A geometric characterization

Theorem. (W., 2020, based on IZMESTIEV, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \left. \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \right|_{c=(1,...,1)}.$$

If it holds

(i) X_{ii} is independent of $i \in V$

(ii) then P is spectral.
A geometric characterization

Theorem. (W., 2020, based on Izmestiev, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \bigg|_{c=(1,...,1)}.$$

If it holds

(i) X_{ii} is independent of $i \in V$, and

(ii) X_{ij} is independent of $ij \in E$.

then P is spectral.
A geometric characterization

Theorem. (W., 2020, based on IZMESTIEV, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \frac{\partial \text{vol}(P^c(c))}{\partial c_i \partial c_j} \bigg|_{c=(1,...,1)}.$$

If it holds

(i) X_{ii} is independent of $i \in V$, and
(ii) X_{ij} is independent of $i,j \in E$.

then P is spectral to eigenvalue θ_2.

Geometric interpretation: $X_{ij} = \text{vol}(\sigma_i \cap \sigma_j) \parallel v_i \parallel \parallel v_j \parallel \sin \angle(v_i, v_j)$, for $ij \in E$.
A geometric characterization

Theorem. (W., 2020, based on Izmestiev, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \left. \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \right|_{c=(1,...,1)}.$$

If it holds

(i) X_{ii} is independent of $i \in V$, and

(ii) X_{ij} is independent of $ij \in E$.

then P is spectral to eigenvalue θ_2.

Geometric interpretation:

$$X_{ij} = \frac{\text{vol}(\sigma_i \cap \sigma_j)}{\|v_i\| \|v_j\| \sin \angle(v_i, v_j)}, \quad \text{for } ij \in E$$

where σ_i is the dual facet in P° to the vertex v_i.
A geometric characterization

Theorem. (W., 2020, based on Izmestiev, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \bigg|_{c=(1,\ldots,1)}.$$

If it holds

(i) X_{ii} is independent of $i \in V$, and

(ii) X_{ij} is independent of $ij \in E$.

then P is spectral to eigenvalue θ_2.

Geometric interpretation:

$$X_{ij} = \frac{\text{vol}(\sigma_i \cap \sigma_j)}{\|v_i\|\|v_j\| \sin \angle(v_i, v_j)}, \quad \text{for } ij \in E$$

where σ_i is the dual facet in P° to the vertex v_i.

Question: Is this also necessary?
A geometric characterization

Theorem. (W., 2020, based on Izmestiev, 2010)

Define the matrix $X \in \mathbb{R}^{n \times n}$ by

$$X_{ij} = \left. \frac{\partial \text{vol}(P^\circ(c))}{\partial c_i \partial c_j} \right|_{c=(1,...,1)}.$$

If it holds

(i) X_{ii} is independent of $i \in V$, and
(ii) X_{ij} is independent of $ij \in E$. \quad \{\text{true if } P \text{ is vertex & edge-transitive}\}

then P is spectral to eigenvalue θ_2.

Geometric interpretation: $X_{ij} = \frac{\text{vol}(\sigma_i \cap \sigma_j)}{\|v_i\|\|v_j\| \sin \angle(v_i, v_j)}$, for $ij \in E$

where σ_i is the dual facet in P° to the vertex v_i.

Question: Is this also necessary?
Question 1

Is there a spectral graph/polytope to an eigenvalue other than θ_2?
Question I

Is there a spectral graph/polytope to an eigenvalue other than θ_2?

Theorem. (W., 2020)

Let P/G be spectral. If G/P is edge-transitive, then

- it is spectral to eigenvalue θ_2
Question 1

Is there a spectral graph/polytope to an eigenvalue other than θ_2?

Theorem. (W., 2020)

Let P/G be spectral. If G/P is edge-transitive, then

- it is spectral to eigenvalue θ_2, and
- if P/G is not vertex-transitive, then it is the following:

![Diagram of spectral polytopes](image-url)
Question II

Are spectral graphs/polytopes necessarily of high symmetry?
Question II

Are spectral graphs/polytopes necessarily of high symmetry?

Theorem. *(Godsil, 1998)*

Let G be spectral. If G is distance-regular, then G is one of the following:

1. a cycle graph,
2. the dodecahedron graph,
3. the icosahedron graph,
4. a crown graph,
5. a Johnson graph,
6. a Hamming graph,
7. a halved cube graph,
8. the Gosset graph,
9. the Schl"afli graph.
Question II

Are spectral graphs/polytopes necessarily of high symmetry?

Theorem. (Godsil, 1998)

Let G be spectral. If G is distance-regular, then G is one of the following:

1. a cycle graph,
2. the dodecahedron graph,
3. the icosahedron graph,
4. a crown graph,
5. a Johnson graph,
6. a Hamming graph,
7. a halved cube graph,
8. the Gosset graph, or
9. the Schlafli graph.
Question II

Are spectral graphs/polytopes necessarily of high symmetry?

Theorem. (Godsil, 1998)

Let G be spectral. If G is distance-regular, then G is one of the following:

- a cycle graph,
- the dodecahedron graph,
- the icosahedron graph,
- a crown graph,
- a Johnson graph, (v) a Hamming graph,
- a halved cube graph,
- the Gosset graph, or
- the Schl"afli graph.

all of these are distance-transitive
The End

Questions?
Corollary.

If $P \subset \mathbb{R}^d$ is vertex- and edge-transitive, then

- P is spectral to the eigenvalue θ_2,
- P is uniquely determined by its edge-graph (up to scale and orientation),
- P realizes all the symmetries of its edge-graph,
- $\text{Aut}(P)$ is irreducible as matrix group,
- if P has circumradius r and edge-length ℓ, then
 \[\frac{\ell}{r} = \sqrt{2 \left(1 - \frac{\theta_2}{\deg(G_P)}\right)} , \]
- if P° has dihedral angle α, then
 \[\cos(\alpha) = -\frac{\theta_2}{\deg(G_P)} . \]
More general ...

The symmetry group of P is as large as possible, given the orbits on its 1-skeleton.

Theorem. *(W., 2020+)*

Let G be the orbit-colored edge-graph of P. Then $\text{Aut}(G) \cong \text{Aut}(P)$.