

The uniform sparse FFT

with application to PDEs with random coefficients

Fabian Taubert

joint work with Lutz Kämmerer and Daniel Potts

11.02.2022

TECHNISCHE UNIVERSITÄT CHEMNITZ

1. Introduction

Setting The sparse FFT

2. The uniform sparse FFT The key idea

Main result

3. Numerical examples

Affine random coefficient Lognormal random coefficient

We consider the PDE problem

$$\begin{split} -\nabla_{\boldsymbol{x}} \cdot (a(\boldsymbol{x},\boldsymbol{y}) \nabla_{\boldsymbol{x}} u(\boldsymbol{x},\boldsymbol{y})) &= f(\boldsymbol{x}), & \boldsymbol{x} \in D, \ \boldsymbol{y} \in D_{\boldsymbol{y}} \\ u(\boldsymbol{x},\boldsymbol{y}) &= 0, & \forall \ \boldsymbol{x} \in \partial D, \ \boldsymbol{y} \in D_{\boldsymbol{y}}. \end{split}$$

- ▶ spatial variable $x \in D \subset \mathbb{R}^{d_x}$, typically with $d_x = 1, 2, 3$
- ▶ random variable $y = (y_j)_{j=1}^d \in D_y$, typically very high-dimensional or even infinite-dimensional

FECHNISCHE UNIVERSITÄT GHEMINITZ

 affine random coefficient [Cohen, DeVore, Schwab '10], [Dick, Kuo, Le Gia, Schwab '16], [Bachmayr, Cohen, Dahmen '18],[Gantner, Herrmann, Schwab '18], [Nguyen, Nuyens '21], ...

$$a(\boldsymbol{x}, \boldsymbol{y}) = a_0(\boldsymbol{x}) + \sum_{j=1}^d y_j \, \psi_j(\boldsymbol{x})$$

periodic random coefficient

[Kaarnioja, Kuo, Sloan '20], [Kaarnioja, Kazashi, Kuo, Nobile, Sloan '20]

$$a(\boldsymbol{x}, \boldsymbol{y}) = a_0(\boldsymbol{x}) + \sum_{j=1}^d \Theta_j(\boldsymbol{y}) \psi_j(\boldsymbol{x}),$$

with Θ_j periodic, e.g., $\Theta_j(\boldsymbol{y}) \coloneqq \frac{1}{\sqrt{6}} \sin(2\pi y_j)$

Iognormal random coefficient [Graham, Kuo, Nichols, Scheichl, Schwab, Sloan '13], [Cheng, Hou, Yan, Zhang '13], [Bachmayr, Cohen, DeVore, Migliorati '17], [Nguyen, Nuyens '21], ...

$$a(x, y) = a_0(x) + \exp(b(x, y)), \quad b(x, y) = b_0(x) + \sum_{j=1}^d y_j \psi_j(x)$$

11.02.2022 · Fabian Taubert

- Common aim: Approximation of the solution $u(\boldsymbol{x}, \boldsymbol{y})$ or some quantity of interest, e.g., the expectation value $\mathbb{E}[F(\boldsymbol{y})]$ of some functional $F(\boldsymbol{y}) \coloneqq F[u(\cdot, \boldsymbol{y})]$, using samples of the function.
- Main problem: high-dimensional approximation!

- Common aim: Approximation of the solution u(x, y) or some quantity of interest, e.g., the expectation value E[F(y)] of some functional F(y) := F[u(⋅, y)], using samples of the function.
- Main problem: high-dimensional approximation!
- Examples of other approaches:
 - Quasi-Monte Carlo methods

[Kuo, Schwab, Sloan '15], [Dick, Le Gia, Schwab '16], [Nguyen, Nuyens '21], ...

collocation methods

[Cheng, Hou, Yan, Zhang '13], [Ernst, Sprungk '14], [Zhang, Hu, Hou, Lin, Yan '14], ...

methods based on certain (tensorized) functions (e.g., Legendre polynomials) [Cohen, DeVore, Schwab '10], [Bachmayr, Cohen, Migliorati '17], ...

- Common aim: Approximation of the solution u(x, y) or some quantity of interest, e.g., the expectation value $\mathbb{E}[F(y)]$ of some functional $F(y) \coloneqq F[u(\cdot, y)]$, using samples of the function.
- Main problem: high-dimensional approximation!
- Examples of other approaches:
 - Quasi-Monte Carlo methods

[Kuo, Schwab, Sloan '15], [Dick, Le Gia, Schwab '16], [Nguyen, Nuyens '21], ...

collocation methods

[Cheng, Hou, Yan, Zhang '13], [Ernst, Sprungk '14], [Zhang, Hu, Hou, Lin, Yan '14], ...

