(Random) Trees of Intermediate Volume Growth

Martin Winter
(joint work with George Kontogeorgiou)

University of Warwick

12. July, 2022
Volume Growth in Graphs

$|B_v(r)|$
Volume growth

ball \(B_v(r) := \{ x \in V(G) \mid \text{dist}(x, v) \leq r \} \)

\[|B_v(0)| = 1 \]
Volume growth

ball \ldots \ B_v(r) := \{ x \in V(G) \mid \text{dist}(x,v) \leq r \}

|B_v(1)| = 5
Volume growth

$$B_v(r) := \{ x \in V(G) \mid \text{dist}(x, v) \leq r \}$$

$$|B_v(2)| = 13$$
Volume growth

\[B_v(r) := \{ x \in V(G) \mid \text{dist}(x, v) \leq r \} \]

\[|B_v(3)| = 25 \]
Examples: polynomial and exponential

Application: geometric group theory → Cayley graphs
Arbitrary growth at a vertex

For each *strictly increasing* function $g: \mathbb{N}_0 \to \mathbb{N}$ it is easy to find a graph G with

$$|B_v(r)| = g(r), \quad \text{for all } r \geq 0$$

at a fixed vertex $v \in V(G)$.
Uniform growth

Target growth: \(g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \)

Definition.

A graph \(G \) is of **uniform volume growth** \(g \) if there are \(r_0 \geq 1 \) and \(c_1, c_2, C_1, C_2 > 0 \) so that for all \(v \in V(G) \) and \(r \geq r_0 \)

\[
C_1 \cdot g(c_1 r) \leq |B_v(r)| \leq C_2 \cdot g(c_2 r).
\]

We write \(|B_v(r)| \sim g(r) \).

Note: this is different from \(|B_v(r)| = \theta(g) \).
Uniform growth

\[|B_v(r)| \sim r^2 \]

but

\[|B_v(r)| \not\sim r^2 \]

\[|B_v(r)| = \theta(r^2) \]
Growth of planar graphs

Two interesting classes:
- planar triangulations
- trees
GROWTH OF PLANAR GRAPHS

Two interesting classes:

- planar triangulations
- trees
Trees
Uniform growth of trees

What kind of uniform growth can a tree have?

- linear ✓
- exponential ✓
Uniform growth of trees

What kind of uniform growth can a tree have?

- linear ✓
- exponential ✓
- polynomial ??
- intermediate ??
- oscillating ??

(Benjamini, Schramm; 2001)

$$|B_v(r)| \sim r^{\alpha}, \text{ where } \alpha = \log |E| \log d = \log 5 \log \frac{2}{3} \approx 1.464973.$$
Uniform growth of trees

What kind of uniform growth can a tree have?

- linear ✓
- exponential ✓
- polynomial ✓
- intermediate ??
- oscillating ??

\[|B_v(r)| \sim r^\alpha, \quad \text{where} \quad \alpha = \frac{\log |E|}{\log d} = \frac{\log 5}{\log 3} \approx 1.464973. \]

(Benjamini, Schramm; 2001)
The Question

Q: “Are there random trees of uniform intermediate volume growth?”

– Itai Benjamini

super-polynomial: $e^{\omega(\log(r))}$

sub-exponential: $e^{o(r)}$

\[\downarrow \]
The Question

Q: “Are there random trees of uniform intermediate volume growth?”

– Itai Benjamini

super-polynomial: \(e^{\omega(\log(r))} \)
sub-exponential: \(e^{o(r)} \)
The Question

Q: “Are there random trees of uniform intermediate volume growth?”

– Itai Benjamini

Why could there be doubt?

- intermediate growth is known to be a delicate issue in other settings
- e.g. Cayley graphs → Grigorchuk group
- no intermediate growth Cayley graph is a tree
They exist!
They exist!
The Construction

$T_0 \subset T_1 \subset T_2 \subset T_3 \subset \cdots$
CONSTRUCTION — A SEQUENCE OF TREES

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

T_0
Construction – A Sequence of Trees

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$

T_0
CONSTRUCTION – A SEQUENCE OF TREES

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$
Construction – A Sequence of Trees

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2$

T_1
CONSTRUCTION — A SEQUENCE OF TREES

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$
CONSTRUCTION – A SEQUENCE OF TREES

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$
Construction — a sequence of trees

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2$ 3 4 5
Construction – a sequence of trees

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$
CONSTRUCTION — A SEQUENCE OF TREES

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$
Construction — A Sequence of Trees

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}$, $\delta_n \geq 1$

$\delta_n := n + 2 \quad 3 \quad 4 \quad 5$

$$T := \bigcup_{n} T_n$$
Heuristics Argument

Properties of T_n:

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- distance from root to apocentric vertex: $2^n - 1$
Heuristics argument

Properties of T_n:
- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- distance from root to apocentric vertex: $2^n - 1$

$$|B_v(2^n - 1)| = (\delta_1 + 1) \cdots (\delta_n + 1)$$
HEURISTICS ARGUMENT

Properties of T_n:

