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Abstract

In this paper we consider the numerical solution to the soft-margin support vector
machine optimization problem. This problem is typically solved using the SMO
algorithm, given the high computational complexity of traditional optimization
algorithms when dealing with large-scale kernel matrices. In this work, we pro-
pose employing an NFFT-accelerated matrix–vector product using an ANOVA
decomposition for the feature space that is used within an interior point method
for the overall optimization problem. As this method requires the solution of a
linear system of saddle point form we suggest a preconditioning approach that is
based on low-rank approximations of the kernel matrix together with a Krylov
subspace solver. We compare the accuracy of the ANOVA-based kernel with the
default LIBSVM implementation. We investigate the performance of the differ-
ent preconditioners as well as the accuracy of the ANOVA kernel on several
large-scale datasets.
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1 Introduction and motivation

The training of support vector machines (SVMs) leads to large-scale quadratic pro-
grams (QPs) [1]. An efficient way to solve these optimization problems is the sequential
minimal optimization (SMO) algorithm introduced in [2]. The main motivation for the
design of the SMO algorithm comes from the fact that existing optimization methods,
i.e., quadratic programming approaches, cannot handle the large-scale dense kernel
matrix efficiently. The SMO algorithm is motivated by the result obtained in [3] that
showed the optimization problem can be decomposed into the solution of smaller
subproblems, which avoids the large-scale dense matrices.

When tackling the training as a QP programming task, the use of interior point
methods (IPM) has also been studied in the seminal paper of Fine and Scheinberg
in [4]: the authors use a low-rank approximation of the kernel matrix and propose a
pivoted low-rank Cholesky decomposition to approximate the kernel matrix. A similar
matrix approximation was also proposed in [5]. Fine and Scheinberg then use either a
Sherman–Morrison–Woodbury formulation or a Cholesky-based approach for handling
the linear algebra within the interior point method in an efficient manner.

The approximation of kernel matrices or the approximation of matrix–vector prod-
ucts with them is an active area of research. One can use fast Gauss transform methods
[6] or non-equispaced fast Fourier transform methods (NFFT) for approximating the
matrix–vector products [7–9]. In this paper, we revisit the application of an interior
point method (IPM) [10–14] to this problem, and we combine this with fast approaches
for the matrix representation of the kernel matrix. We especially focus on the cases
when the dimensionality of the feature space Rd grows for larger d, situations where
fast matrix–vector product approaches typically do not scale perfectly for an increasing
number of data points.

In this paper, we propose the use of a feature grouping approach that creates
an ANOVA kernel, only coupling up to three features in an individual kernel sum-
mand. The resulting matrix–vector product can be efficiently realized using the NFFT
approach. In order to mitigate the slow convergence of iterative solvers for this prob-
lem we then apply preconditioning approaches based on low-rank approximations,
based on developments in preconditioning such as those in [15–18]. These can then be
efficiently embedded into our suggested kernel IPM.

Before discussing our approach in more detail we briefly recall the optimization
problem at the heart of training support vector machines. Following this, in Section 2
we introduce the interior point method to be employed. In Section 3 we outline the
NFFT technology for matrix–vector products, and in Section 4 we discuss approaches
for preconditioning the kernel matrix. We then describe our overall preconditioned
iterative solver in Section 5, whereupon we showcase its numerical performance in
Section 6 and present concluding remarks in Section 7.

The SVM optimization problem

We assume that we are given n data points xi ∈ Rd associated with a response
yi ∈ {−1, 1} . The goal is to learn the classification boundary separating the two classes
encoded in the response yi via SVMs [19].
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Fig. 1 Illustration for the support vector machine maximal margin classifier.

The original method was introduced based on a hard maximal margin separation
as illustrated in Figure 1. SVMs allow us to obtain a decision boundary for the classi-
fication of the response variables yi. For binary classification of the given data points
(xi, yi) with yi ∈ {−1, 1}, a hard constraint is considered in the optimization as

yi(w
⊤xi + b) ≥ 1.

As this constraint is designed to not allow for misclassified points, we soften it using
the constraint

yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0.

For this soft margin constraint, we consider the optimization problem

min
w,ξ

1

2
w⊤w + C

∑
i

ξi

yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0,

where the parameter C controls the amount of misclassification. With the help of
Lagrangian duality and Lagrange multipliers αi this problem is then transformed to
obtain

max
0≤αi≤C

∑
i

αi −
1

2

∑
i,j

αiyiαjyjx
⊤
i xj ,

a quadratic programming problem with the box constraint 0 ≤ αi ≤ C and the
constraint y⊤α = 0. This problem can be formulated in matrix–vector form as

max
0≤αi≤C

e⊤α− 1

2
α⊤Y XX⊤Y α,
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where e = [1, . . . , 1]⊤, α = [α1, . . . , αn] and Y = diag(y1, . . . , yn). In particular, we see
that the structure of XX⊤ as

XX⊤ =

x
⊤
1 x1 . . . x⊤

1 xn

...
. . .

