

Learning the solution of differential equations by sparse high-dimensional approximation Chemnitz University of Technology

Learning the solution of differential equations by sparse high-dimensional approximation

Fabian Taubert

joint work with Lutz Kämmerer and Daniel Potts

Special Session: Function recovery and discretization problems

21.08.2024

Introduction Motivation

2 The algorithm

Projected coefficients The dimension-incremental method

3 Numerical examples

Poisson equation (1D) Piece-wise continuous ODE Poisson equation (2D) Diffusion equation with random coefficients Heat equation

4 Conclusion

Differential problem

$$Lu = f$$
 $x \in \Omega \subset \mathbb{R}^d$

- differential operator L, domain Ω
- source term $f({m x})$, solution $u({m x})$
- **•** solution mapping G(f) = u

Parametrization of f

$$f(oldsymbol{x})pprox \sum_{j=1}^n a_j A_j(oldsymbol{x}) \qquad oldsymbol{x}\in \Omega$$

- ▶ fixed functions A_j, j = 1,..., n (B-splines, trig. polynomials, ...)
- \blacktriangleright identify f by coefficients $oldsymbol{a} \in \mathbb{C}^n$

Basis expansion of u in a bounded orthonormal product basis

$$u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{N}^{d+n}} c_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

• coefficients $c_k \in \mathbb{C}$ and functions $\Phi_k(\cdot)$ bounded, orthonormal and of tensor-product structure

Differential problem

$$Lu = f$$
 $x \in \Omega \subset \mathbb{R}^d$

- differential operator L, domain Ω
- source term $f(\boldsymbol{x})$, solution $u(\boldsymbol{x})$
- **•** solution mapping G(f) = u

Parametrization of f

$$f(oldsymbol{x})pprox \sum_{j=1}^n a_j A_j(oldsymbol{x}) \qquad oldsymbol{x}\in \Omega$$

- ▶ fixed functions A_j, j = 1,..., n (B-splines, trig. polynomials, ...)
- \blacktriangleright identify f by coefficients $oldsymbol{a} \in \mathbb{C}^n$

Basis expansion of u in a bounded orthonormal product basis

$$u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{N}^{d+n}} c_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

• coefficients $c_k \in \mathbb{C}$ and functions $\Phi_k(\cdot)$ bounded, orthonormal and of tensor-product structure

Differential problem

$$Lu = f$$
 $x \in \Omega \subset \mathbb{R}^d$

- differential operator L, domain Ω
- source term $f(\boldsymbol{x})$, solution $u(\boldsymbol{x})$
- solution mapping G(f) = u

Parametrization of f

$$f(oldsymbol{x})pprox \sum_{j=1}^n a_j A_j(oldsymbol{x}) \qquad oldsymbol{x}\in \Omega$$

- ▶ fixed functions A_j, j = 1,..., n (B-splines, trig. polynomials, ...)
- \blacktriangleright identify f by coefficients $oldsymbol{a} \in \mathbb{C}^n$

Basis expansion of u in a bounded orthonormal product basis

$$u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{N}^{d+n}} c_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

• coefficients $c_k \in \mathbb{C}$ and functions $\Phi_k(\cdot)$ bounded, orthonormal and of tensor-product structure

Basis expansion of u in a bounded orthonormal product basis

$$u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{N}^{d+n}} c_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

• coefficients $c_k \in \mathbb{C}$ and functions $\Phi_k(\cdot)$ bounded, orthonormal and of tensor-product structure

High-dimensional approximation problem

$$S_I u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in I} \hat{u}_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

- ▶ index set: $I \subset \mathbb{N}^{d+n}$ unknown but *s*-sparse (|I| = s)
- **b** coefficients: $\hat{u}_{k} \in \mathbb{C}$ approximations of true coefficients c_{k}

Basis expansion of u in a bounded orthonormal product basis

$$u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in \mathbb{N}^{d+n}} c_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

• coefficients $c_k \in \mathbb{C}$ and functions $\Phi_k(\cdot)$ bounded, orthonormal and of tensor-product structure

