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Abstract

The reconstruction of the dependence structure of two or more
random variables (d ≥ 2) is a big issue in finance and many other
applications. Looking at samples of the random vector, neither the
common distribution nor the copula itself are observable. So the iden-
tification of the copula C or the copula density c(u1, . . . , ud) = ∂d C

∂u1...∂ud
can be treated as an inverse problem. In the statistical literature usu-
ally kernel estimators or penalized maximum likelihood estimators are
considered for the non-parametric estimation of the copula density c
from given samples of the random vector. Even though the copula
C itself is unobservable we can treat the empirical copula as a noisy
representation, since it is well known that the empirical copula con-
verges for large samples to the copula and solve the d−dimensional

linear integral equation C(u) =
u∫
0

c(s)ds for determining the copula

density c. We present a Petrov-Galerkin projection for the numerical
computation of the linear integral equation and discuss the assem-
bling algorithm of the non-sparce matrices and vectors. Furthermore
we analyze the stability of the discretized linear equation.
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1 Introduction

The common distribution function F contains the complete information about
the behaviour of the random vector X = [X1, . . . , Xd]

T . To analyse the de-
pendence structure it is useful to separate it from the marginals in particular
if X isn’t Gaussian distributed. The tool is the copula and we demonstrate
the splitting for the easiest case of continuous marginals Fi. Then it is well
known that the random variables Ui = Fi(Xi) are uniformly distributed and
we obtain the decomposition

F (x) = P (X1 ≤ x1, ..., Xd ≤ xd) = P (U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd))

= C(F1(x1), . . . , Fd(xd)) .

Hence a copula is in principle the common distribution of a random vector
U = [U1, . . . , Ud]

T with uniformly distributed components Ui ∼ U [0, 1] and
contains the complete information about the dependence structure. For a
detailed introduction to copulas and their properties see [Nel06] or [MFE10,
Chapter 5]. There is a large field of applications in finance, actuarial mathe-
matics, survival analysis and climate research, just to mention a few. Sklar’s
Theorem, see for example [Nel06, Theorem 2.10.9], ensures the existence of
a copula.

Proposition 1.1. Sklar’s Theorem (1959)

1. Let F be an d−dimensional distribution function with margins F1, . . . , Fd.
Then there exists an d−dimensional copula C with

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ∀x ∈ Rd. (1)

C is uniquely determined on range(F1) × . . . × range(Fd), that is for
continuous margins F1, . . . , Fd C is unique.

2. If C is d−dimensional copula and F1, . . . , Fd are distribution functions,
then the function F in (1) is an d−dimensional distribution with mar-
gins F1, . . . , Fd.

We will give a brief overview of the properties which are important for the
estimation. A copula is smooth in the following sense (see [MS12, Lemma
1.2]).
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Lemma 1.2. Smoothness of a copula

1. Lipschitz continuity: for every u = (u1, . . . , ud),v = (v1, . . . , vd) ∈
[0, 1]d it holds

|C(u)− C(v)| ≤
d∑
i=1

|ui − vi|

2. partial derivatives: For fixed (u1, . . . , uk−1, uk+1, . . . , ud) ∈ [0, 1]d−1 (k =
1, . . . , d) the partial derivative uk 7→ ∂

∂uk
C(u1, . . . , ud) exists (Lebesgue)

almost everywhere on [0, 1] and 0 ≤ ∂
∂uk

C(u1, . . . , ud) ≤ 1.

If the copula C is absolutely continuous there is a almost everywhere
unique copula density c : [0, 1]d → [0,∞) such that

C(u) =

u∫
0

c(s)ds (2)

and then it yields

c(u1, . . . , ud) =
∂d C

∂u1 . . . ∂ud
u1, . . . , ud ∈ (0, 1) (3)

almost everywhere (see [MS12]). For non absolutely continuous copulas there
is a decomposition

C = AC + SC (4)

in an absolutely continuous component

AC(u1, . . . , ud) =

u1∫
0

· · ·
ud∫

0

∂d C

∂s1 · · · ∂sd
ds1 · · · dsd

and a singular component SC such that the support of SC has Lebesgue
measure zero (see [Nel06, Chapter 2.4]).