- methods based on certain (tensorized) functions (e.g., Legendre polynomials) [Cohen, DeVore, Schwab '10], [Bachmayr, Cohen, Migliorati '17], ...
- These approaches are often heavily influenced by the choice (or computation) of some weights, functions or kernels in advance!

• We aim for an approximation of $u(x_0, \cdot)$ for fixed $x_0 \in D$ using the sparse FFT (sFFT) based on rank-1 lattice sampling.

[Potts, Volkmer '16], [Kämmerer, Krahmer, Volkmer '20], [Kämmerer, Potts, Volkmer '21]

• We aim for an approximation of $u(x_0, \cdot)$ for fixed $x_0 \in D$ using the sparse FFT (sFFT) based on rank-1 lattice sampling.

[Potts, Volkmer '16], [Kämmerer, Krahmer, Volkmer '20], [Kämmerer, Potts, Volkmer '21]

The goal of the sFFT is the computation of the index set I = supp p̂ ⊂ Z^d in the given search space Γ ⊃ I and the coefficients p̂_k, k ∈ I, of the multivariate trigonometric polynomial

$$p(\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathbf{I}} \hat{p}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

from sampling values.

• We aim for an approximation of $u(x_0, \cdot)$ for fixed $x_0 \in D$ using the sparse FFT (sFFT) based on rank-1 lattice sampling.

[Potts, Volkmer '16], [Kämmerer, Krahmer, Volkmer '20], [Kämmerer, Potts, Volkmer '21]

The goal of the sFFT is the computation of the index set I = supp p̂ ⊂ Z^d in the given search space Γ ⊃ I and the coefficients p̂_k, k ∈ I, of the multivariate trigonometric polynomial

$$p(\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathbf{I}} \hat{p}_{\boldsymbol{k}} e^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

from sampling values.

Function approximation of u(x₀, ·) can be realized using the sFFT by assuming it to be a trigonometric polynomial p with some noise η, i.e.,

$$u(\boldsymbol{x}_0, \boldsymbol{y}) = p(\boldsymbol{y}) + \eta(\boldsymbol{y}).$$

$$\begin{split} \hat{p}_{k_1} &:= \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \\ &= \sum_{\substack{(h_2,h_3) \in \{-8,\ldots,8\}^2\\ (k_1,h_2,h_3)^\top \in \operatorname{supp} \hat{p}}} \hat{p}_{\binom{k_1}{h_3}} e^{2\pi i (h_2 x'_2 + h_3 x'_3)}, \\ k_1 &= -8, \ldots, 8 \end{split}$$

 $\begin{array}{c} 1-dim.\\ -8 \\ 0 \\ 0 \\ 0 \\ k1 \\ 8 \\ \text{detected frequencies I}^{(1)} \end{array}$

www.tu-chemnitz.de/ \sim tafa

- ▶ Back to our original problem: Approximating $u_{x_0}(y) \coloneqq u(x_0, y)$ for a given $x_0 \in D$.
- ► Up to now:

$$u_{\boldsymbol{x}_0}(\boldsymbol{y}) pprox u_{\boldsymbol{x}_0}^{\mathrm{sFFT}}(\boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_0}} c_{\boldsymbol{k}}^{\mathrm{sFFT}}(u_{\boldsymbol{x}_0}) \, \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

▶ Back to our original problem: Approximating $u_{x_0}(y) \coloneqq u(x_0, y)$ for a given $x_0 \in D$.

Up to now:

$$u_{\boldsymbol{x}_0}(\boldsymbol{y}) \approx u_{\boldsymbol{x}_0}^{\mathrm{sFFT}}(\boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_0}} c_{\boldsymbol{k}}^{\mathrm{sFFT}}(u_{\boldsymbol{x}_0}) \, \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

- ▶ In practice: Consider $\{x_g \in D, g = 1, ..., G\}$ instead of $\{x_0 \in D\}$.
- ▶ Need G calls of the sFFT to compute $I_{\boldsymbol{x}_g}$ and $c_{\boldsymbol{k}}^{\text{sFFT}}(u_{\boldsymbol{x}_g}), g = 1, \dots, G$.

▶ Back to our original problem: Approximating $u_{\boldsymbol{x}_0}(\boldsymbol{y}) \coloneqq u(\boldsymbol{x}_0, \boldsymbol{y})$ for a given $\boldsymbol{x}_0 \in \mathcal{D}$.

