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Abstract

The paper copes with the problem of finding an optimal subset of interpola-
tion points out of a given large set of computed values, arising from a finite
element simulation. This simulation computes environment data, which are
on their part input data for finite element simulations of machine tools.

For machine tool manufacturers it is still a seriously problem that the ma-
chine works imprecisely and products wastrel if environment values like tem-
perature changes. The change of the environment boundary conditions con-
tribute to the phenomenon through sunlight or cold draught owing to open
doors of the machine hall or factory. Resulting thermo-elastic effects on
the tool center point are one of the major reasons for positioning errors in
machine tools.

A genetic search algorithm for clustering relevant heat transfer coefficient val-
ues over the geometric surface through computational fluid dynamics (CFD)
simulations will be described. These values are the input data for a developed
thermo-elastic correction algorithm.

Keywords: Optimal subset problem, Radial Basis Functions, FEM, CFD
MSC: 90C27 Combinatorial optimization, 97N50 Interpolation and approx-
imation
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1 Introduction

The paper copes with the problem of finding an optimal subset of inter-
polation points out of a given large set of computed values, arising from a
finite element simulation to establish a thermo-elastic correction algorithm
for increasing the workpiece quality in production processes.

The quality of workpiece is dependend by the thermo-elastic behavior of the
machine tool during the production process. Machine tool deformation oc-
curs due to waste heat from motors and frictional heat from guides, joints and
the tool, while coolants act to reduce this influx of heat. Additional thermal
influences come from the machine tool’s environment and foundation. This
leads to inhomogeneous, transient temperature fields inside the machine tool
which displace the tool center point (TCP) and thus reduce production ac-
curacy and finally the product quality [1]. Next to approximation strategies



such as characteristic diagram based [8] and structure model based correction
[4], the most reliable way to predict the TCP displacement is via structure-
mechanical finite element (FE) simulation. A CAD model of a given machine
tool serves as the basis for this approach. On it a FE mesh is created. Af-
ter establishing the partial differential equations (PDEs) describing the heat
transfer within the machine tool and with its surroundings, FE simulations
are run in order to obtain the temperature fields of the machine tool for speci-
fied load regimes. Using linear thermo-elastic expansion, the deformation can
then be calculated from each temperature field and the displacement of the
TCP read from this deformation field, see [6]. The accuracy of this latter
approach depends on the correct modelling of the heat flux within the ma-
chine tool and the exchange with its surroundings. In order to calculate the
correct amount of heat being exchanged with the environment, one may use
known parameters from well-established tables. However, if the surrounding
air is in motion or otherwise changing, computational fluid dynamics (CFD)
simulations are required to accurately determine these transient parameters.
This two-step approach makes realistic thermo-elastic simulations particu-
larly complicated and time-consuming. Negative aspect of this approach is
the very computing time intensive CFD simulation. Some methods aiming
at real-time thermo-elastic simulations based on model order reduction must
therefore rely on the inaccurate predetermined parameter sets [5]. This could
be helped if all the necessary CFD simulations could be run in advance and
supplied to the thermo-elastic models when they are needed.

Nevertheless the whole output of this CFD simulations is to much amount
of data for an effective computation of the correction steps. Therefore a
reduction of this data is desirable wherefore the ideas of this paper comes
up.

This paper starts by introducing an interpolation method with radial basis
functions (RBF) and the description of the optimal subset finding problem.
After that a solution algorithm for solving this optimal subset problem is de-
veloped, based on the idea of genetic algorithms. In the numerical examples
the potency of this algorithm is shown in some benchmark examples, where
the optimal solution is known. Afterwards it is also demonstrated that the
algorithm works for practical relevant datasets too.



2 Radial Basis Functions

The basic principle in the use of radial basis functions is solving an interpo-
lation problem for m arbitrary sample points 1, =5 - - - ,, in R? with given
values wy, ws - - - w,y, in R to find a function f : RY — R, fulfilling the inter-
polation condition

flz;) = w for i=1---m. (1)

The first step is to find an ansatz for (1). A function n;: R? — R is a
radial basis function if a function ¢ : R — R exists, which satisfies n;(z) =
é(||z — x;]|) for a fixed point x; € R?. Commonly used types of RBF ansatz
functions with the structure ¢(r) with r = ||z — z;|| are so called Gaussian,
multiquadic, polyharmonic spline function, for more details see [12].