1.1 Inverse Problem

The copula contains the complete information about the dependence struc-
ture of the random vector X = [X1, . . . , Xd]

T . In many applications the
slopes at the corners are of special interest. Therefore the reconstruction of
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the copula density (2) is a big issue. Of course (3) exists only for absolutely
continuous copulas. In this case we consider the inverse problem

C(u) =

u∫
0

c(s)ds ∀u ∈ Ω := [0, 1]d (5)

that means we want to determine the density from a given copula. Solving
the linear integral equation (5) requires an adequate knowledge of the copula
C which is in general not observable. However, in the statistical framework
we observe T samples X1,X2, . . . ,XT with Xj = [X1j, . . . , Xdj]

T of the ran-
dom vector X = [X1, . . . , Xd]

T and want to compute the density of the copula
in order to get information about the dependence structure of the random
vector X. For this reason we have to transform the samples of the k−th com-
ponent Ukj = Fk(Xkj) for k = 1, . . . , d by the margins Fk, which are usually

unknown. In this case we compute the pseudo observations Û1, Û2, . . . , ÛT

using the empirical distribution functions

F̂k(x) =
1

T

T∑
j=1

11Xkj≤x (6)

such that Ûj = (F̂1(X1j), . . . , F̂d(Xdj))
T and compute the empirical copula

Ĉ(u) =
1

T

T∑
j=1

11Ûj≤u =
1

T

T∑
j=1

d∏
k=1

11Ûkj≤uk . (7)

It is well known that the empirical copula uniformly converges to the copula
(see [Deh80])

max
u∈[0,1]d

∣∣∣C(u)− Ĉ(u)
∣∣∣ = O

(
(log log T )

1
2

T
1
2

)
a.s. (8)

Therefore we treat the empirical copula as a noisy representation of the
unobservable copula Cδ = Ĉ and solve

u∫
0

c(s)ds = Cδ(u) ∀u ∈ Ω = [0, 1]d (9)

instead of equation (5) if the copula C is not known.
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2 Solving the integral equation

2.1 Petrov-Galerkin projection

The computation of the copula density c from a given copula C is in principal
a numerical differentiation which is a well known ill-posed inverse problem.
For solving (5) we propose the following discretization. We choose an ansatz
space Vh with base Φ := [φ1, φ2 · · ·φN ] and test functions ψi ∈ Ṽh, set

ch(s) :=
N∑
j=1

cjφj(s) (10)

insert this in (5), multiply with the test function and integrate over Ω, which
leads to ∫

Ω

u∫
0

N∑
j=1

cjφj(s)dsψi(u)du =

∫
Ω

C(u)ψi(u)du ∀ψi ∈ Ṽh (11)

which is the Petrov-Galerkin projection of (5).
Because of the linearity of the integral we can transform (11) over

N∑
j=1

cj

∫
Ω

u∫
0

φj(s)dsψi(u)du =

∫
Ω

C(u)ψi(u)du ∀ψi ∈ Ṽh (12)

to a system of linear equations

Kc = C K ∈ RN×N c, C ∈ RN (13)

where the system matrix K, and right hand side C is defined by
Kij :=

∫
Ω

u∫
0

φj(s)dsψi(u)du




c1

c2

...
cN

 =



C1
...

Ci :=
∫
Ω

C(u)ψi(u)du

...
CN


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No we can choose ansatz functions φj by discretising the domain Ω in nd

intervals, squares, cubes or hypercubes (depending on dimension d) called ej
with

Ω =
N⋃
i=1

ei and ei ∩ ej = ∅ if i 6= j (14)

and set

φj(u) :=

{
1 u ∈ ej
0 otherwise .