Up to now:

$$u_{\boldsymbol{x}_0}(\boldsymbol{y}) \approx u_{\boldsymbol{x}_0}^{\mathrm{sFFT}}(\boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_0}} c_{\boldsymbol{k}}^{\mathrm{sFFT}}(u_{\boldsymbol{x}_0}) \, \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

- ▶ In practice: Consider $\{x_g \in D, g = 1, ..., G\}$ instead of $\{x_0 \in D\}$.
- ▶ Need G calls of the sFFT to compute $I_{\boldsymbol{x}_g}$ and $c_{\boldsymbol{k}}^{\text{sFFT}}(u_{\boldsymbol{x}_g}), g = 1, \dots, G$.
- Problem: Sampling is very expensive!
 One sample u_{x_g}(y) = one call of the PDE solver for fixed y
- \blacktriangleright Sampling nodes y differ for each $x_g \longrightarrow$ we can't reuse the PDE solutions.

▶ Back to our original problem: Approximating $u_{x_0}(y) \coloneqq u(x_0, y)$ for a given $x_0 \in D$.

Up to now:

$$u_{\boldsymbol{x}_0}(\boldsymbol{y}) \approx u_{\boldsymbol{x}_0}^{\mathrm{sFFT}}(\boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_0}} c_{\boldsymbol{k}}^{\mathrm{sFFT}}(u_{\boldsymbol{x}_0}) \, \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

- ▶ In practice: Consider $\{x_g \in D, g = 1, ..., G\}$ instead of $\{x_0 \in D\}$.
- ▶ Need G calls of the sFFT to compute $I_{\boldsymbol{x}_g}$ and $c_{\boldsymbol{k}}^{\text{sFFT}}(u_{\boldsymbol{x}_g}), g = 1, \dots, G$.
- Problem: Sampling is very expensive!
 One sample u_{x_g}(y) = one call of the PDE solver for fixed y
- \blacktriangleright Sampling nodes y differ for each $x_g \longrightarrow$ we can't reuse the PDE solutions.

Solution: the uniform sFFT!

www.tu-chemnitz.de/~tafa

www.tu-chemnitz.de/~tafa

detected frequencies $\mathbf{I}_{\pmb{x}_1}^{(1,2)}$

detected frequencies $I^{(1,2)}_{\boldsymbol{x}_2}$

detected frequencies $I_{{m x}_3}^{(1,2)}$

detected frequencies $I_{\boldsymbol{x}_1}^{(1,2)}$

detected frequencies $I^{(1,2)}_{\boldsymbol{x}_2}$

detected frequencies $I_{\mathbf{z}_3}^{(1,2)}$

11.02.2022 · Fabian Taubert

www.tu-chemnitz.de/~tafa

<u>i</u>

Result:

$$u_{\boldsymbol{x}_g}(\boldsymbol{y}) \approx u_{\boldsymbol{x}_g}^{\text{usFFT}}(\boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathbf{I}} c_{\boldsymbol{k}}^{\text{usFFT}}(u_{\boldsymbol{x}_g}) e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{y}} \qquad g = 1, \dots, G$$

11.02.2022 · Fabian Taubert

www.tu-chemnitz.de/ \sim tafa

- index set $I \in \Gamma$ with $I_{\boldsymbol{x}_g} \subset I$ for all g = 1, ..., G
- approximations $c_{k}^{\text{usFFT}}(u_{x_{g}}), k \in I$, for all g = 1, ..., G

- index set $I \in \Gamma$ with $I_{\boldsymbol{x}_g} \subset I$ for all g = 1, ..., G
- approximations $c_{k}^{\text{usFFT}}(u_{x_{g}}), k \in I$, for all g = 1, ..., G

▶ samples $\hat{=}$ amount of PDE solutions needed:

$$\mathcal{O}\left(ds\,\max(s,N_{\Gamma})\,\log^2\frac{ds\,G\,N_{\Gamma}}{\delta} + \max(sG,N_{\Gamma})\,\log\frac{ds\,G}{\delta}\right)$$

- index set $I \in \Gamma$ with $I_{\boldsymbol{x}_g} \subset I$ for all g = 1, ..., G
- approximations $c_{k}^{\text{usFFT}}(\tilde{u}_{x_{g}}), k \in I$, for all g = 1, ..., G