In our case we used a simple polyharmonic spline, which sounds ¢(r) = 7.
Other variations, especially for large data sets are RBFs with compact sup-
port, e.g. the ”Wendland functions” [2]. These basic functions are charac-
terized through a sparse interpolation system.

A usual ansatz for an interpolation function is described by

f@) = 3 Baa). @

Inserting condition (1) in (2) we get linear equations
f(xz):Z@%(sz) = w; for i=1---m,
j=1

which can be written as a linear system by
PREBE — . (3)

The components of (3) are defined by the system matrix ¢ := [¢;(x;)] for
i,j = 1---m, the vector BB = [B), By -+ B,,]T of the unknown coefficients
and the right hand side w = [wy, wy - -w,,]T. The system matrix ® is ob-
viously symmetric. In [2], it is shown that & is positive definite for a vast
variety of RBFs. The only disadvantage of this RBF ansatz is that a large

number of sample points are needed to get a sufficiently exact approximation



of a constant or linear function. One possible way to cope with this is to add
a polynomial part p(z).

m

fx) = Y B u(x) + p(a)

=1

The d-variate polynomial p € 7, (R?) of degree at most n is defined as

k

plx) = Y 87 pila),

J=1

with k = dim(7,(R?)) and basis polynomials p; for j = 1...k. Consequently,
this ansatz has (m + k) unknown coefficients, while the interpolation system
(1) consists of only m equations. Therefore an added condition is imposed

by

ZBJRBFP(:EJ') = 0 forall pem,(RY.

=1

The result is a linear matrix system of dimension (m + k)

EIiZE0 .

A simple and good choice for 7, (R?) are linear polynomials, e.g.

nz) = m
pz(x) = X2
Pd(ﬁ) = g
p(z) = 1

where x € RY, k = d + 1 and z; is the i-th component of .
The solution vector 3 = [BEBE BPOLYIT of eq. (4) contains the coefficients
for the whole interpolation function

k

flw:) = Z Bigi(z) + Z Blm+5)pi (). (5)

=1
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3 The Optimal Subset Problem

The CFD-simulation in Ansys computes the values of heat transfer coeffi-
cients, velocity vectors or other characterising values in a huge number of
nodes on the surface of the computed domain.

Because of very large node numbers it is desirable for fast evaluations, to
reduce this number of nodes but keep a high accuracy. In the paper this is
done by choosing a 'good subset’ with a fixed size m of node values which will
be used to build an interpolation function, based on radial basis functions.
The mathematical formulation for choosing this optimal nodes for the inter-
polation can be done in the following way.

Given a set V = {1,2,--- N} which corresponds with the nodes z1, x5, - - zx
of the finite element simulation and her computed values wq, wq, - wy in
this nodes. Furthermore define a number m < N and a weighting function

F:SCV SR with |S|=m (6)

which maps a m-sized subset S to a real number greater or equal zero. The
"Optimal Subset Problem’ is minimizing this weighting function f as

min  f(S) . (7)
ScV,
S| =m

In our application the weighting function f itself is a function, calculating
the interpolation error which occurs when the m node values of S are used to
build the radial basis interpolation function fs like in equation (5), evaluate
it in all N nodes of the set V and compare the interpolated values with the
given values w;. Possible error measures are the sum of squares

N

F(S) = y| D (fslas) — wi)? (8)

i=1
or a pointwise computed maximum error

f(8) = max |fs(z:) —wi)| (9)

)

Clearly the value of f(.5) is (up to small roundoff errors) zero if m = N that
is S =V, but it becomes greater then zero for m < N.
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The challenge is now to find out the optimal subset S which minimizes (7).
For very small sets V' and small numbers m this can be done by computing
all possible subsets S C V' and compare the values of (6), but in all practical
relevant cases this becomes impossible due to the combinatorical explosion.
The number of different subsets S C V' of size m is given by the binomial
coefficient (Z ) which is defined as

some values are shown in the following table 1.

N | m (i)
61 | 5 | 7624512
6
7

64 74974368

64 ~6-10°

64 | 20 | ~1.9-10'
8065 | 100 | ~ 2.6 - 10%%*

Table 1: Some values for N over m

The subset problems, belonging to the first three lines with (654), (664), (674) are
computeable explicit by a full search and will be used in the section 5.1 as a
benchmark value, because they provide the global minimum of the weighting
function (6). The case (gg) is not computable by a full search with reasonable
effort and it will be used to show the minimization algorithm works.