High-dimensional approximation problem

$$S_I u(\boldsymbol{x}, \boldsymbol{a}) \coloneqq \sum_{\boldsymbol{k} \in I} \hat{u}_{\boldsymbol{k}} \Phi_{\boldsymbol{k}}(\boldsymbol{x}, \boldsymbol{a})$$

- ▶ index set: $I \subset \mathbb{N}^{d+n}$ unknown but *s*-sparse (|I| = s)
- coefficients: $\hat{u}_k \in \mathbb{C}$ approximations of true coefficients c_k

- ► first idea:
 - choose a large search space $\Gamma \supset I, |\Gamma| \gg |I|$
 - compute all coefficients \hat{u}_{k}
 - choose indices corresponding to the s largest coefficients (absolute value)
- ▶ but: unfeasible in practice for large Γ (→ "curse of dimensionality")
- better idea: use a dimension-incremental approach

- first idea:
 - \blacktriangleright choose a large search space $\Gamma \supset I, |\Gamma| \gg |I|$
 - compute all coefficients \hat{u}_{k}
 - choose indices corresponding to the s largest coefficients (absolute value)
- **but:** unfeasible in practice for large Γ (\rightarrow "curse of dimensionality")
- better idea: use a dimension-incremental approach

- ► first idea:
 - \blacktriangleright choose a large search space $\Gamma \supset I, |\Gamma| \gg |I|$
 - compute all coefficients \hat{u}_{k}
 - choose indices corresponding to the s largest coefficients (absolute value)
- but: unfeasible in practice for large Γ (→ "curse of dimensionality")

better idea: use a dimension-incremental approach

- ► first idea:
 - \blacktriangleright choose a large search space $\Gamma \supset I, |\Gamma| \gg |I|$
 - compute all coefficients \hat{u}_{k}
 - choose indices corresponding to the s largest coefficients (absolute value)
- ▶ but: unfeasible in practice for large Γ (→ "curse of dimensionality")
- better idea: use a dimension-incremental approach

2 The algorithm

Projected coefficients The dimension-incremental method

3 Numerical examples

Poisson equation (1D) Piece-wise continuous ODE Poisson equation (2D) Diffusion equation with random coefficients Heat equation

4 Conclusion

Differential equation setting

- ▶ approximate $u(\boldsymbol{x}, \boldsymbol{a})$ with $(\boldsymbol{x}, \boldsymbol{a}) \in \mathbb{R}^{d+n}$
- $lacksymbol{arphi}$ compute $I\subset \mathbb{N}^{d+n}$ and $\hat{u}_{m{k}}$ for $m{k}\in I$

Input

- ► target function g (black box)
- $\blacktriangleright \text{ search space } \Gamma \subset \mathbb{N}^d$
- sparsity $s \in \mathbb{N}$
- detection threshold $\delta_+ > 0$
- number of detection iterations $r \in \mathbb{N}$

function approximation setting

- \blacktriangleright approximate $g({\boldsymbol{y}})$ with ${\boldsymbol{y}} \in \mathbb{R}^d$
- compute $I \subset \mathbb{N}^d$ and $\hat{g}_{m{k}}$ for $m{k} \in I$

Dutput

- detected index set $I \subset \mathbb{N}^d$ with |I| = s
- approximated coefficients \hat{g}_{k} for $k \in I$

 \leftrightarrow

The algorithm

Differential equation setting

- ▶ approximate $u({m x},{m a})$ with $({m x},{m a}) \in \mathbb{R}^{d+n}$
- ▶ compute $I \subset \mathbb{N}^{d+n}$ and $\hat{u}_{\bm{k}}$ for $\bm{k} \in I$

Input

- ► target function *g* (black box)
- search space $\Gamma \subset \mathbb{N}^d$
- sparsity $s \in \mathbb{N}$
- ▶ detection threshold $\delta_+ > 0$
- number of detection iterations $r \in \mathbb{N}$

Function approximation setting

- \blacktriangleright approximate $g(oldsymbol{y})$ with $oldsymbol{y} \in \mathbb{R}^d$
- \blacktriangleright compute $I \subset \mathbb{N}^d$ and $\hat{g}_{m k}$ for $m k \in I$

Dutput

- detected index set $I \subset \mathbb{N}^d$ with |I| = s
- approximated coefficients \hat{g}_{k} for $k \in I$