(15)

We enumerate the N = nd elements e1, . . . , eN spanning Ω = [0, 1]d in
a special order. Actually, we start discretizing [0, 1] in the first elements
e1, . . . , en. Then we discretize the second dimension such that we additionally
obtain en+1, . . . , en2 following the third dimension and so on. For example in
the case d = 2 this leads to a grid of squares numbered by 1, · · · , n in the
first row, n+ 1, · · · , 2n in the second and so on.

Furthermore we choose as test functions ψi the integrated ansatz functions

ψi(u) :=

u∫
0

φi(s)ds (16)

such that the system (13) becomes symmetric.
Note that the proposed ansatz works also for non absolutely continuous

copulas. Since equation (4) we compute in this case the copula density of the
absolutely continuous part superposed by a dirac distribution of the singular
component SC.

2.2 Structure of the system matrix

The special choice of the ansatz and test functions ψi leads to a particular
structure of the system matrix K shown in the figure 1. Therefore it is not
needed to assemble the whole nd × nd system matrix, which is an essential
task. In contrast to finite element discretizations with sparse matrices the
system (13) is not sparse and has the system size N = nd. For moderate
values of n and small values of d it can be assembled numerically like an
arbitrary finite element system. But the assembling, storage and solving
becomes impossible for ususal discretizations and dimensions. As example
we consider the case n = 80 and d = 3, we have N = 512000. The storage
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for the system matrix is then (N2 ∗ 8/10243) approximatly 2000 Gigabyte,
with symmetrie still 1 Terabyte and the computing times for assembling and
solving such a system will become enourmous. There is an Kronecker product
factorization of the matrix K which will developed in the following section.

We call the coordinates bi = [bi1, b
i
2, · · · , bid]T of the lowest corner of ele-

ment ei ∈ Ω with i ∈ {1, 2, . . . , nd} and they are defined component wise by
bik = min

u∈ei
(uk) and use the tensor product structure of ψi, with h = 1

n
and the

auxilary function

ξ(t, b) =


0 t < b

(t− b) b ≤ t ≤ b+ h

h t > b+ h .

Lemma 2.1. The integrated ansatz functions (16) fullfils

ψi(u) =
d∏

k=1

ξ(uk, b
i
k) ∀i = 1, . . . , N . (17)

Furthermore, it holds

ψi(u) = 0 ∀u ∈ ej with j < i (18)

for arbitrary dimensions d.

Proof. Formula (17) is a direct consequence of Fubini’s theorem and (18)
follows directly from (17) since for at least one index k there is bjk < bik.

Lemma 2.2.

Ki,j =

∫
[0,1]d

ψi(u)ψj(u)du =
d∏

k=1

K̃k
i,j (19)

with

K̃k
i,j =

∫
[0,1]

ξ(u, bik)ξ(u, b
j
k)du = h2

(
1−max

{
bik, b

j
k

})
− h3

{
2
3
, if bik = bjk

1
2
, if bik 6= bjk

(20)

Using lemma 2.2 we only need to know the coordinates of the elements
ei and ej for the computation of the elements Ki,j. Lemma 2.3 specifies the
mapping from the element number to the coordinates and vice versa.
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(a) System matrix for d = 1 (b) System matrix for d = 2

(c) System matrix for d = 3

Figure 1: Matrixplots of the system matrix K for n = 4 and different
dimensions d.
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Lemma 2.3. For the element number i it yields

i = 1 +
d∑

k=1

bikn
k (21)

and

bik = h



i−

d∑
j=k+1

bijn
j

nk−1

− 1

 , k = d, d− 1, . . . , 1 (22)

If the dimension of the problem is increased from d to d+ 1 the number
of elements also increases from nd to nd+1. For a better distinction of the
coordinates we write (d)bi and

(d+1)
bi respectively.