...
x⊤
n x1 . . . x⊤

n xn

 using X =

−x⊤
1 −
...

−x⊤
n−

 , X⊤ =
[
x1 . . . xn

]

shows that this is a Gram matrix. The decision boundary for this problem is linear,
which is often not sufficient to obtain accurate classification. As such, we consider a
formulation suited for data that are not linearly separable. The above derivation can
be carried out entirely in a reproducing kernel Hilbert space (RKHS) [1] setting, where
all inner products are evaluated via a kernel function κ(xi, xj). The objective function
of the optimization then becomes,

max
α

∑
i

αi −
1

2

∑
i,j

αiyiαjyjκ(xi, xj) = max
α

e⊤α− 1

2
α⊤Y KY α, (1)

subject to the constraints 0 ≤ αi ≤ C and y⊤α = 0, with Kij = κ(xi, xj). The kernel
matrix K is a symmetric matrix that for positive kernels is positive semi-definite. In
this paper we consider the case of K ∈ Rn,n being large-scale, as then the treatment
with QP approaches becomes prohibitively expensive. The default approach for solving
this optimization problem is the sequential minimal optimization method, which uses
the following idea. For problem (1), the method chooses two Lagrange multipliers αi

and αj for which the objective function is then maximized while all other α values
are kept fixed. This process is repeated until convergence. We refer to [2] for further
details.

Our goal in this paper is to investigate the use of an interior point scheme for solving
the kernel SVM problem, by taking advantage of efficient numerical linear algebra
methods. We therefore introduce the underlying numerical scheme in Section 2.

2 The interior point method

We apply an interior point method to solve the SVM optimization problem. Among
many excellent references, we refer to [10–14] for outlines of the interior point tech-
nology, and in particular to [11] for a discussion of the form of the method which
we apply here. In such a method, an initial guess is taken which satisfies the bound
constraints 0 ≤ αi ≤ C, whereupon a barrier sub-problem is solved at every interior
point iteration, involving a barrier parameter µ > 0, where the stationary point of the
following Lagrangian is sought:

Lµ(α, λ) = e⊤α− 1

2
α⊤Y KY α+ λy⊤α+ µ

∑
j

log(αj) + µ
∑
j

log(C − αj),

with Y a diagonal matrix containing the entries of y, and e ∈ Rn the vector of ones.
The parameter µ is progressively reduced towards zero, either by a constant barrier
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reduction parameter σ, or by a parameter σit which changes at every interior point
iteration (denoted it).

Upon differentiating Lµ with respect to each entry of α as well as λ, the following
optimality conditions are obtained:

Y KY α− λy − µe./α+ µe./(Ce− α) = e,

−y⊤α = 0.

Taking ᾱ and λ̄ to be a current interior point iterate for α and λ, with ∆α and ∆λ
the updates, gives the following Newton conditions for an updated interior point step:

Y KY∆α+ µ
(
e./ᾱ2 + e./(Ce− ᾱ)2

)
◦∆α−∆λ y

= e− Y KY ᾱ+ λ̄y + µe./ᾱ− µe./(Ce− ᾱ),

−y⊤∆α = y⊤ᾱ,

where ◦ corresponds to the component-wise product of two vectors, ᾱ2 and (Ce− ᾱ)2

denote vectors with the entries squared component-wise, and we apply the MATLAB
notation ‘./’ to denote entry-wise division by a vector.

Now, denoting Θ as a diagonal matrix with the j-th entry equal to µ(1/ᾱ2
j +

1/(C − ᾱj)
2), the linear system which must be solved to determine the direction of

the Newton step is as follows:[
Y KY +Θ −y

−y⊤ 0

]
︸ ︷︷ ︸

A

[
∆α
∆λ

]
=

[
e− Y KY ᾱ+ λ̄y + µe./ᾱ− µe./(Ce− ᾱ)

y⊤ᾱ

]
. (2)

We address the solution of the system (2) in Section 5. Having (inexactly) solved this
system, we then determine step-lengths such that the Newton update continues to
satisfy the bound constraints. In Algorithm 1 we present the structure of the interior
point method which we use to solve the support vector machine problem numerically.

