TECHNISCHE UNIVERSITAT CHEMNITZ

Sonderforschungsbereich 393

Parallele Numerische Simulation fiir Physik und Kontinuumsmechanik

Arnd Meyer Roman Unger

Projection methods for contact problems
in elasticity

Preprint SFB393/04-04

Abstract

The aim of the paper is showing, how projection methods can be used for
computing contact-problems in elasticity for different classes of obstacles.

Starting with the projection idea for handling hanging nodes in finite ele-
ment discretizations the extension of the method for handling penetratesl node
in contact problems will be described for some obstacle classes.
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1 Introduction

The numerical simulation of frictionless contact problepetween an elastic body and a rigid
obstacle is almost done by solving the resulting variatioreqjualities for instance with penalty
methods.

For some ideas of this methods see [KO88] or [Wri02]

In this paper we introduce a projection-method for solvimgfollowing problem in th& D-case.

Problem 1. Find a valid dispacement field(z) for an elastic body, such that the Laé
Equation with the La@constants\, ;. and the stress tenser

—pAu — (A+p)graddivu = f
u(z) = gp on I'p
o(u)-n = gy on Iy

is fulfilled, and all nodes df? stay outside a given rigid obstacle. (see figure 1)
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Figure 1: The contact-problem Figure 2: A hanging node example

For implementational details of an adaptive algorithm favmg the Lame’e problem without
contact see the A2d Programmer’s Manual [Mey01].



2 Projection methods for hanging nodes

The basic idea for using projectors comes from the problehaatlling hanging nodes in adap-
tive finite element methods.

Because the used preconditioner needs hierarchical meshfalyin trouble by using a normal

red-green refinement with temporally created green treswhich will removed before the next
refinement step will performed. So the idea of using a projedébrcing conform values at the
hanging node comes up.

As a simple example see figure 2. For guarateeing confogntaétvalueu; at the (mid-)nodg

is not free but restricted to

u; = %(uZ + uy,) Q)

From [Mey99] this restriction to a subspaceRf¥ is simply implemented by a projector like

1

s

I
|—=
|—=

0
T

with % at the columng and% ando in all other columns of row, working within the precondi-
tioning step of the pcgm.

If you plug in such a projector in the preconditioner of thgpg i.e. changing the computing of
the correction termw in the cg with the residuum and preconditionef’ from

w:=C"'r
to
w = PC~'P'r
and start with a conform initial gues$ € I'm(P) all iteratedu” and so the solution will stay
in Im(P).

For a detailed description of this method see [Mey99], inftlewing sections the extension of
such projectors for handling some kinds of boundary comlitiand the contact-problem will be
described.



3 Projectors for handling some kinds of boundary conditions

Some kinds of boundary conditions can be handled by usinggas as well.

For instance periodic boundary conditions like;, = wu.,;4,+ On the left and right boundary parts
in figure 3

Uleft = Uright

Figure 3: Periodic b.c.

Figure 4: Slip- b.c.

Another kind of b.c. are the so called 'slip-boundary-caiodis’, whereu(z) is not totally fixed,
but forced to stay in a-dimensional affine subspace. ( See figure 4)

This kind of b.c. will later be used for the contact-hand]ibgt at first some properties of the
resulting projector should be revealed.

The slip-boundary is well defined by fixing the poigtand the direction and assumés|| = 1.
The displacement can be decomposited in two orthogonal componénatong the boundary
andu orthogonal to the boundary.

Now uset as the valid displacement.

~

U = UPU

L = <u78>3 = ! ssT
U = (5,5) = P[ []

= (u,s)s for |ls||=1

= SSTU

So for all nodes:; on the slip-boundary the Projector is a block-diagonal matith 2 x 2 blocks
ssT wheres is the slip direction of node;.
In the next section this idea will extend to a method, hamgiiriinite planar obstacles.



4 Planar obstacles

4.1 Infinite planar obstacles

In the same way as for slip-boundary-conditions let the-bpéce-obstacle be defined by a point
sp and directions with ||s|| = 1.

