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Abstract

Non-parametric copula density estimation in the d−dimensional
case is a big challenge in particular if the dimension d of the problem
increases. In [UU13] we proposed to solve the d-dimensional Volterra

integral equation
u∫
0

c(s)ds = C(u) for a given copula C. In the statis-

tical framework the copula C is unobservable and hence we solved the
linear integral equation for the empirical copula. For the numerical
computation we used a Petrov-Galerkin projection for the approxi-

mated piecewise constant function ch =
N∑
j=1

cjφj . Other than might

be expected, the vector c = (c1, . . . , cN )
T doesn’t count the number

of samples in the elements of the discretized grid, even the approxi-
mated solution ch is a piecewise constant function on the elements. We
will establish that solving the Volterra integral equation by a Petrov-
Galerkin projection is not simple counting.
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1 Introduction

In the non-parametric copula density estimation from T given d−dimensional
pseudo samples Û1, Û2, . . . , ÛT there is no particular information about the
structure of the copula density. The copula density of an absolutely contin-
uous copula C is the derivative

c(u1, . . . , ud) =
∂d C

∂u1 . . . ∂ud
(1)

of the given copula C. Unfortunately the copula C is not observable, but we
can treat the empirical copula

Ĉ(u) =
1

T

T∑
j=1

11 ˆUj≤u
=

1

T

T∑
j=1

d∏
k=1

11Ûkj≤uk (2)

as a noisy version of C and solve the linear Volterra integral equation

u1∫
0

· · ·
ud∫

0

c(s1, . . . , sd)ds1 · · · dsd = C(u1, . . . , ud) ∀u = (u1, . . . , ud)
T ∈ [0, 1]d

(3)
as an inverse problem. For the sake of convenience we write

u∫
0

c(s)ds = C(u) ∀u = (u1, . . . , ud)
T ∈ Ω = [0, 1]d

for equation (3) as a short form. In the working paper [UU13] we decomposed
the d−dimensional hypercube Ω = [0, 1]d into N = nd elements e1, . . . , eN
(see figure 1) and proposed a Petrov-Galerkin projection for the ansatz

ch(s) =
N∑
j=1

cjφj(s) (4)

with N = nd ansatz functions

φj(u) =

{
1 u ∈ ei
0 u /∈ ei

(5)
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Figure 1: Discretization of the unit hypercube Ω = [0, 1]d for d = 3

and N test functions ψ1, . . . , ψN . The Petrov-Galerkin projection

∫
Ω

u∫
0

ch(s)dsψj(u)du =

∫
Ω

C(u)ψj(u)du j = 1, . . . , N .

leads to a linear system Kc = C with right hand side

Ci =

∫
Ω

C(u)ψi(u)du, i = 1, . . . , N (6)
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and the N ×N matrix K with

Kij =

∫
Ω

u∫
0

φj(s)dsψi(u)du . (7)

In [UU13] it is shown, that if the test functions are chosen as the integrated
ansatz functions, the system matrix has a special structure and can be written
as a d−times Kronecker product (d)K = (1)K ⊗ (1)K ⊗ . . .⊗ (1)K of the one-
dimensional problem, such that the solution of the linear system Kc = C
is

c = (d)K−1C =
(

(1)K−1 ⊗ (1)K−1 ⊗ . . .⊗ (1)K−1
)
C . (8)

It becomes apparent that the product structure of the ansatz functions

φi(u) =
d∏

k=1

φki (uk) (9)

with the one-dimensional ansatz functions1

φki = 11[bik,b
i
k+h]

as well as the product structure of the test functions

ψi(u) =
d∏

k=1

ψki (uk) (10)

with the one-dimensional test functions

ψki (u) =

u∫
0

φki (s)ds

is responsible for the special structure of the system matrix K and proposi-
tion 2.5 can be generalized.

Theorem 1.1. If the test functions and ansatz functions have the product
structure (9) and (10) then the system matrix for the (d + 1)−dimensional
case can be extracted from the one and d−dimensional system matrices.

(d+1)K = (1)K ⊗ (d)K (11)

1The vector bi is the lowest corner of the i−th element ei and h = 1/n.
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Hence (8) is also the solution of the linear system Kc = C if arbitrary
test and ansatz functions decompose into a product of one-dimensional test
and ansatz functions.

It seems reasonable to suppose that the estimated density (4) equates the
empirical density of the samples Û1, Û2, . . . , ÛT if the right hand side (6) of
the linear system Kc = C is based on the empirical copula. However, even
if we use piecewise constant test functions, that is ψi = φi we do not count
the number of samples in the elements e1, . . . , eN .

2 The empirical copula

In the following we assume for simplicity that the pseudo samples lie at the
grid (see figure 2) and define the counting vector A with

Ai = #
{
Û1, . . . , ÛT ∈ ei

}
.