3 NFFT-based matrix–vector products and high
dimensional feature spaces

As can be seen from the previous section, the main cost in the interior point
approach lies in the solution of the linear system of saddle point form [20, 21].
Krylov subspace methods such as MINRES [22] or GMRES [23] rely on matrix–
vector multiplications with the matrix A to build up the Krylov subspace Kl(A, r) =
span

{
r,Ar,A2r, . . . ,Al−1r

}
in terms of the residual vector r. The matrix A, and in

particular the kernel matrix K, are dense matrices in our framework. In the context of
the graph Laplacian L = D−W (cf. [9, 24]), W is an adjacency matrix, which resem-
bles the structure of the kernel matrix K, and in this paper we use the notation D to
denote a diagonal matrix, which in this setting is defined as the degree matrix. While
in the graph case one could overcome the density of W by sparsifying the graph via

5



Algorithm 1 Interior point method for support vector machines

1: Specify Parameters and Initialize Interior Point Method
2: γ0 = 0.99995, step-size factor to boundary.
3: tol, stopping tolerance.
4: Barrier parameter µ0 = 1.0.
5: Initial guesses for α0, λ0, assumed to be such that ξ0α := y⊤α0 ̸= 0, ξ0λ := e −

Y KY α0 + λ0y + µe./α0 − µe./(Ce− α0) ̸= 0.
6: Set iteration number it = 0.
7: Interior Point Method Loop
8: while (µ > tol or ∥ξitα ∥ /

∥∥ξ0α∥∥ > tol or ∥ξitλ ∥ /
∥∥ξ0λ∥∥ > tol) do

9: Reduce barrier parameter µit+1 = σitµit.
10: Solve Newton system (2) for Newton direction ∆α, ∆λ.
11: Find sα, sλ such that bound constraints on primal and dual variables hold.
12: Set sα = γ0sα, sλ = γ0sλ.
13: Make step: αit+1 = αit + sα∆α, λit+1 = λit + sλ∆λ.
14: Update infeasibilities: ξit+1

α = y⊤αit+1,
15: ξit+1

λ = e− Y KY αit+1 + λit+1y + µe./αit+1 − µe./(Ce− αit+1).
16: Set iteration number it = it+ 1.
17: end while

ε-neighborhood or k-nearest neighborhood approaches, this is not applicable for the
kernel case. For this case, we examine the structure of the matrix–vector product Kv
with v ∈ Rn and K being the Gaussian kernel function:

κ(xi, xj) = exp

(
−∥xj − xi∥2

ℓ2

)
,

where ℓ is a scaling parameter for the shape of the Gaussian. With this kernel function,
we then obtain the kernel matrix K and want to approximate the matrix–vector
product Kv, where v is a vector of appropriate dimensionality. An entry of this vector
then has the form

(Kv)j =

n∑
i=1

vi exp

(
−∥xj − xi∥2

ℓ2

)
∀j = 1, . . . , n.

Following [7] we write this again using the kernel function

n∑
i=1

vi exp

(
−∥xj − xi∥2

ℓ2

)
=

n∑
i=1

viκ(x̃)

6



with x̃ = xj − xi. The goal is now to approximate the kernel function κ(·) using a
trigonometric polynomial

κ̃(x̃) :=
∑
J∈IN

b̃Je
2πiJx̃, IN :=

{
−N

2
,−N

2
+ 1, . . . ,

N

2
− 1

}
,

where N ∈ 2N is the bandwidth and b̃J are the Fourier coefficients. We can then
rewrite the component of the matrix–vector product as

(Kv)j =

n∑
i=1

viκ(x̃) ≈
n∑

i=1

viκ̃(x̃)

=

n∑
i=1

vi
∑
J∈IN

b̃Je
2πiJx̃

=

n∑
i=1

vi
∑
J∈IN

b̃Je
2πiJ(xj−xi)

=
∑
J∈IN

b̃J

(
n∑

i=1

vie
−2πiJxi

)
e2πiJxj .

As shown in [7], we can rely on the efficient evaluation of both the inner and the
outer sum using the NFFT [25] method, here such that the cost of one matrix–vector
multiplication becomes O(mdn+Nd logN), where m is a fixed window parameter. As
observed in [7] this provides us with a method of linear complexity for fixed accuracy,
which without further assumptions is typically limited to moderate dimensions where
d ≤ 3. For the applications that we are aiming for in this paper we cannot limit
ourselves to this case, and we wish to adjust the NFFT approach for the case d > 3.

In a similar spirit, [26] uses the improved fast Gauss transform for reducing the
cost of the matrix–vector multiplication. Previous comparisons of both approaches [7]
revealed that the performances are in a comparable range. For higher dimensional
feature spaces d > 10, the authors in [27] suggest an approach based on skeleton
approximations. While this approach is not employed in this paper we believe this
could provide interesting further topics for future investigations.

To use the NFFT for speeding up the solution of the linear system within an interior
point method, a special kernel function is required that fulfills several requirements.
First, the chosen kernel must be able to approximate the kernel function well using a
trigonometric polynomial, which is not straightforward. Next, the input dimension for
the kernel and hence for every NFFT computation should not exceed three, so that
the computational advantage of the NFFT can be exploited. Our aim is to construct a
kernel that is based on a sum of kernels that each only rely on at most three features.
At the same time, as many feature interactions as possible shall be involved and the
number of kernels should still be kept low. For this we use the extended Gaussian
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ANOVA kernel

κ(xi, xj) =

P∑
l=1

ηl exp

(
−
∥xWl

j − xWl
i ∥2

ℓ2l

)
︸ ︷︷ ︸

κl

(
x
Wl
i ,x

Wl
j

)
.