Definition 1 (Half-space-obstacle)Let s, € R? be a fixed point in the plane andc R? a given
direction with||s|| = 1.

The straight line, given by, and s divides theR? in two half-spaces. We enforce the body to
stay completly in one of this half-spaces and call the ottmer lvalf-space-obstacle.

If a node of the body violates this condition we say the nodetpates.

The contact- handling consists of two parts, the penetraést and correction of the displace-
ment with selective switching of possible projectors.

Let x be one node at the boundaryf@that can possible come into contact with the obstacle, let
n be the inner normal of the obstacle and= (z + u) — so.

. T+ ou 2 : °
e O+ u(Q) °
. * .°| OBSTACLE - _ .
* * s sg

Figure 6: Finite planar obstacles
Figure 5: Infinite Planar obstacles

Then, the penetration test is done by computing:):
(x +u) penetrates & (n,a) >0 2

For an effective implementation of this test and for compgitihe correction the test is better
done in the following (equivalent) form.

Leta; := ((so — x),n) anday := ((u,n), then(n,a) > 0 < oy < ay

Whenever (2) is fulfilled, the actual displacemenis not admissible. So we correctz) to
au(z) such that: + au lies on the obstacle boundary.

A way to do this is forcing

((x + au) — sp,n) =0 3
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which implies

= (z,n) + a{u,n) — (so,n)

= (x —sg,n) + a(u,n)

a = <80—ZL‘7TL>
(u,n)
631
a = —
Qg

This two steps of the whole algorithm enforce the fulfillinigtloe non-penetration condition but
can lead to clamping of some nodes in the end of the (a pri&maownn) contact zone.

To avoid this, a second test after solving the linear systetim active projectors must be per-
formed.

An easy way to do this, is to compute the contact pressurgdlenactual contact zone and to
free all nodes (i.e. switch off the projectors ) with a negationtact pressure.

Note that the pcgm-solver starts with a starting vectot, ithadmissible and uses the onedimen-
sional projectors for contact nodes. Hence the solutioysdtabe admissible.

| coarse mesh / task info#

coarse mesh / task infot 1
¢ .| mesh @)
.| mesh ) 7| refinement
7| refinement &
2 S :
S } b= new element(z)
T £ matrices
£ new ellement(z) o
S matrices = : I
= = | switch on: P correct(LI
= ¢ =
c Q
@ £ solver | (3)
£ solver | (3) 2
= © |cont. press. < 0 : switch off:|F
° v ]
error
error .
estimator | 4 estimator | (4)

Figure 7: The normal solver cycle _
Figure 8: The whole solver cycle

The whole cycle of the algorithm with penetration test, potpr switching and contact pressure
checking is shown in figure 8, where in figure 7 a normal sobyeie for an adaptive finite-
element algorithm is shown.



4.2 Finite planar obstacles

For the handling of finite planar obstacles ( see figure 6 ) kiperishm is changed a little bit in
the penetration test. Only for nodes between the obstacledawiess; and s, the test returns
the result 'penetration’, all other parts of the algorithtawsunchanged.

For some pictures of computed examples see the appendix A.1.

5 Obstacle description by implicit functions

To enrich the class of obstacles with easy performable peiraat tests implicit functions for the
description of the obstacle are useful.
Let F' : R? — R a given function ofr € Q2 and define the obstacle in the following sense:

=0 on obstacle boundary
F(z){ <0 inside the obstacle
> (0 outside the obstacle

So the penetration test fer+ « easily can be done by calculation B{z + u).
If the test is positive, a proper parametersuch thatc + «w is on the obstacle boundary is to
compute by solving the following onedimensional nonlinequation

o:=Fx+au)=0 (4)

for instance with a bisection-method.

Good starting values far area = 0 anda = 1, because this values enforce different signs of
the value ob.

With this parameterr a one dimensional affine subspace for the the correspondidg can
defined by forcing the node staying on the tangent in poitau at the obstacle boundary.