In this case the empirical copula Ĉ is constant on the elements ei and

Û1

Û2

Û3

Û4 Û5

u1

u2

Figure 2: Pseudo samples on the grid

therefore we can write it as the vector

C̃ =
1

T
(D ⊗ · · · ⊗D)A (12)
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that is the i−th component C̃i describes the value of the empirical copula
over the i−th element ei using the d−times Kronecker product of the n× n
matrix

D =


1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1

 .

We will analyze the structure of the right hand side Cδ using formula (6)
for the empirical copula, that is

Cδ
i =

∫
Ω

Ĉ(u)ψi(u)du , (13)

in order to show, that the solution vector c = K−1Cδ does not count the
number of samples lying on the elements e1, . . . , eN .

2.1 Solution of the Petrov-Galerkin projection for piece-
wise constant test functions

In the simplest case the test functions ψi are chosen such that they are equal
to the ansatz functions φi, that is

ψi(u) =

{
1 u ∈ ei
0 u /∈ ei

. (14)

Then it yields for our assumption

Cδ
i =

∫
Ω

Ĉ(u)ψi(u)du =

∫
ei

Ĉ(u)du = C̃ih
d

and hence

Cδ =
hd

T
(D ⊗ · · · ⊗D)A . (15)

Moreover, we get

c = K−1Cδ =
hd

T

(
(1)K−1 ⊗ (1)K−1 ⊗ . . .⊗ (1)K−1

)
(D ⊗ · · · ⊗D)A

=
hd

T

((
(1)K−1D

)
⊗ · · · ⊗

(
(1)K−1D

))
A

(16)
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for the solution vector. It is an easy computation to see that the n×n matrix

(1)K−1D =
2

h2


1 0 0 . . . 0 0
−2 1 0 . . . 0 0
2 −2 1 . . . 0 0
...

...
...

. . .
. . .

...
(−1)n+12 (−1)n+22 (−1)n+32 . . . −2 1


has not a diagonal structure. However, only if the n × n matrix (1)K−1D
would have a diagonal structure, the N ×N matrix K−1 (D ⊗ · · · ⊗D) also
would have a diagonal structure and hence the solution vector c would be a
multiple of the counting vector A, such that we would count the number of
samples in each element.

2.2 Solution of the Petrov-Galerkin projection for in-
tegrated ansatz functions as test functions

In [UU13] we proposed to choose the test functions ψi as integrated ansatz
functions, that is

ψi(u) =

u∫
0

φi(s)ds .

In this case we obtain for our assumption

Cδ
i =

∫
Ω

Ĉ(u)ψi(u)du =
N∑
l=1

∫
el

Ĉ(u)ψi(u)du =
N∑
l=1

C̃l

∫
el

ψi(u)du

and hence

Cδ =
h2d

T
(FD ⊗ · · · ⊗ FD)A (17)

with the n× n matrix

F =


1
2

1 . . . 1
0 1

2
. . . 1

...
...

. . .
...

0 0 . . . 1
2

 .

7



Using equation (17) we obtain

c = K−1Cδ =
h2d

T

(
(1)K−1 ⊗ (1)K−1 ⊗ · · · ⊗ (1)K−1

)
(FD ⊗ · · · ⊗ FD)A

=
h2d

T

((
(1)K−1FD

)
⊗ · · · ⊗

(
(1)K−1FD

))
A

(18)

for the solution vector. Again it is an easy computation to see that the n×n
matrix (1)K−1FD is not diagonal such that also in this second case we do
not count the number of samples in each element.

2.2.1 Illustration

In order to illustrate the statement we reconstruct the density for T = 3
samples for different discretizations. Figure 3 shows the samples and the
corresponding empirical copula Ĉ. Note that the assumption, the samples
lie at the grid, is not fulfilled but this is not essential, because this was
only for convenience. Figures 4, 5 and 6 show the reconstructed piecewise

Û1
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u1

u2

(a) Pseudo samples
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(b) empirical copula Ĉ

Figure 3: Input data

constant densities (4) for n = 10, n = 30 and n = 100 and the corresponding
reconstructed copulas

Ch(u) =

u∫
0

ch(s)ds =
N∑
j=1

cjψj(u) , (19)
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if we use the integrated ansatz functions as test functions.
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Figure 4: Reconstructed density and copula for n = 10
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Figure 5: Reconstructed density and copula for n = 30

The reconstructed copula (19) is a linear combination of the test func-
tions, if they are chosen as the integrated ansatz functions. As a direct conse-
quence the approximated copula is smoother than the approximated density,
which is a natural property. Therefore, the choice (14) is not appropriate to
the interrelation of a copula and their density. Actually, the numerical results
are unstable if the computation is based on test functions (14). However, the
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(a) ch (b) Ch

Figure 6: Reconstructed density and copula for n = 100

purpose of this paper was to find arguments that the Galerkin projection
is no simple counting algorithm, even if we use very simple test and ansatz
functions.
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