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- distance from root to apocentric vertex: $2^n - 1$

$$|B_v(2^n - 1)| = (\delta_1 + 1) \cdots (\delta_n + 1) \quad \implies \quad \delta_n \approx \frac{g(2^n - 1)}{g(2^{n-1} - 1)} - 1$$
Example: polynomial growth

\[|B_v(r)| = (r + 1)^2 \]

\[\delta_n := 3 \]
Example: Polynomial Growth

\[|B_v(r)| = (r + 1)^2 \implies |B_v(2^n - 1)| = (2^n)^2 = 4^n = (3 + 1) \cdots (3 + 1) \]

\[\delta_n := 3 \]
Example: exponential growth

\[\delta_n := 2^{2^n} \]

\[|B_v(2^n - 1)| = (\delta_1 + 1) \cdots (\delta_n + 1) = \prod_{k=1}^{n} \left(2^{2^{k-1}} + 1 \right) = \sum_{i=0}^{2^n-1} 2^i = 2 \cdot 2^{2^n-1} - 1 \]
Example: intermediate growth?

\[\delta_n := n + 2 \]

\[|B_v(r)| \sim r^{\log \log r} \]
Main Result

For every function $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ there is a tree of uniform growth g.
For every function? Almost ...

\(g \) increasing

“\(g \) at least linear”

“\(g \) at most exponential”
For every function? Almost ...

g increasing

“g at least linear”

“g at most exponential”
Main Result

For every function? Almost ...

\[g \text{ increasing} \]

\["g \text{ at least linear"} \iff \delta_n \geq 1 \]

\["g \text{ at most exponential"} \]
For every function? Almost ...

\(g \) increasing

"\(g \) at least linear" \(\iff \delta_n \geq 1 \iff g \) super-additive

"\(g \) at most exponential"
For every function? Almost ...

g increasing

“g at least linear” \iff $\delta_n \geq 1$ \iff g super-additive

“g at most exponential” \iff T of bounded degree
For every function? Almost ...

\(g \) increasing

“\(g \) at least linear” \(\iff \delta_n \geq 1 \iff \) \(g \) super-additive

“\(g \) at most exponential” \(\iff T \) of bounded degree

\[
\Delta(n) := \frac{\delta_n}{\delta_1 \cdots \delta_{n-1}}
\]

\(\bar{\Delta} := \sup_n [\Delta(n)] < \infty \iff \delta_{n+1} \leq \bar{\Delta} \cdot \delta_1 \cdots \delta_n \)
Main Result: \(T \) has uniform growth

\[
\Delta(n) := \frac{\delta_n}{\delta_1 \cdots \delta_{n-1}}, \quad \bar{\Delta} := \sup_n \Delta(n), \quad \Gamma := \sup_{m \geq n} \left[\frac{\Delta(m)}{\Delta(n)} \right].
\]

Theorem. (Kontogeorgiou, W.; 2022+)

For super-additive \(g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) exists a tree \(T \) so that for all \(v \in V(T) \) and \(r \geq r_0 \)

\[
|B_v(r)| \geq C_1 \cdot g(r/4)
\]

if \(\bar{\Delta} < \infty \) then

\[
|B_v(r)| \leq C_2 \cdot g(2r)^2
\]

if \(\Gamma < \infty \) then

\[
|B_v(r)| \leq C_3 \cdot g(4r)
\]

In particular, if \(\Gamma < \infty \), then \(T \) is of uniform growth \(g \).
Main Result

Main result: T has uniform growth

$$\Delta(n) := \frac{\delta_n}{\delta_1 \cdots \delta_{n-1}}, \quad \tilde{\Delta} := \sup_n [\Delta(n)], \quad \Gamma := \sup_{m \geq n} \left[\frac{\Delta(m)}{\Delta(n)} \right].$$

Theorem. (Kontogeorgiou, W.; 2022+)

For super-additive $g : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ exists a tree T so that for all $v \in V(T)$ and $r \geq r_0$

$$|B_v(r)| \geq C_1 \cdot g(r/4)$$

if $\tilde{\Delta} < \infty$ then

$$|B_v(r)| \leq C_2 \cdot g(2r)^2$$

if $\Gamma < \infty$ then

$$|B_v(r)| \leq C_3 \cdot g(4r)$$

In particular, if $\Gamma < \infty$, then T is of uniform growth g.

Theorem.

If g is super-additive and log-concave, then there is a tree of uniform growth g.
Random Trees
The original question

Q: “Are there random trees of uniform intermediate volume growth?”

“unimodular random rooted trees”

– Itai Benjamini
The original question

Q: “Are there random trees of uniform intermediate volume growth?”

“unimodular random rooted trees”

\[T_0, T_1, T_2, T_3, \ldots \xrightarrow{\text{BS}} \mathcal{T} \]

Benjamini-Schramm limit (BS)... graph limit for graphs of bounded degree
Two interesting facts

A threshold phenomenon:

Theorem.

If \(\delta_n \geq n^\alpha \) *for some* \(\alpha > 1 \), *then* \(T \) *is a.s. 1-ended.*

\[
|B_v(r)| \sim g(r) = \Omega(r^{\alpha \log \log r})
\]

A deterministic tree:

Theorem.

If \(\delta_{n+1} = \delta_n \delta_{n-1} \) *then* \(T \) *is a deterministic unimodular tree.*

\[
|B_v(r)| \sim \exp(r^{1/\sqrt{5}})
\]
Open Questions
Just one question

Question.

If G has uniform volume growth g, does G have a spanning tree of the same uniform volume growth g?

Note: true for lattice graphs
Thank you.