Let us now explain the ingredients of this kernel. The number of kernels P satisfies
P ≤ ⌈d

3⌉. For selection of the relevant features to be included in each kernel we use
the index sets Wl = {wl

1, w
l
2, w

l
3} ⊆ {1, . . . , d}, which are determined following the

feature’s mutual information score ranking. Based on the windows of features Wl, we
obtain the data points restricted to those features as

xWl
i =

[
x
wl

1
i x

wl
2

i x
wl

3
i

]⊤
and xWl

j =
[
x
wl

1
j x

wl
2

j x
wl

3
j

]⊤
,

where i, j = 1, . . . , n and l = 1, . . . , P . Note that each kernel κl is assigned an indi-
vidual kernel parameter ℓl. For more details on this kernel we refer to [8]. We are
now able to combine multiple kernels, each relying on at most three features, so that
the NFFT can be applied to approximate the action of the kernel matrices corre-
sponding to an overall matrix–vector product (K1 + . . .+KP )v = K1v + . . .+KP v,
where Klij = κl(x

Wl
i , xWl

j ). We embed this into the interior point method and the
corresponding iterative solver within this. We next need to discuss the precondition-
ing approach that is required to ensure fast convergence of the iterative solver, as
unpreconditioned solvers for the system

Ax = g

often converge very slowly. We therefore consider the (left or right) preconditioned
system

P−1Ax = P−1g or AP−1(Px) = g,

where the choice of the preconditioner P is discussed in Section 5.

4 Preconditioning the kernel matrix

We wish to investigate the use of low-rank approaches for preconditioning the kernel
matrix K or its approximations based on the ANOVA NFFT. We briefly recall several
approaches that have been suggested for approximating K. Note that we here first
discuss the approximation of a single kernel matrix and later comment on the sum of
several kernel matrices.

Pivoted Cholesky decomposition

The Cholesky decomposition of K = LL⊤ is a staple of scientific computing, compu-
tational statistics, and optimization. Unfortunately, the decomposition comes at cubic
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cost given the dimensionality of the kernel matrix. As a remedy, one can use a piv-
oted Cholesky decomposition of small rank as a low-rank approximation to the kernel
matrix. This idea was suggested by Fine and Scheinberg in [4]. The pivoted Cholesky
decomposition is discussed in some detail in [28] and we follow the derivation there. It
was also proposed in [5] for applications to different kernel matrices. We briefly recall
the method here and point out that it is derived from the outer product form of the
full Cholesky decomposition. For this form we decompose the matrix as follows:

K =

[
K11 K12

K21 K22

]
=

[ √
K11 0

K21/
√
K11 In−1

] [
1 0
0 K22 −K21K12/K11

] [√
K11 K12/

√
K11

0 In−1

]
with K11 ∈ R+, K21 ∈ Rn−1, and K22 ∈ Rn−1,n−1. As the matrix K is positive
(semi-)definite, the square root of K11 is well defined and one can show that the
matrix K22 − K21K12/K11 also has the same property. Using this relationship one
can inductively show that the Cholesky decomposition exists and can be computed in
the style of a Gaussian elimination (cf. [28, Alg. 4.2.2]). For rank-deficient matrices,
or cases when we are interested in a low-rank approximation of the kernel matrix K,
we proceed with a pivoting strategy based on the symmetric transformation ΠKΠ⊤,
with Π being a permutation matrix. Note that such a permutation will keep diagonal
elements on the diagonal. We give the detailed method in Algorithm 2 to obtain the
approximation

K ≈ LL⊤.

Algorithm 2 Pivoted Cholesky decomposition of rank k (cf. [28, Alg. 4.2.4])

1: r = 0
2: for j = 1, . . . , n do
3: Find l ≥ j such that l = argmax(Kj,j , . . . ,Kn,n).
4: if Kl,l > 0 and r < k then
5: r = r + 1
6: Swap K:,l and K:,j , as well as Kl,: and Kj,:.
7: Set Kj,j =

√
Kj,j .

8: Set Kj+1:n,j = Kj+1:n,j/Kj,j .
9: for i = j + 1, . . . , n do

10: Ki:n,i = Ki:n,i −Ki:n,jKi,j

11: end for
12: end if
13: end for
14: Define L as the lower-triangular part of K up to column k.

