UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE CHEMNITZ

Learning the solution of differential equations by sparse high-dimensional approximation

Daniel Potts and Fabian Taubert

Differential problem

$$
L u=f \quad \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
$$

Solvability: We can access samples $u(\boldsymbol{x})$ for a given f and any $x \in \Omega$ at any time (via classical differential equation solvers). Operator learning: We are interested in the solution mapping $\mathcal{G}(f)=u$.

High-dim. approximation

$$
S_{I}^{\mathcal{A}} u(\boldsymbol{x}, \boldsymbol{a}):=\sum_{\boldsymbol{k} \in I} \hat{u}_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})
$$

Index set: $I \subset \mathbb{N}^{d+n}$ is unknown, but s-sparse, i.e., $|I|=s$.

Coefficients: $\hat{u}_{k} \in \mathbb{C}$ are approximations of the true coefficients c_{k}.

Parametrization of f

$$
f(\boldsymbol{x}) \approx \sum_{j=1}^{n} a_{j} A_{j}(\boldsymbol{x}) \quad \boldsymbol{x} \in \Omega
$$

Functions: We use fixed functions
$A_{j}, j=1, \ldots, n$, e.g., B-splines or trigonometric polynomials.
Coefficients: We identify f by its coefficients $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$.

Basis expansion of u

$$
u(\boldsymbol{x}, \boldsymbol{a}):=\sum_{\boldsymbol{k} \in \mathbb{N}^{d+n}} c_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a}) \quad(\boldsymbol{x}, \boldsymbol{a}) \in \mathcal{D}
$$

Bounded orthonormal product basis: The $\left\{\Phi_{\boldsymbol{k}}(\cdot), \boldsymbol{k} \in \mathbb{N}^{d+n}\right\}$ are bounded, orthonormal and of tensor-product structure, e.g., trigonometric or Chebyshev polynomials.

Main challenge

Unknown index set: If I was known, we could compute the \hat{u}_{k} directly and efficiently. Search space: We consider a reasonable search space $\Gamma \subset \mathbb{N}^{d+n}$ and assume $I \subset \Gamma$. However, we have $|\Gamma| \gg|I|$. Curse of dimensionality: Computing all \hat{u}_{k} with $k \in \Gamma$ is computationally unfeasible!

Algorithm Input

- search space $\Gamma \subset \mathbb{N}^{d+n}$
- sparsity $s \in \mathbb{N}$
- detection threshold $\delta>0$
- detection iterations $r \in \mathbb{N}$
- target function u as black box (\rightarrow PDE solver)

Dimension-incremental Algorithm ${ }^{[1]}$

- Works by detecting "good" index sets in lower dimensions and combining them.
- Utilizes cosine-transformed multiple rank-1 lattices. ${ }^{[2]}$
- Complexities (with $\tilde{d}=d+n$ and superposition dimension d_{s}):
- Sampling compl.:
$\mathcal{O}\left(\tilde{d} r^{3} s^{2} 2^{d_{s}} \log (r s)\right)$
- Computational compl.
$\mathcal{O}\left(\tilde{d} r^{3} s^{2} d_{s}^{2} 2^{d_{s}} \log ^{5}(r s)\right)$

Algorithm Output

- detected index set $I \subset \Gamma$ with $|I|=s$
- approximated coefficients \hat{u}_{k} with $\left|\hat{u}_{k}\right| \geq \delta$.

Poisson equation (1D)

Differential equation:

$$
\begin{aligned}
-\frac{d^{2}}{d x^{2}} u(x) & =f(x) \\
u(0)=u(1) & =0
\end{aligned}
$$

Parametrization:

$$
f(x) \approx \sum_{\ell=-(n-1) / 2}^{(n-1) / 2} a_{\ell} \mathrm{e}^{2 \pi i \ell x}
$$

Remarks: We set $n=9$, restricted $a_{\ell} \in[-1,1]$ and used the analytical solution instead of a solver. Transfer learning:

Figure: The relative approximation error for 10000 randomly drawn a.

Poisson equation (2D)

Differential equation:

$$
\begin{array}{rlrl}
-\Delta u(\boldsymbol{x}) & =f(\boldsymbol{x}) & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x}) & =0 & \boldsymbol{x} \in \delta \Omega
\end{array}
$$

Parametrization:

$$
f(x) \approx \sum_{\ell \in J} a_{\ell} \mathrm{e}^{2 \pi i \ell x}
$$

Remarks: We used a FEM (1893 nodes) and set $J=\{-1,0,1\}^{2}$.

Average relative approximation error: $\approx 10^{-4}$ Structural information:

Figure: The first 30 indices detected.

Remarks: We set $n=9$ and used the MATLAB ${ }^{\circledR}$ function pdepe.