Differential equation setting

The algorithm

▶ approximate u(x, a) with $(x, a) \in \mathbb{R}^{d+n}$ ▶ compute $I \subset \mathbb{N}^{d+n}$ and \hat{u}_k for $k \in I$

Input

- target function g (black box)
- ▶ search space $\Gamma \subset \mathbb{N}^d$
- sparsity $s \in \mathbb{N}$
- \blacktriangleright detection threshold $\delta_+>0$
- number of detection iterations $r \in \mathbb{N}$

Function approximation setting

- \blacktriangleright approximate $g(oldsymbol{y})$ with $oldsymbol{y} \in \mathbb{R}^d$
- compute $I \subset \mathbb{N}^d$ and $\hat{g}_{m k}$ for $m k \in I$

Output

- detected index set $I \subset \mathbb{N}^d$ with |I| = s
- approximated coefficients \hat{g}_{k} for $k \in I$

 \leftrightarrow

Projected coefficients

$$c_{\{1,\ldots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}) \coloneqq \int_{\mathcal{D}_{\{1,\ldots,t\}}} g(\boldsymbol{\xi}, \tilde{\boldsymbol{y}}) \,\overline{\Phi_{\{1,\ldots,t\},\boldsymbol{k}}(\boldsymbol{\xi})} \,\mathrm{d}\mu_{\{1,\ldots,t\}}(\boldsymbol{\xi}) \qquad \forall \boldsymbol{k} \in \mathbb{N}^t, \,\forall \tilde{\boldsymbol{y}} \in \mathcal{D}_{\{t+1,\ldots,d\}}$$

Projected coefficients are similar to basis coefficients c_{k} , but:

- \blacktriangleright fix some dimensions via a random anchor $ilde{m{y}}$
- integrate only over the remaining dimensions

Projected coefficients indicate the "importance" of the indices (k, *, *, *, ...), since

$$c_{\{1,\ldots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}) = \ldots = \sum_{\boldsymbol{h} \in \mathbb{N}^{d-t}} c_{(\boldsymbol{k},\boldsymbol{h})} \Phi_{\{t+1,\ldots,d\},(\boldsymbol{k},\boldsymbol{h})}(\tilde{\boldsymbol{y}}).$$

Example: Fourier setting with d = 3 and t = 2

$$c_{\{1,2\},\boldsymbol{k}}(\tilde{y}) \coloneqq \int_{\mathbb{T}^2} g(\boldsymbol{\xi}, \tilde{y}) \,\mathrm{e}^{-2\pi\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{\xi}} \,\mathrm{d}\boldsymbol{\xi} = \sum_{h \in \mathbb{Z}} c_{(\boldsymbol{k},h)} \mathrm{e}^{2\pi\mathrm{i}h\tilde{y}}$$

MCQMC · 21.08.2024 · Fabian Taubert

www.tu-chemnitz.de/~tafa

Projected coefficients

$$c_{\{1,\ldots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}) \coloneqq \int_{\mathcal{D}_{\{1,\ldots,t\}}} g(\boldsymbol{\xi}, \tilde{\boldsymbol{y}}) \,\overline{\Phi_{\{1,\ldots,t\},\boldsymbol{k}}(\boldsymbol{\xi})} \,\mathrm{d}\mu_{\{1,\ldots,t\}}(\boldsymbol{\xi}) \qquad \forall \boldsymbol{k} \in \mathbb{N}^t, \,\forall \tilde{\boldsymbol{y}} \in \mathcal{D}_{\{t+1,\ldots,d\}}$$

Projected coefficients are similar to basis coefficients c_k , but:

- \blacktriangleright fix some dimensions via a random anchor $ilde{m{y}}$
- integrate only over the remaining dimensions

Projected coefficients indicate the "importance" of the indices (k, *, *, *, ...), since

$$c_{\{1,\ldots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}) = \ldots = \sum_{\boldsymbol{h} \in \mathbb{N}^{d-t}} c_{(\boldsymbol{k},\boldsymbol{h})} \Phi_{\{t+1,\ldots,d\},(\boldsymbol{k},\boldsymbol{h})}(\tilde{\boldsymbol{y}}).$$