For the implementation this will handled in the same way &k®alf space obstacle for this node.
To compute this tangential direction on the obstacle boynskeeF' as a 'normal’ function from

R? to theR!.

Then the gradient in the point+ awu points to inner normal direction of the obstacle boundary
and the needed tangential directiois an orthogonal vector to the gradient:

n=VF(z+ au) s:[_”ﬂ

So all values for the projector are computed and can use@isdlver cycle. For some examples
see appendix A.2.



6 Obstacle description by spline curves

6.1 Motivation for spline curves

Implicit functions are easy to handle, but not very realifr practical purposes. A better choice
is, the use of spline curves.

Definition 2 (Splinecurve). Let {(z1, z), (2%, 23) ... (27, 23)} be a set of given controlpoints.
Further some boundary conditions in the poifits, z3) and (27, z%) are fixed. With this values
and an arbitrary parametet two cubic splinesS; (t) and S,y(¢) are fixed.

So the mapping

I:[0,1] —R?* with I(t):= [ g;gg ] (5)

defines a splinecurve in the plane.

So you can define a tool-contour by some control-points amditons at the endpoints. As a
first example we approximate the unit circle.

6.2 Example for a splinecurve
For the approximation of the unit circle we fixcontrol points

{<_170)7 <07 1)7 <170>7 (07 _1)7 (_170)}

and a parametere [0, 1] with ¢ = i - 1 corresponds ta'.
Further we set the derivatives in the startpoint and endpeimich yields to

SI0)]_[ o ]_[%0 (6)
S5(0) 27 Sa(1)
Remark: This values of the derivatives come from the wellknown patipation
z1(t) = cos(2mt)
xo(t) = sin(2mt)
with
#1(t) = —2mwsin(2nt)
To(t) = 2mcos(2mt)

So the values of first derivatives in the boundarypoints reesto

#(0) = 0
#(0) = 27
(1) = 0
t9(1) = 27

For plots of the approximation and the pointwise error sagég 9 and 10.
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Figure 9: Approximation of the unitcircle

Pointwise error in the approximation of the unitcircle by a splinecurve
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Figure 10: Error of the approximation

6.3 Spline curves as obstacles

For the usage of this curves as obstacles a penetration clilexkn the other variants of the
obstacle descriptions is to do.

Unfortunatly this test can not be performed in such an easyneraas in the case of implicit
functions, but if the test is passed, the projection poiebimiputed too.

6.3.1 The penetration test

To perform the test, define a (nonlinear) mappRtg— R? by

(21 4+ auq) — Si(t)

o(a,t) = (5 + atin) — Sa(t)

(7)

9



with node-coordinates = [z, z,]", displacement: = [u;,us]” and spline-curveS(t) =
[S1(1), Sa(t)]".

So the intersection point of the obstacle with the displaa@nrdirection of the node is com-
puteable as a zero-problemof

1

Figure 11: Penetration test and computation of the praeagipint

With the solution|ay, to] whereo (v, tg) = 0 the decision if the node penetrates can be done in
the following way.

e Forty < 0orty > 1there is no intersection between the lineé v and the node does not
penetrate. In this case is nothing to do, the value iust not be considered.

e Foray > 1the node is outside the obstacle and it is not neccesary teatdhe node.

e Foray < 1 the node penetrates the obstacle, the displaceméiat to be corrected to
u := = + apu and the projector will switched on. For the normal and tatigédirection
at the projection point to define the projector the (alreadyputed) derivatives of the

. . T
splinecurve are useables & |S;(to), Sa(to)| )

6.3.2 Changing the zero-problem fors («, t) to a zero-problem of o (¢)

It is possible to solve this (nonlinear) problem for the twiknownst anda by an preiteration
with some steps of a gradient-method and then start a Neidation.

But with some assumptions to the projection point it can fiamnsed into an (nonlinear) D-
Problem.