Recently, the authors of [29] have introduced a variant of the pivoted Cholesky
decomposition coined randomly-pivoted Cholesky decomposition. One can use a greedy
selection process, where the element with the largest absolute value on the diagonal of
the updated matrix is selected as the pivot element. One can also select the pivoting

9



elements at random, and the authors in [29] select each pivot as being sampled in
proportion to the diagonal entries of the current residual matrix.

Nyström approximation

The Nyström method is a well-known technique in machine learning for the approxi-
mation of the kernel matrix [30]. We briefly introduce the method here, as based on
[31]. The basic idea is the following approximation:

K ≈ (KQ)(Q⊤KQ)−1(KQ)⊤,

where the matrix Q ∈ Rn,k has orthogonal columns. The solution of the linear system
resulting from the (Q⊤KQ)−1 term can be carried out by employing a Cholesky
decomposition, but we found this to be unstable at times. Instead, once this matrix
has eigenvalues close to zero, we use a LDL⊤ decomposition where we set the diagonal
entries of D to a fixed value as soon as they are smaller than a predefined threshold.
If Q is constructed from k columns of a permutation matrix, one obtains the original
Nyström method, where the kernel matrix

K =

[
K11 K12

K21 K22

]
is structured. The block K11 ∈ Rk,k contains the k components of K that we use for
the approximation, and K12 ∈ Rk,n their interactions with the remaining data points.
Note that for simplicity of presentation we have assumed that K is permuted so the
relevant components appear in the upper left corner. The goal of the Nyström method
is to avoid the explicit storage and computation of K22 ∈ Rn−k,n−k. We thus use

K ≈
[
K11 K12

K21 K21K
−1
11 K12

]
.

In the more general setup, Q is obtained from the relation Q = orth(KG), where
G ∈ Rn,k is a Gaussian matrix with normally distributed random entries and orth
denotes column-wise orthonormalization. Note that we only require matrix–vector
products with the matrix K to compute this Nyström approximation, and that given
an approximation to the matrix–vector product we do not require K explicitly.

Random Fourier features

The idea of the random Fourier features approach [32] is to use a set of feature space
basis functions such as

ϕ(x,w, b) = cos(w⊤x+ b),

where we draw different values (wi, bi) randomly from some distribution. This is
done on the basis of Bochner’s theorem [33], where for a real-valued kernel function
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κ(x, x′) = κ(x − x′) with x, x′ ∈ Rd there is a probability distribution ρ(·) over Rd,
which we assume to be such that

κ(x, x′) =

∫
Rd

ρ(w) cos(w⊤(x− x′))dw.

Given w that is distributed based on ρ(·) we know that

κ(x, x′) = E
[
cos(w⊤(x− x′))

]
.

Drawing k samples from the distribution ρ(·), i.e., w1, . . . , wk ∼ ρ(w), we obtain

1

k

k∑
j=1

cos(w⊤
j (x− x′)) ≈ E

[
cos(w⊤(x− x′))

]
= κ(x, x′).

We know that κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ , where the function ϕ is given by ϕi(x) =√
2 cos(w⊤

i x+ bi) and bi are uniformly sampled from the interval 0 and 2π (cf. [34]).
If we now collect all the ϕi into one vector, we obtain

ϕ(x) =
1√
k
[ϕ1(x), . . . , ϕk(x)]

⊤ ∈ Rk

and an approximation to the kernel matrix via

K =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)


≈

ϕ(x1)
⊤ϕ(x1) . . . ϕ(x1)

⊤ϕ(xn)
...

. . .
...

ϕ(xn)
⊤ϕ(x1) . . . ϕ(xn)

⊤ϕ(xn)


=

ϕ(x1)
⊤

...
ϕ(xn)

⊤


︸ ︷︷ ︸

∈Rn,k

[
ϕ(x1), . . . , ϕ(xn)

]︸ ︷︷ ︸
∈Rk,n

,

which gives the low-rank approximation using random Fourier features.

Some comments

We have now seen three approaches where the kernel matrix is approximated via a
low-rank approximation of the form

K ≈ Z⊤Z
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for the purpose of preconditioning. Note that the above approaches require only the
knowledge of very few entries of the kernel matrix to obtain the low-rank approxi-
mation. There are several methods that can be embedded into the IPM solver via
providing a black-box matrix–vector product. Here we use the non-equispaced fast
Fourier transform method [7, 8] but one could also utilize the fast Gauss trans-
form [6, 35]. If in the Nyström method Q does not represent columns of the identity
matrix, we require the fast evaluation of KQ via the NFFT scheme. It would also be
possible to compute other low-rank approximations such as the randomized singular
value decomposition [36].

Once we want to apply the above low-rank techniques to the ANOVA formulation

K1 + . . .+KP ,

we assume that the low-rank approaches are applied to each individual matrix via

K1 + . . .+KP ≈ Z⊤
1 Z1 + . . .+ Z⊤

P ZP

which we can write as

[
Z⊤
1 Z⊤

2 . . . Z⊤
P

]︸ ︷︷ ︸
∈Rn,Pk


Z1

Z2

...
ZP


︸ ︷︷ ︸
∈RPk,n

.