Corollary 2.4. It yields

1. (d+1)bik = (d)bik for all i = 1, . . . , nd and k = 1, . . . , d

2. (d+1)bid+1 = (j − 1)h for all i = (j − 1)nd + 1, . . . , jnd with j = 1, . . . , n

3. (d+1)bi+jn
d

k = (d)bik for all k = 1, . . . , d, i = 1, . . . , nd and j = 0, . . . , n−1

Having regard to different dimensions we also write for the nd×nd system
matrix K in the d−dimensional case (d)K

(d)K =

1,1B 1,2B · · · 1,nB
...

...

n,1B n,2B · · · n,nB

 (23)

and consider their n2 block matrices l,qB of type nd−1 × nd−1.

Proposition 2.5. The system matrix for the (d+ 1)−dimensional case can
be extracted from the one and d−dimensional system matrices.

(d+1)K = (1)K ⊗ (d)K (24)

Proof. Following corollary 2.4 the (d+ 1)−th coordinate of the element with
number (nd(l − 1) + r) is for all r = 1, . . . , nd independent of r and it

yields (d+1)b
nd(l−1)+r
d+1 = (l − 1)h. Likewise, the other first d coordinates of
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the (nd(l − 1) + r)−th elements can be reduced to the d−dimensional case,

since (d+1)b
r+(l−1)nd

k = (d)brk for all l = 1, . . . , n. Now considering the (l, q)−th
block of (d+1)K using lemma 2.2 we compute

l,qBr,s = (d+1)Knd(l−1)+r,nd(q−1)+s =

∫
[0,1]d+1

ψnd(l−1)+r(u)ψnd(q−1)+s(u)du

=
d+1∏
k=1

K̃k
nd(l−1)+r,nd(q−1)+s = K̃d+1

nd(l−1)+r,nd(q−1)+s

d∏
k=1

K̃k
nd(l−1)+r,nd(q−1)+s

= K̃1
l,q

d∏
k=1

K̃r,s = (1)Kl,q
(d)Kr,s

and hence l,qB = (1)Kl,q · (d)K such that (d+1)K = (1)K ⊗ (d)K.

Corollary 2.6. The system matrix (d)K is the d−times Kronecker product
of the n× n matrix (1)K

(d)K = (1)K ⊗ (1)K ⊗ . . .⊗ (1)K . (25)

To solve system (13) we use now (25) together with (34) and obtain the
inverse (d)K−1 of the system matrix (d)K.

Corollary 2.7.

(d)K−1 = (1)K−1 ⊗ (1)K−1 ⊗ . . .⊗ (1)K−1 (26)

with d Kronecker factors.

Accordingly, we can compute c = K−1C with the factorization (37) for
solving the linear system (13). Therefore we only need to assemble the one-
dimensional system matrix (1)K and have to compute its inverse. For the
sake of convenience we set A = (1)K−1 and discuss an effective algorithm to
compute the matrix vector product

y = (I ⊗ I ⊗ · · · ⊗ I ⊗ A⊗ I ⊗ I ⊗ · · · ⊗ I)x (27)

below.
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2.3 Effective computation of the matrix vector multi-
plication

To compute a matrix vector product of equation (27) without any overhead
at first we use for a unity matrix In of size n× n

In ⊗ In = In2

and collect the p unity matrices left and q right of A to get

y = (Inp ⊗ A⊗ Inq)x

The Inq from the right creates a big matrix with scaled unity matrices as
diagonal blocks

y =

Inp ⊗


A11Inq A12Inq · · · A1nInq

A21Inq

...
...

An1Inq An2Inq · · · AnnInq


x

The unity matrix Inp from the left creates a big block diagonal matrix with
this blocks, so

y =



A11Inq A12Inq · · · A1nInq

A21Inq

...
...

An1Inq An2Inq · · · AnnInq

. . .

A11Inq A12Inq · · · A1nInq

A21Inq

...
...