10



Starting with equation (7 ) the can be isolated by multiplying the equation with the (nonzer
displacement:

au = S(t)—=x (8)

o = (St) —x,u) (10)
(u, u)

(11)

o(t) :zx—i—%-u—é’(ﬂ:o (12)
which is equivalent to
o(t) =z + <S<it)l’6;ﬁ> u— éz Zi u—S(t) =0 (13)
1; S() 7P

whereP,S(t) and P,x are orthogonal projections 6f(¢) andz to the displacement.
In other wordsr can be written as

o(t) = (I—P)e—(-PF)S(t) = (14)
& (I=PR)x-501)=0 (15)

With the orthogonal splitting oR? in « andu* and multiplication of (15) with.* this leads to

(I = P)(z—S),u") = 0 (16)

(@ = S(t),u) — (Pulz - S@). ut) =0 (17)
=0 bec. <Puzui>:0 vz

(z —St),ut) = 0 (18)

which is a scalar equation for
After computingt, with (z — S(to), u*) = 0 the corresponding, follows from (10).

6.3.3 Solving the zero-problem foro (t)

For having good starting values for a Newton-iteration fwes¢18) it is useful to start with &°

- interpolation of the splinecurve (i.e. piecewise linepp@ximation of the curve, see figure
12) and test for every segment from the controlpgifitzi]” to [z ”1} (i=1---n—1)

if there is a intersection point of the linest+ au and the segment.

11
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Figure 12:C° Approximation of the splinecurve

For every segmeritthis can be done by enforcing

% i+1 7
xy Xy — I . I Ul
el ] -] ] @
which is a linear system far and A
up — (2 — ) al [t —a
{ uy —(zh — ) A Tl — (20)
such that
Om = uz(2" — @) —wi (23" —23) (21)
a = 0, (—(z3"" —ah)(z) — @) + (27" — 21) (25 — 22)) (22)
A= 0t (—u2(mzl —x1) + up (5 — xg)) (23)

For\ € [0,1] anda < 1 a penetration is possible. Then a Newton-iteration foriagly18) will
start with the starting value

A
p=1" (24)
n
because the solutiohfrom the local view to a single interval must be mapped badkéovhole

C°- spline.

After convergence of this iteration the parameteasda are computed for the redl?-spline
and the penetration test is done.

The node penetrates the obstaclevif< 1. In this case the poinP and the tangential di-
rections on the obstacle in this poir is to compute by an evaluation 6§, (¢), S,(t)]" and

. . T
[S10). 5(0)]
With this values a selective projector which handles a sbpndary-condition for the node
[z, y]* will switched on and the same procedure is to do for all otleetact-suspect nodes.

12



A Computed examples

A.1 Planar obstacles

As an example for the computation of problem with a finite plambstacle a unitsquare is moved
by a given displacement against the obstacle.

15 T T T

obstacle

net+u

05 -

i |

-0.5 |

A.2 Obstacles, described by implicit functions

In this an example for implicit functions as obstacle bougdihe 2 cases of convex and concave
obstacles are shown

15 —— —
! = ' — " obstacle —— ! ! ! ! obstacle ——
- ~_ 2L
net+u net+u
circ-edge ———
L 4
1r
.
/
05 // A o
al
ol
2L
\
05\ — .
\ _— ~—
3
1
\ 4
~ -
15 . Lo~ . . . 5 . . . .
2 15 1 05 0 05 1 15 2 25 -4 2 0 2 4

In the example with the body inside the ellipsoidal obstaicéeright boundary of the body is a
circle edge, painted too for showing how deep the body woaltefrate without processing the
obstacle.
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A.3 Obstacles, described by spline-curves

In the last part you see some pictures of computed exampthbstacles , described by spline
curves.

Like in the other cases the body is moved by a fixed displaceorethe upper boundary against
the obstacle.

L L L L L
0 1 2 3 4

Figure 13: Obstacle description with a spline Figure 14: Zoom
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Figure 15: Obstacle description with a spline

Figure 16: Zoom
curve
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