The last line with (8100605) is a practical use case, the immense number of
different subsets makes it impossible for all times to perform a full search by
the computation of all cases, but the example in section 5.3 will show how
the minimization algorithm works also in this case.

In the next section an optimization algorithm for finding the optimal subset

will be developed.



4 Genetic Algorithms

The minimization of a function is a widely used technique for solving opti-
mization problems. Depending on the properties of the function which is to
minimize (continuity, differentiability, ...) many effective algorithms exist
for such classes of functions.

But the challenge of our minimization problem (7) is, that our weighting
function is not continous, moreover it is defined over a discrete set. All
algorithms, depending on gradients are not applicable for such a problem. In
case of very small sets it is possible to perform an exhaustive search, but for
all practical purposes the computational effort for this idea is impossible to
tackle.

For moderate sizes there exist branch and bound algorithms, based on ideas
of Narendra and Fukunaga for feature subset selection in statistics [7] or their
implementations, given by Ridout [9] or [11].

They need a subset monotonicity condition, such that for two subsets S; C V
and Sy C V with S; C Sy the weighting function (6) fulfills — in case of
minimization — the condition f(S3) < f(S7). This holds for our problem (7)
too.

Nevertheless in this papers the considered and computable problem sizes are
in the magnitude of (%21) (Narendra) or (i’g)(Ridout) which is much lesser
than our aimed problem sizes.

However there exist one widely used technique for such problems, it is the
class of genetic algorithms. The basic idea of this algorithms is to duplicate
the selection of the fittest in natural evolution processes.

A solution candidate is seen as an individual, a bulk of individuals is seen as
population and the population is developed from one generation to the next
generation by annihilating individuals with poor fitness, selecting individual
with good fitness for reproduction and create a new generation.

In principle, after fixing a population size p, a genetic algorithm consist of
the following steps:

1. Initial population: Generating the initial population by randomly cre-
ation of p individuals.

2. Assessment: Perform a rating of all individuals by evaluating the fitness
function for each one.



3. Stopping criterion: Use the best individual as solution if the best fit-
ness value reaches a given threshold, or if it not changes over a fixed
number of generations.

4. Reproduction: Annihilate individuals with poor fitness, use individuals
with good fitness for reproduction to create a new generation.

5. Mutation: Mutate some new generated individuals with a (small) prob-
ability. This mutation step offers the inclusion of new solution candi-
dates to the population.

6. Loop to next generation: Go to step 2.

Especially for the reproduction step there exists many different variants for
the selection of parent individuals and their reproduction. For a more de-
tailed introduction to genetic algorithms see for example [3] or [10]. In our
adoption of the algorithm, the important steps from above are done in the
following way.

1. Initial population: In our use case the individuals are subsets S C
V' of node numbers, i.e. integers out of {1,2,--- N}, such the initial
population is generated as a family of p random subsets S C V.

2. Assessment: The assessment of each individual is done by setting up
the RBF interpolation system with these basis nodes corresponding to
the individuals set .S, evaluate this system in all N nodes, compare the
interpolated values with the given values like given in equation (8) and
use the result as fitness value. Please note, that these settings perform
a minimization, such that best fitness value is zero.

4. Reproduction: During the reproduction step a small number of individ-
uals with the best fitness values, e.g. the elite are transfered unchanged
to the new population. The remaining individuals of the new popula-
tion are created by mixing individuals out of the upper half of the
population. For two parent sets S; and S; this is done by taking m
elements out of Sy | Sy to create a new individual.

5. Mutation: The mutation step is performed by changing some elements
of the newly created set S to a random value out of {1,2--- N}.



5 Numerical Examples

In the numerical examples we consider three different use cases. In the first
example a benchmark to the optimization algorithm is done, because of the
moderate number of different subsets it is possible to do a full search and
find the optimal solution exactly to compare it with the solution found by
the optimization algorithm.

The next two examples consider practical use cases, where the optimization
algorithm works to find an optimal subset. Comparision with a full computed
example is impossible.

In all numerical examples the assessment of the solutions during minimization
is done by the error measure, given in equation (8).

5.1 Benchmarks examples with N =64,m =5,6,7

This example is constructed for benchmarking the optimization algorithm
in comparison with a known global minimum. This global minimum ist
computed by the assessment of all (?ﬁ) cases for m = 5,6,7. For some
details of the computation of all this subsets see sections A.1 and A.2 in the
appendix.