• samples $\hat{=}$ amount of PDE solutions needed:

$$\mathcal{O}\left(d \, s \, \max(s, N_{\Gamma}) \, \log^2 \frac{d \, s \, G \, N_{\Gamma}}{\delta} + \max(sG, N_{\Gamma}) \, \log \frac{d \, s \, G}{\delta}\right)$$

computational complexity of the usFFT:

$$\mathcal{O}\left(d^2 s^2 G^2 N_{\Gamma} \log^3 \frac{d s G N_{\Gamma}}{\delta}\right)$$
 with high probability $1 - \delta$
$$\mathcal{O}\left(d^2 s^3 G^2 N_{\Gamma} \log^3 \frac{d s G N_{\Gamma}}{\delta}\right)$$
 worst case

- index set $I \in \Gamma$ with $I_{\boldsymbol{x}_g} \subset I$ for all g = 1, ..., G
- approximations $c_{k}^{\text{usFFT}}(\tilde{u}_{x_{g}}), k \in I$, for all g = 1, ..., G

• samples $\hat{=}$ amount of PDE solutions needed:

$$\mathcal{O}\left(d\,s\,\max(s,N_{\Gamma})\,\log^2\frac{d\,s\,\boldsymbol{G}\,N_{\Gamma}}{\delta} + \max(s\boldsymbol{G},N_{\Gamma})\,\log\frac{d\,s\,\boldsymbol{G}}{\delta}\right)$$

computational complexity of the usFFT:

$$\mathcal{O}\left(d^2 s^2 G^2 N_{\Gamma} \log^3 \frac{d s G N_{\Gamma}}{\delta}\right)$$
 with high probability $1 - \delta$
$$\mathcal{O}\left(d^2 s^3 G^2 N_{\Gamma} \log^3 \frac{d s G N_{\Gamma}}{\delta}\right)$$
 worst case

- index set $I \in \Gamma$ with $I_{\boldsymbol{x}_g} \subset I$ for all g = 1, ..., G
- ▶ approximations $c_{k}^{\text{usFFT}}(\tilde{u_{x_{g}}}), k \in I$, for all g = 1, ..., G
- ▶ samples $\hat{=}$ amount of PDE solutions needed: $G \lesssim ds$

$$\mathcal{O}\left(d\,s\,\max(s,N_{\Gamma})\,\log^2rac{d\,s\,G\,N_{\Gamma}}{\delta}\!+\!\max(sG,N_{\Gamma})\,\lograc{d\,s\,G}{\delta}
ight)$$

computational complexity of the usFFT:

$$\mathcal{O}\left(d^2 s^2 \frac{G^2}{G^2} N_{\Gamma} \log^3 \frac{d s \frac{G}{\delta} N_{\Gamma}}{\delta}\right)$$
 with high probability $1 - \delta$
$$\mathcal{O}\left(d^2 s^3 \frac{G^2}{\delta} N_{\Gamma} \log^3 \frac{d s \frac{G}{\delta} N_{\Gamma}}{\delta}\right)$$
 worst case

Numerical examples Affine random coefficient

Consider the problem

$$\begin{aligned} -\nabla_{\boldsymbol{x}} \cdot (a(\boldsymbol{x},\boldsymbol{y}) \nabla_{\boldsymbol{x}} u(\boldsymbol{x},\boldsymbol{y})) &= 1 & \boldsymbol{x} \in D, \, \boldsymbol{y} \in D_{\boldsymbol{y}} \\ u(\boldsymbol{x},\boldsymbol{y}) &= 0 & \forall \boldsymbol{x} \in \partial D, \, \boldsymbol{y} \in D_{\boldsymbol{y}} \end{aligned}$$

with $D=(0,1)^2$, $D_{\bm{y}}=[-1,1]^{20}$, $\bm{y}\sim\mathcal{U}\left([-1,1]^{20}\right)$ and the random coefficient

$$a(\boldsymbol{x}, \boldsymbol{y}) = 1 + \sum_{j=1}^{20} y_j \psi_j(\boldsymbol{x})$$

with

$$\psi_j(\boldsymbol{x}) \coloneqq \frac{0.9}{\zeta(2)} j^{-2} \cos(2\pi m_1(j)x_1) \cos(2\pi m_2(j)x_2), \quad \boldsymbol{x} \in D, \ j \ge 1.$$

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$m_1(j)$	0	1	0	1	2	0	1	2	3	0	1	2	3	4	
$m_2(j)$	1	0	2	1	0	3	2	1	0	4	3	2	1	0	

Example taken from

M. Eigel, C. J. Gittelson, C. Schwab and E. Zander.

Adaptive stochastic Galerkin FEM.

Comput. Methods Appl. Mech. Engrg., 270: 247-269, 2014.

