MSc. Martin Winter

Wissenschaftlicher Mitarbeiter der Professur
Algorithmische und Diskrete Mathematik
(Prof. Dr. Christoph Helmberg)


 
Anschrift: Technische Universität Chemnitz
Fakultät für Mathematik
Professur Algorithmische und Diskrete Mathematik
09107 Chemnitz
 
Büro: Reichenhainer Straße 39
09126 Chemnitz
Zimmer 715 (neu: C46.715)
Telefon: 0371 531-34889
E-Mail: martin.winter@mathematik.tu-chemnitz.de

 


Forschungsinteressen


Publikationen & Preprints

  1. T. Jahn and M. Winter.
    Vertex-Facet Assignments for Polytopes (open accessarXiv)
    Contributions to Algebra and Geometry (2020). doi.org/10.1007/s13366-020-00504-9
  2. M. Winter.
    Geometry and Topology of Symmetric Point Arrangements (arXiv)
    Preprint, arXiv:1907.11120, Juli 2019.
  3. M. Winter.
    Classification of Vertex-Transitive Zonotopes (arXiv)
    Preprint, arXiv:1912.10469, December 2019.
  4. M. Winter
    The Edge-Transitive Polytopes that are not Vertex-Transitive (arXiv)
    Preprint, arXiv:2005.14285, May 2020.


Konferenzen, Workshops, etc.

2018

  1. SEG Workshop (Chemnitz)
  2. FRICO (Chemnitz), Talk: "Spectral Methods for Symmetric Polytopes"
  3. SEG Workshop (Freiberg)
  4. Geometrietag (Dresden)

2019

  1. Polytope Spring School (Bochum), Talk: "Spectral Methods for Symmetric Polytopes"
  2. Summer School on Geometric & Algebraic Combinatorics (GAC, Paris)
  3. Discrete Geometry Day^2 (Budapest), Talk: "Spectral Methods for Symmetric Polytopes" (slides)
  4. SEG Workshop (Chemnitz), Talk: "Edge-Transitive Polytopes"
  5. Colloquium on Combiantorics (Kolkom, Paderborn), Talk: "Edge-Transitive Polytopes" (slides)
  6. Geometrietag (Jena), Talk: "Edge-Transitive Polytopes"

2020

  1. Combinatorial Coworkspace (Kleinwalsertal), Talk: "Inscribed Zonotopes and Hyperplane Arrangements with Congruent Chambers" (slides)


Lehre

  1. WS 2018/19 Übung "Grundlagen der Optimierung"
  2. WS 2019/20 Übung "Graphentheorie"


Ich bin aktiver User des StackExchange Netzwerkes (usename: M. Winter).
Meine Profile zu mathematischen Themen sind