The exact numbers of how many different subsets exists in this cases are
given in table 1. The original ansys data are shown in figure 1.

Figure 1: Original mesh data with 64 nodes

In the following tables 2, 3, 4 the best six sets with their interpolation error
are shown. Moreover, for an illustration that there really exists 'good and
bad sets’ in table 2 the set with the largest error up to sets producing not a
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number results is given in the last line too. The corresponding nodes to this
set are located all on a straight line on the right boundary of the domain.
Therefore the interpolation with this set is one of the worstest variants.

| error | set S with [S] =5 |
4.180556e+00 13 16 45 48 61
4.268491e+-00 18 29 45 48 61
4.291127e+00 218 45 48 61
4.301570e+00 315 45 48 61
4.344761e+00 11845 48 61
4.346238e+00 13 20 45 48 61

| 1.771360e+04 | 42 56 59 60 61 |

Table 2: The best six sets and the worst one (without NaN) for m =5

When running the genetic algorithm for solving the optimization problem it
runs after about 800 generations into the global minimum. For the evolution
of the best error over the generations see figure 2.

5.5

error

4.5

| I—

0 200 400 600 800 1000
generation

Figure 2: Evolution of the error over the generations for m =5

The resulting interpolation with this optimal set S = {13,16,45,48,61} is
shown in figures 3a and 3b. The location of the interpolation centers of this

11



five radial basis function is marked in figure 3a with the number placed on
the center position.

RBF-Interpolated Data with 5 RBF, Error between Original Data with 64 nodes and 5 RBFs

1000
7
20 4 16
19
1.4
18
17 12
16 .
15 o
08
14
13 0.6
12 04
1
02
10
o VA N
0 -500
XZ

(a) Interpolation (b) Interpolation error

Figure 3: Example for N = 64 and m = 5 (RBFs).

In the following tables and pictures the results of the same computations
for m = 6 and m = 7 are shown. At first remark that the optimal solution
becomes better for increasing value of m. It comes out, that also in this cases
the genetic optimization algorithm runs into the global minimum.

| error | set S with [S| =6 |
3.908642e+00 | 13 16 42 45 59 61
3.945560e+00 | 1 1542 45 59 61
3.953646e+00 | 18 20 42 45 59 61
3.956622e+00 | 3 15 42 45 59 61
3.965478e+00 | 1 31 324249 59
3.999228e+00 | 13 24 42 45 59 61

Table 3: The best sets for m = 6
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5.5 q

error

4.5 q

3.5 I I I I
0 200 400 600 800 1000

generation

Figure 4: Evolution of the error over the generations for m =6

RBF-Interpolated Data with 6 RBFs Erlror between Original Data with 64 nodes and 6 RBFs

20 000 18
19 16
8 14
17
12
16
1
15 -
X
14 0.8
13 06
12
0.4
11
0 02
0 SAVA o
0 -500
X2

(a) Interpolation (b) Interpolation error

Figure 5: Example for N = 64 and m = 6 (RBFs).
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|

error

| set S with [S|=7 |

3.447288e+00

8 13 15 49 51 59 61

3.479505e+00

13 15 42 49 51 59 61

3.500212e+00

183249515961

3.503142e+00

31542 45 51 59 61

3.545113e+00

8 13 15 22 49 59 61

3.589773e+00

3 15 22 42 45 59 61

error

Figure 6: Evolution of the error over the generations for m =7

Table 4: The best sets for m =7

6.5

5.5

4.5 H
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0 200

400
generation

600 800
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1000

RBF-Interpolated Data with 7 RBFs Eqr&robetween Original Data with 64 nodes and 7 RBFs
y N

900
800
700

600

400
300
200

100

[}
500 500 0 -500

Xy 2

(a) Interpolation (b) Interpolation error

Figure 7: Example for N = 64 and m = 7 (RBFs).

5.2 Use case with N =64, m = 20

In this example the algorithm chooses 20 nodes out of 64 to create the inter-
polation system. It can reduce the interpolation error to 1.7308 by using the
subset S = {5,8,11,13, 19,24, 25,34, 35, 36, 38,42, 45,49, 54, 57, 58,59, 61, 63},
see figure 9a for the spatial distribution of this nodes.

3.2

. . .
0 500 1000 1500 2000
generation

Figure 8: Evolution of the error over the generations for m = 20
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RBF-Interpglated Data with 20 RBFs Error between Original Data with 64 nodes and 20 RBFs
en

1000 63

900
s 34 24
800

X

(a) Interpolation

-500

(b) Interpolation error

Figure 9: Example for N = 64 and m = 20 (RBFs).