This is again a low-rank approximation to the sum of matrices, but with an increased
dimensionality. We next discuss how to handle the efficient evaluation of the overall
preconditioner.

5 Preconditioned iterative solver

It is clear that the main computational burden of Algorithm 1 is the solution of the
linear system (2). As such, solving this system efficiently is a key consideration in this
paper. We focus on iterative methods based on Krylov subspaces [22, 23, 37]. These
methods are the most efficient when combined with a suitable preconditioner and we
here rely on well-established saddle point theory [20, 38], based on which we wish to
apply a preconditioner P for A of the form:

P =

[
Â 0

−y⊤ −1

]
.

Here Â denotes an approximation to the matrix A := Y KY +Θ, that is the (1, 1)-block
of A. When A is approximated exactly, we may readily verify that

P−1A =

[
I −A−1y
0 y⊤A−1y

]
,
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and hence the preconditioned system has n eigenvalues equal to 1, with the remaining
eigenvalue equal to y⊤A−1y. This shows that the preconditioner P is a good candidate
for approximating A, provided an appropriate method for approximating A may be
devised. Due to the non-symmetry of P, we apply this within the GMRES algorithm
[23], which also allows for a non-symmetric approximation of A. It is of course possible
to apply an analogous symmetric positive definite preconditioner within the MINRES
algorithm [22], for which one may guarantee a specific convergence rate based on

eigenvalues of the preconditioned system, as long as Â is itself symmetric positive
definite.

As discussed in Section 4, the kernel matrix is approximated by the ANOVA NFFT
and the preconditioner will be used for this approximation instead. To apply the
saddle point preconditioner, it is clear that the key step is to apply the action of
Â−1 to a generic vector. This involves using A, a matrix which consists of the sum of
the diagonal barrier matrix Θ, which is positive definite and typically becomes more
ill-conditioned as the interior point method progresses, and the matrix Y KY .

Having applied one of the low-rank approximations we obtain

Â = Θ+ Y Z⊤ZY = Y
[
Y −1ΘY −1 + Z⊤Z

]
Y.

Note that D := Y −1ΘY −1 is a readily-computable diagonal matrix at each interior
point iteration.

Now, using the Sherman–Morrison–Woodbury identity [39], we may write

Â−1 = Y −1
[
D + Z⊤Z

]−1
Y −1

= Y −1
[
D−1 −D−1Z⊤(Ik + ZD−1Z⊤)−1ZD−1

]
Y −1

= Y −1D−1
[
I − Z⊤(Ik + ZD−1Z⊤)−1ZD−1

]
Y −1.

Substituting in D−1 := YΘ−1Y ,

Y −1YΘ−1Y
[
I − Z⊤(Ik + ZYΘ−1Y Z⊤)−1ZYΘ−1Y

]
Y −1

= Θ−1 −Θ−1Y Z⊤(Ik + ZYΘ−1Y Z⊤)−1ZYΘ−1.

The main computational workload which needs to be undertaken at each interior point
iteration is to compute the k×k matrix Ik+ZD−1Z⊤, which we will do using a direct
solver such as an LU decomposition readily available in Python. The overall algorithm
for applying the preconditioner

P
[
x1

x2

]
=

[
g1
g2

]
requires first the solution with Â, which in turn needs the LU decomposition of the
k × k matrix Ik + ZD−1Z⊤ once per IPM iteration, and all other operations with D
and Y are computationally trivial as these matrices are diagonal. Once x1 is computed
we can update the last entry x2 = −y⊤x1 − g2. We have thus obtained an efficient
preconditioning scheme, which we now test on several challenging examples.
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6 Numerical results

In this section we present the numerical results for the proposed method on benchmark
datasets. The corresponding implementations are available in the GitHub repository
NFFTSVMipm, see https://github.com/wagnertheresa/NFFTSVMipm. All experi-
ments were run on a computer with 8× Intel Core i7−7700 CPU @ 3.60 GHz processors
with NV106 graphics and 16.0 GiB of RAM.

Before starting the training routine it is important to preprocess the data to prevent
unwanted effects. Our implementations cover balancing the training data and z-score
normalization. By doing so we prevent the algorithm from simply predicting the over-
represented class and ensure all data is standardized, which is necessary for applying
the NFFT approach. Note that the statistics for the scaling are solely computed with
respect to the training data to prevent train–test-contamination. The train–test-split
is 0.5.

We consider the UCI datasets HIGGS (n = 11000000, d = 28) [40] and SUSY
(n = 5000000, d = 18) [41], as well as the LIBSVM dataset cod-rna (n = 488565,
d = 8) [42].