An1Inq An2Inq · · · AnnInq


x

So the matrix vector product can be computed block by block as

yb =


A11Inq A12Inq · · · A1nInq

A21Inq

...
...

An1Inq An2Inq · · · AnnInq

xb
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and the multiplication of every block is equal to


A11Inq A12Inq · · · A1nInq

A21Inq

...
...

An1Inq An2Inq · · · AnnInq

xb = yb =



n∑
i

A1ixbi

n∑
i

A2ixbi

...
n∑
i

Anixbi


The implementation of the complete multiplication is given in the ap-

pendix at page 28, by calling

y = kronecker multiplication(p,A,q,x);

it can be done without any overhead.

2.4 Assembling the right hand side C

The most effort needs the computation of the components

Ci =

∫
Ω

C(u)ψi(u)du (28)

because for an arbitrary function C(u) this only can be done numerically.
With (14) and (18) equation (28) is equivalent to

Ci =
N∑
k=i

∫
ek

C(u)ψi(u)du. (29)

To compute the full vector C we compute for every vector component
this sum of all the values of the element integrals, which is done numerically
with a Gauss formula. This is the most expensive part of the computation,
but it perfectly scales up, if it is done in parallel. In the implementation we
use a master-slave program written in C++ with OpenMPI.

A special situation appears if we solve the statistical estimation problem
for a given sample and use the empirical copula Ĉ instead of C and com-
pute a solution of the integral equation (9), since (7) as well as (17) can be
decomposed into one dimensional factors and hence
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Ci =

∫
Ω

Ĉ(u)ψi(u)du =
1

T

T∑
j=1

∫
[0,1]d

d∏
k=1

11Ûkj≤ukξ(uk, b
i
k)du

=
1

T

T∑
j=1

d∏
k=1

(∫ 1

0

11Ûkj≤ukξ(uk, b
i
k)duk

)
=

1

T

T∑
j=1

d∏
k=1

I ikj with

I ikj =

∫ 1

0

11Ûkj≤sξ(uk, b
i
k)ds =


h(1− bik)− 1

2
h2 , Ûkj < bik

h(1− bik)− 1
2
h2 − 1

2
(Ûkj − bik)2 , bik ≤ Ûkj ≤ bik + h

h(1− Ûkj) , Ûkj > bik + h .

Hence the computational effort improves from O
(
N3dT + N2+N

2
3d
)

using a

three point Gauss formula in each dimension to O (NTd).

2.5 Numerical example

2.5.1 Computing times

In this numerical example we use the independent copula

C(u) =
d∏
i=1

ui

which has the exact solution c(u) = 1 in order to illustrate the approximation
quality and computing times. For the independent copula the integrated
square error (see [QQX09])

ISE(c, ch) =

∫
Ω

(c(u)− ch(u))2 du =
N∑
j=1

∫
ej

(c(u)− cj)2 du (31)

can easily be computed

ISE(c, ch) =
N∑
j=1

∫
ej

(1− cj)2 du =
N∑
j=1

(1− cj)2 1

N
=

1

N
e2 (32)

using the point wise error norm

e := ‖c− [1, 1, · · · , 1]T‖l2 .
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In the table we give the the 1d-discretization steps n, dimension d, system
size N = nd computing times tsys for creating the system matrix (1)K, trhs
for assembling the right hand side, tsolve for solving the system, srhs as the
number of computing slaves, and the integrated square error.