5.3 Practical example with N = 8065, m = 100

In this numerical example the computation of a heat transfer coefficient on
the Auerbach ACW machine with 8065 nodes is used as input data. This
input data are shown in figure 10a. The corresponding interpolation with
m = 100 RBFs is shown in figure 10b, the interpolation centers of this 100
RBFs are marked with red balls.

Original Data RBF-Interpolated Data
2500
2000
1500

1000

500

0

0 2000 o

1000 -200 1
-400

0
2000

1000
-1000

-600
X. X X X

-1000  -600

2 1 2 1

(a) Original mesh with 8065 nodes (b) Interpolation with 100 RBF's

Figure 10: Example for N = 8065 and m = 100 (RBFs).
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Error between Original Data and RBFs

215 Bl
2500 - 0.9

2000 oe

0.7
1500 - 06
0.5
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19 ] 04

18.5 : 500 4 03

18 : 02
ol L

17.5 E 2000 T _—"0 01

L L . L 0 " -400
0 2000 4000 6000 8000 10000 -1000  -600 M
generation 2 1

(a) Evolution of the error (b) Interpolation error

Figure 11: Example for N = 8065 and m = 100 (RBFs).

6 Conclusion and Outlook

This paper presents an efficient clustering approach for characteristic values
out of the fluid simulation to describe the environment interdependencies
of machine tools. The fluid simulation calculates a field of heat transfer
coefficient around the surface of the machine component as characteristic
values. Using the RBF theory to interpolate this field for the following steps
to find an optimal subset of nodes.

The implementation is ensued through a genetic algorithm. Some numerical
use cases presents the functionality of the developed method. The last part
shows the result for an optimal subset of characteristic values on a realistic
component, the column of a machine tool.

Finally, the planned work is to use the developed method for the numerical
calculation of a whole working day in a factory hall. Therefore many time-
intensive fluid simulation are necessary and produce a lot of data. So the next
steps are to assign this method for handling the big data of characteristic
values for each time step.
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A Appendix

In the appendix some remarks to the computation of the considered subsets
S C V with fixed size m are given. Especially for the full computation of the
small benchmark examples with sizes (654), (664 ), (674 ) in section 5.1 this was
used.

A.1 Relationship of a subset S C V' and a N-bit integer

For the handling of subsets the usage of an one-to-one mapping from a set
V ={1,2,--- N} to the bits of a N-bit integer value K, given in the following
sense:

Set Vi N N-1 N-2 2 1
Bits of integer K: 1 0 1 - 0 1
is very useful. Every value of K defines a subset S C V' by using the 1-bits
of K as a marker, that the corresponding element of V' belongs to the subset
S.
There exists 2V differents subsets of V, the N-bit integer K can achieve 2V
values.
Moreover, all subsets S with |S| = m corresponds with all integers K where
exactly m bits are set to 1.

A.2 Sequential creating all subsets S with |S| =m

Using the basic concept out of the last subsection, it would be thinkable in
a naive implementation to count the value of K from 1 to 2, determine the
number of 1-bits in K and use the correponding subset if there are exactly
m bits set to 1. But already for small numbers of N this counting consumes
so much computation time, that it becomes impossible.

A much better approach is jumping from a given number K which has m
bits set to 1 to the next larger number with m bits set to 1.

Looking at the bit representation this can be done by the following algorithm.

1. Start with the lowest significant bit position and find the position where
the first change from a 1-bit to a 0-bit occurs.

2. Exchange this 2 bits, i.e. the 1-bit becomes the value 0, and the 0-bit
becomes 1.

18



3. Shift the block of remaining 1-bits right from the position found in step

1 as far as possible to the right.

To clearify this idea consider the following example. Setting N =10, m =4
and starting with K = 0010011100 which is the decimal value of 256 + 16 +

8+ 4 =284.
K= 0 01 001 1100
position of 1 jumpsto0: 0 0 1 0 O 1 1 1 0 O
swap thebits: 0 0 1 0 1 0O 1 1 0 O
remaining 1-block: 0 0 1 0 1 0 1 1 0 O
shift to theright: 0 0 1 0 1 0 0 0 1 1

So the new value of K is 0010100011 respectively 256 + 32 + 2 4+ 1 = 291
which the next integer greater then the given value and has m 1-bits too.
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