In the following subsections we demonstrate the performance of our NFFTSVMipm
method with several preconditioners by analyzing their setup time and the number
of GMRES iterations required per IPM step. Moreover, we compare its runtime and
predictive power to the results of LIBSVM [43], a state-of-the-art library for solving
SVMs. With this we provide an extensive understanding of NFFTSVMipm’s overall
performance for different experimental settings. All results presented in this section
were generated with the parameter choices listed in Table 1 unless stated other-
wise. Deciding when to stop the IPM iteration was linked to the performance of the
preconditioned GMRES method within the IPM scheme.

General Parameter Setting
Maximum number of interior point iterations iterip = 50

IPM convergence tolerance tolip = 10−1

Maximum number of GMRES iterations iterGMRES = 100
GMRES convergence tolerance tolGMRES = 10−3

IPM barrier reduction parameter σ = 0.6
Initial step size within IPM gap = 0.99995

FastAdjacency setup fastadjsetup = “default”

Parameter Setting for Preconditioners
Maximum error tolerance for Cholesky precond. errtol = 10−5

Parameter Bounds for Random Search
Kernel parameter ℓ ℓ ∈ [10−1, 10]

Relative weight of error vs. margin, such that 0 ≤ α ≤ C C ∈ [0.1, 0.7]

Table 1 Parameter setting for the experiments presented in this paper.

6.1 Comparison of low-rank preconditioners

First we want to examine the effect of realizing NFFTSVMipm with different pre-
conditioners of various respective ranks. For this we implement the preconditioners
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Fig. 2 Preconditioner setup time in seconds for different preconditioners of various ranks for the
SUSY dataset performed with the NFFTSVMipm.

introduced in Section 4, within the framework described in Section 5. In the follow-
ing we abbreviate the greedy-based and randomized pivoted Cholesky preconditioners
with Cholesky (greedy) and Cholesky (rp), respectively, and the random Fourier fea-
tures preconditioner with RFF. We denote the number of training data points and the
number of test data points by ntrain and ntest, respectively.

Figure 2 visualizes the setup time for these preconditioners for various ranks and
subset sizes. Throughout the entire experiment both Cholesky preconditioners take
roughly the same setup time. By comparison, the calculation of the Nyström pre-
conditioner takes considerably longer, which is all the more significant for higher
preconditioner ranks. The green bars representing the setup time for the RFF pre-
conditioner can barely be seen, which is due to its computation consisting solely of
generating random samples and evaluating trigonometric expressions. This leads to
incredibly low computation times. Note that some results for the Cholesky (rp) pre-
conditioner are missing for larger subsets and a large preconditioner rank, since the
sum of the diagonal entries of the decomposition matrix reaches zero in those cases.
The algorithm then aborts, because it involves dividing by this value. Therefore, this
method is very sensitive to the ratio between small subset sizes ntrain and the rank of
the preconditioner. As expected, the higher the values of the rank and the subset size,
the larger is the setup time.

We are looking for a suitable preconditioner to embed into our approach, targeted
at outperforming state-of-the-art methods in terms of their computational complexity.
Even though the preconditioner setup time is of relevance it is decisive that the pre-
conditioner enables fast convergence. Thus, we examine the mean number of GMRES
iterations required per IPM step next. This serves as a good indicator of how well the
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Fig. 3 Mean number of GMRES iterations per IPM step for different preconditioners of various
ranks for the SUSY dataset performed with the NFFTSVMipm.

preconditioned method solves the Newton system within an IPM and therewith of the
overall prediction quality.

As can been seen in Figure 3, the mean number of GMRES iterations within
the IPM method required with both Cholesky and the Nyström preconditioners are
roughly within the same range throughout the experiment. Note that the Cholesky
(rp) preconditioner aborts for rank 1000 again for the same reason as described ear-
lier. Naturally, the higher the preconditioner rank the smaller the number of GMRES
iterations required within the IPM steps. This is due to the preconditioners of higher
rank yielding a better approximation of the dense kernel matrices and hence leading
to P serving as a better preconditioner for A in system (2). Merely for rank 1000, the
Nyström preconditioner seems to improve for growing ntrain. By contrast, the RFF
preconditioner greatly exceeds the iteration numbers of the competitive precondition-
ers. In most cases it requires nearly twice as many iterations per IPM step, which
leads to a significantly worse convergence behavior and ultimately a longer training
time for the SVM. Moreover, depending on the exact problem and parameter setting,
the IPM is more likely to not converge leading to a worse prediction quality.