For the computation of the right hand side the parallel OpenMPI imple-
mentation is used with srhs computing slaves. All other computations are
done with Matlab.

d n N tsys[s] srhs trhs[s] tsolve[s] e ISE(c, ch)

2 30 900 0.7 1 0.2 0.06 1.35e-08 2.0250e-19
2 60 3600 2.7 1 2.2 0.44 4.64e-07 5.9804e-17
2 100 10000 7.6 3 6.7 1.95 4.68e-06 2.1902e-15
3 30 27000 0.7 10 60.7 1.68 1.10e-04 4.4815e-13
3 60 216000 3.4 30 1440 25.7 0.0234 2.5350e-09
3 100 1000000 7.8 30 32163 192 1.02 1.0404e-06
4 30 810000 0.7 30 72989 51 1.96 4.7427e-06

2.5.2 Reconstruction for typical copula families with exact right
hand side

To show that the proposed method works quite well we present the recon-
structed copula densities for exact right hand side based on the exact copula
C. Figures 2, 3, 4, 5 and 6 show the reconstructed copula densities for
typical copula families. For more details about copula families see [Nel06].
The choice of the copula parameters is based on the choices in [QY12] and
[QQX09].

2.5.3 Noisy data: Illustration of Ill-posedness

Note that in real problems the copula C is not known. For this case we
have simulated T samples for each copula and present the non-parametric
reconstructed densities using the Petrov-Galerkin projection. Figures 7, 8,
9, 10 and 11 illustrate the expected ill-posedness appearing for decreasing
sample size T .

To overcome the ill-posedness an appropriate regularization is required.
Figures 12, 13, 14, 15 and 16 show the reconstructed copula densities for
T = 1 000 and T = 10 000 samples using the well-known Tikhonov regular-
ization. The choice of the regularization parameter α = 10−8 is very naive
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Figure 2: Gauss copula, ρ = 0.5, n = 50
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Figure 3: Student copula, ρ = 0.5, ν = 1, n = 50
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Figure 4: Clayton copula, θ = 0.8, n = 50
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Figure 5: Frank copula, θ = 4, n = 50
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Figure 6: Gumbel copula, θ = 1.25, n = 50

and arbitrary and serves only as demonstration how the instability can be
handled. It is further work to discuss a parameter choice rule for Tikhonov
regularization as well as other regularization methods, which can use the spe-
cial structure (25) of the system matrix K to avoid the complete assembling
of K. In particular all regularization methods using the singular value or
eigenvalue decomposition of K can be easy handled because the eigenvalue
decomposition of the one dimensional matrix (1)K = V ΛV T leads to the
eigenvalue decomposition of the system matrix

K = (V ⊗ · · · ⊗ V ) (Λ⊗ · · · ⊗ Λ)
(
V T ⊗ · · · ⊗ V T

)
. (33)

A typical property of Tikhonov regularization is, that true peaks in the den-
sity will be smoothed. Hence the reconstruction quality should be improved,
if other regularization methods are used.
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(d) T = 1 000

Figure 7: Gauss copula, ρ = 0.5, n = 50
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Figure 8: Student copula, ρ = 0.5, ν = 1, n = 50
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Figure 9: Clayton copula, θ = 0.8, n = 50

20



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) T = 1 000 000

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) T = 100 000

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

0

1

2

3

4

5

6

(c) T = 10 000

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−5

0

5

10

15

20

(d) T = 1 000

Figure 10: Frank copula, θ = 4, n = 50
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(d) T = 1 000

Figure 11: Gumbel copula, θ = 1.25,θ = 4, n = 50
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(b) α = 10−8, T = 1 000 samples
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(c) α = 0, T = 10 000 samples
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(d) α = 10−8, T = 10 000 samples

Figure 12: Regularized Gauss copula, ρ = 0.5, n = 50
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(a) α = 0, T = 1 000 samples
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(b) α = 10−8, T = 1 000 samples
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(c) α = 0, T = 10 000 samples
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(d) α = 10−8, T = 10 000 samples

Figure 13: Regularized Student copula, ρ = 0.5, ν = 1, n = 50

24



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−10

0

10

20

30

40

50

60

(a) α = 0, T = 1 000 samples
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(b) α = 10−8, T = 1 000 samples
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(c) α = 0, T = 10 000 samples
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(d) α = 10−8, T = 10 000 samples