11.02.2022 · Fabian Taubert

Numerical examples Affine random coefficient

Figure: Largest error err_2^{η} w.r.t. the nodes x_g for different parameter settings, i.e., s = 100, 250, 500, 750, 1000, 1500, 2000, for the affine example.

$$\mathsf{err}_{2}^{\eta}(\pmb{x}_{g}) \coloneqq \sqrt{\frac{1}{n_{\mathsf{test}}}\sum_{j=1}^{n_{\mathsf{test}}} \left|\check{u}\left(\pmb{x}_{g},\pmb{y}^{(j)}\right) - u^{\mathsf{usFFT}}\left(\pmb{x}_{g},\pmb{y}^{(j)}\right)\right|^{2}}$$

11.02.2022 · Fabian Taubert

number ℓ of non-zero frequency components

Figure: Analysis of the approximation for the affine example with s = 2000, N = 32.

$$\varrho(\mathbf{J}, \tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}}) \coloneqq \frac{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}, \mathbf{J}}^{\mathrm{usFFT}})}{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}})} = \frac{\sum_{\boldsymbol{k} \in \mathbf{J} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}}{\sum_{\boldsymbol{k} \in \mathbf{I} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}} \in [0, 1],$$

Consider the problem

$$\begin{split} -\nabla_{\boldsymbol{x}} \cdot (a(\boldsymbol{x},\boldsymbol{y}) \nabla_{\boldsymbol{x}} u(\boldsymbol{x},\boldsymbol{y})) &= f(\boldsymbol{x}) & \boldsymbol{x} \in D, \ \boldsymbol{y} \in D_{\boldsymbol{y}} \\ u(\boldsymbol{x},\boldsymbol{y}) &= 0 & \forall \boldsymbol{x} \in \partial D, \ \boldsymbol{y} \in D_{\boldsymbol{y}} \end{split}$$

with $f(\boldsymbol{x}) = \sin(1.3\pi x_1 + 3.4\pi x_2)\cos(4.3\pi x_1 - 3.1\pi x_2)$, $D = (0, 1)^2$, $D_{\boldsymbol{y}} = \mathbb{R}^{10}$, $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ and the random coefficient

$$\log a(\boldsymbol{x}, \boldsymbol{y}) = \sum_{j=1}^{10} \frac{y_j}{j} \sin(2\pi j x_1) \cos(2\pi (11-j) x_2).$$

Example taken and modified from M. Cheng, T. Y. Hou, M. Yan and Z. Zhang. A data-driven stochastic method for elliptic PDEs with random coefficients. SIAM/ASA J. Uncertain. Quantif., 1: 452-493, 2013.

Figure: Largest error err_2^η w.r.t. the nodes x_g for different parameter settings, i.e., s = 100, 250, 500, 1000, 2000, for the lognormal example.

$$\mathsf{err}_2^{\eta}(\pmb{x}_g) \coloneqq \sqrt{\frac{1}{n_{\mathsf{test}}}\sum_{j=1}^{n_{\mathsf{test}}} \left|\check{u}\left(\pmb{x}_g,\pmb{y}^{(j)}\right) - u^{\mathsf{usFFT}}\left(\pmb{x}_g,\pmb{y}^{(j)}\right)\right|^2}$$

number ℓ of non-zero frequency components

Figure: Analysis of the approximation for the lognormal example with $s=2000,\ N=32.$

$$\varrho(\mathbf{J}, \tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}}) \coloneqq \frac{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}, \mathbf{J}}^{\mathrm{usFFT}})}{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}})} = \frac{\sum_{\boldsymbol{k} \in \mathbf{J} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}}{\sum_{\boldsymbol{k} \in \mathbf{I} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}} \in [0, 1],$$

11.02.2022 · Fabian Taubert

Main advantages of the usFFT:

- fully adaptive, no critical a priori choice needed
- sample efficient (in terms of sampling locations)
- approximation gives insight on the influence and interactions of the y_j
- adapts easily to other domains, boundary conditions, ...
- non-intrusive and parallelizable

Main advantages of the usFFT:

- fully adaptive, no critical a priori choice needed
- sample efficient (in terms of sampling locations)
- \blacktriangleright approximation gives insight on the influence and interactions of the y_j
- adapts easily to other domains, boundary conditions, ...
- non-intrusive and parallelizable
- Lutz K\u00e4mmerer, Daniel Potts, Fabian Taubert The uniform sparse FFT with application to PDEs with random coefficients ArXiv e-prints, 2021. arXiv:2109.04131 [math.NA]

Thank you for your attention!