Having taken into account the performance regarding several aspects of the differ-
ent preconditioners, we realize that the RFF preconditioner is not well suited for our
problem. Having shown promising results regarding the setup time it however cannot
keep up with the precipitated convergence behavior yielded by the competitive pre-
conditioners. The Nyström preconditioner, on the contrary, cannot compete in terms
of the setup time and does not show a stable convergence behavior. This leaves us with
the Cholesky preconditioners where both show similar behavior regarding setup time
and number of GMRES iterations. However, the greedy method results in increased
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robustness. It can be seen that the Cholesky (rp) preconditioner fails for a range of
values in Figure 2 and for a different range of values in Figure 3. We believe that an
adaptive strategy might resolve this issue but for our purposes we choose the Cholesky
(greedy) preconditioner for the remainder of these results.

6.2 Comparison of convergence tolerances

In Figure 4 we illustrate for the HIGGS dataset how our method performs on differ-
ent convergence tolerances for both IPM and GMRES. It can be seen that a tighter
tolerance for the IPM results in an improved accuracy for the largest values of ntrain

and ntest. As expected the computing time for fitting the parameters increases, but
not dramatically so.

6.3 Comparison with LIBSVM

Having analyzed the suitability of various preconditioners for our problem in the pre-
vious subsection, we now compare the proposed approach in terms of runtime and
accuracy with the Python implementation of LIBSVM [43], which relies on the SMO
algorithm. In order to examine both techniques, we use a random search strategy
for selecting the most successful parameter combinations. We run both methods for
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Fig. 5 Performance of SVM trained with LIBSVM and our approach NFFTSVMipm (with Cholesky
(greedy) preconditioner of rank 200) on benchmark datasets.

25 randomly chosen parameter combinations within previously defined bounds, see
Table 1. The ANOVA setup, due to the inclusion of several kernel functions with indi-
vidual kernel parameters ℓ for the corresponding windows, has a much larger parameter
space than the standard SVM. We report the accuracy, the runtime to obtain the
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best-performing parameters, as well as the mean runtime for fitting the model and for
prediction.

As can be seen from Figure 5, the computational advantage of training the SVM
with the NFFTSVMipm method is evident for large datasets for more than 100000
training data points. This is observed consistently for all benchmark datasets consid-
ered in this experiment with the feature dimension ranging between 8 and 28, i.e.,
with a number of feature windows P between 3 and 10. It can be seen that our
NFFTSVMipm method already reaches the break-even point at 50000 training data
points, with the cod-rna dataset. In fact this dataset has the smallest feature dimen-
sion, leading to fewer feature windows, and thus to fewer NFFT approximations within
every IPM iteration. By contrast, when comparing the computing time for unseen
test data the NFFTSVMipm overtakes the LIBSVM routine already for much smaller
subset sizes. The prediction times are similar for 1000 test data points, and when
working with 100000 data points the NFFTSVMipm method outperforms the LIB-
SVM by several orders of magnitude. This is due to the prediction routine relying
on far fewer kernel–vector multiplications and therefore NFFT evaluations than the
training process.

The last three rows in Figure 5 show the runtimes depicted as log–log plots to
better see the difference in slopes between the two approaches. It stands out that
NFFTSVMipm’s curves start at a higher level than LIBSVM’s. Comparing the slope
for both methods indicates that NFFTSVMipm eventually outperforms LIBSVM and
then provides a computational advantage. While our proposed method cannot keep
up with LIBSVM’s runtimes for small subset sizes, since it requires some NFFT setup
time, NFFTSVMipm is generally targeted at big data and shows promising results
regarding accuracy.

Depending on the data set and exact problem setting, NFFTSVMipm yields a up
to 25 percent better accuracy than LIBSVM. While LIBSVM takes into account all
feature information at once within one kernel matrix, NFFTSVMipm works with an
additive kernel approach that splits up the feature dimensions into smaller windows
of features and therefore covers lower-order feature interactions.

The potential advantage in predictive performance when working with an additive
kernel approach is certainly a pressing research question. However, this exceeds the
scope of this paper and will be a subject of future research.

7 Conclusions

In this paper we have analyzed the applicability of NFFT-accelerated kernel–vector
products to SVM problems. Moreover we designed a preconditioner for the saddle
point system consisting of a low-rank approximation of the kernel matrix and a
Krylov subspace solver. We presented several options of such low-rank precondition-
ers for the kernel and examined their performance. Finally, we compared the proposed
NFFTSVMipm method to the state-of-the-art LIBSVM solver. We illustrated that
in the regime of large-scale datasets the NFFTSVMipm approach provides a compu-
tational advantage, highlighting the advantages of making use of the linear algebra
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structure of the problem, which leads to us not requiring access to the full (storage-
intensive) kernel matrix. In particular, we observed that separating the features into
multiple kernels via the ANOVA decomposition can provide possibly better accuracy,
in some cases significantly so. It remains to investigate this effect in future work. We
emphasize that utilizing the ANOVA decomposition and fast matrix–vector product
could also exhibit a benefit when solving SVMs using other methods, for instance
the alternating direction method of multipliers (ADMM) [44, 45] or other first-order
methods, which would also be a fruitful avenue for further investigation.
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