Figure 14: Regularized Clayton copula, θ = 0.8, n = 50
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(a) α = 0, T = 1 000 samples
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(b) α = 10−8, T = 1 000 samples
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(c) α = 0, T = 1 000 samples
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(d) α = 10−8, T = 1 000 samples

Figure 15: Regularized Frank copula, θ = 4, n = 50
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(a) α = 0, T = 1 000 samples
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(b) α = 10−8, T = 1 000 samples
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(c) α = 0, T = 10 000 samples
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(d) α = 10−8, T = 10 000 samples

Figure 16: Regularized Gumbel copula, θ = 1.25,θ = 4, n = 50
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A The Kronecker product

The Kronecker product of matrices A and B is the block matrix C, given by

C = A⊗B =

A11B A12B · · · A1nB
...

...
Am1B Am2B · · · AmnB


The Kronecker product does not commute, for a detailed description of all
properties see for example [Loa00], here we use the following properties.

(A⊗B)−1 = A−1 ⊗B−1 (34)

AB ⊗ CD = (A⊗ C)(B ⊗D) (35)

Especially with (35) by swapping B and D

AD ⊗ CB = (A⊗ C)(D ⊗B)

and setting D = I, C = I it comes up

A⊗B = (A⊗ I)(I ⊗B) (36)

The right hand side in (36) commutes, see

(I ⊗B)(A⊗ I) = IA⊗BI = A⊗B

and this can be repeated for more Kronecker factors than only 2, such that
the following factorization of the Kronecker product holds (see [FPS98])

A1 ⊗ A2 ⊗ · · · ⊗ An =
n∏
i=1

I ⊗ I ⊗ · · · ⊗ I ⊗ Ai ⊗ I ⊗ I ⊗ · · · ⊗ I (37)

with (i-1) kronecker factors I left of Ai and (n− i) right of Ai.

B Effective Kronecker multiplication

The matrix vector multiplication

y = (I ⊗ I ⊗ · · · ⊗ I ⊗ A⊗ I ⊗ I ⊗ · · · ⊗ I)x

with p unity matrices left and q right of A can computed without any over-
head by calling y = kronecker multiplication(p,A,q,x); with the fol-
lowing functions in matlab notation.
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function y=kronecker_multiplication(p,A,q,x)

%

% y= (I # I # ... # I # A # I # ... # I) x

%

% where # is the Kronecker operator and

% we have p Is left and q Is right from A

%

% R. Unger 03/2013

%

[m,n]=size(A);

if (m ~= n)

error(’kronecker_multiplication: wrong dimension of A (not n x n)’);

end;

N=length(x);

if (N ~= n^(p+q+1) )

error(’kronecker_multiplication: wrong dimension of x’);

end;

% cut x in n^p blocks of size n^(q+1)

% and process every block separately

%

y=zeros(N,1);

for i=1:n^p

xb = x( (i-1)*n^(q+1) +1 : i*n^(q+1));

yb = kronecker_multiplication_block(A,q,xb);

y( (i-1)*n^(q+1) +1 : i*n^(q+1)) = yb;

end

function y = kronecker_multiplication_block(A,q,x);

%

% Compute y = ( A # I # ... # I) x

%

% where # is the Kronecker operator and

% we have q Is right from A

%

29



% R. Unger 03/2013

%

[m,n]=size(A);

if (m ~= n) error(’wrong dimension of A (not n x n)’) ; end;

N=length(x);

if (N ~= n^(q+1) ) error(’wrong dimension of x’) ; end;

% we have n blocks of size n^q

y=zeros(n^(q+1),1 );

for i=1:n

yb=zeros(n^q,1);

for j=1:n

yb=yb+A(i,j) * x( (j-1)*n^(q) +1 : j*n^(q));

end

y( (i-1)*n^(q) +1 : i*n^(q)) = yb;

end

With this multiplications, applied to the right hand side vector the solu-
tion vector c can be computed for high values of N in short times.
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