Example: Fourier setting with d = 3 and t = 2

$$c_{\{1,2\},\boldsymbol{k}}(\tilde{y}) \coloneqq \int_{\mathbb{T}^2} g(\boldsymbol{\xi}, \tilde{y}) \, \mathrm{e}^{-2\pi \mathrm{i}\boldsymbol{k}\cdot\boldsymbol{\xi}} \, \mathrm{d}\boldsymbol{\xi} = \sum_{h \in \mathbb{Z}} c_{(\boldsymbol{k},h)} \mathrm{e}^{2\pi \mathrm{i}h\tilde{y}}$$

 $\forall k \in \mathbb{Z}^2, \forall \tilde{y} \in \mathbb{T}$

MCQMC · 21.08.2024 · Fabian Taubert

www.tu-chemnitz.de/~tafa

Approximation of projected coefficients

c

use any method for numerical integration, e.g., MC or QMC methods

$$\begin{aligned} {}_{\{1,\dots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}) &\coloneqq \int_{\mathcal{D}_{\{1,\dots,t\}}} g(\boldsymbol{\xi},\tilde{\boldsymbol{y}}) \,\overline{\Phi_{\{1,\dots,t\},\boldsymbol{k}}(\boldsymbol{\xi})} \,\mathrm{d}\mu_{\{1,\dots,t\}}(\boldsymbol{\xi}) \\ &\approx \sum_{j=1}^{M} w_j g(\boldsymbol{\xi}_j,\tilde{\boldsymbol{y}}) \overline{\Phi_{\{1,\dots,t\},\boldsymbol{k}}(\boldsymbol{\xi}_j)} \eqqcolon \hat{g}_{\{1,\dots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}). \end{aligned}$$

Properties of the approximation \iff Properties of the algorithm

fast approximation of proj. coef. sample efficient approximation of proj. coef. accurate approximation of proj. coef. fast algorithm sample efficient algorithm accurate algorithm

Approximation of projected coefficients

use any method for numerical integration, e.g., MC or QMC methods

$$\begin{aligned} {}_{\{1,\dots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}) &\coloneqq \int_{\mathcal{D}_{\{1,\dots,t\}}} g(\boldsymbol{\xi},\tilde{\boldsymbol{y}}) \,\overline{\Phi_{\{1,\dots,t\},\boldsymbol{k}}(\boldsymbol{\xi})} \,\mathrm{d}\mu_{\{1,\dots,t\}}(\boldsymbol{\xi}) \\ &\approx \sum_{j=1}^{M} w_j g(\boldsymbol{\xi}_j,\tilde{\boldsymbol{y}}) \overline{\Phi_{\{1,\dots,t\},\boldsymbol{k}}(\boldsymbol{\xi}_j)} \eqqcolon \hat{g}_{\{1,\dots,t\},\boldsymbol{k}}(\tilde{\boldsymbol{y}}). \end{aligned}$$

Properties of the approximation \iff Properties of the algorithm

- fast approximation of proj. coef. \iff sample efficient approximation of proj. coef. \iff accurate approximation of proj. coef.
- fast algorithm sample efficient algorithm accurate algorithm

 \iff

Figure: The desired but unknown index set I and the search space $\Gamma = \{0, 1, 2, 3, 4\}^3$.

Figure: The desired but unknown index set I and the search space $\Gamma = \{0, 1, 2, 3, 4\}^3$.

Figure: The one-dimensional candidate sets $\mathcal{P}_{\{j\}}(\Gamma)$.

Figure: The one-dimensional detection step in the first dimension with r = 3 detection iterations.

Figure: The one-dimensional detection step in the first dimension with r = 3 detection iterations.

Figure: The one-dimensional detection step in the first dimension with r = 3 detection iterations.

Figure: The one-dimensional index sets $I_{\{j\}}$.

己田田に

Figure: The one-dimensional index sets $I_{\{j\}}$.

Figure: The two-dimensional candidate set $I_{\{1\}} \times I_{\{2\}}.$

ទ្ធ | The algorithm

Figure: The two-dimensional detection step in the dimensions $\{1, 2\}$. (Only r = 1 detection iteration shown.)

Figure: The two-dimensional detection step in the dimensions $\{1,2\}$. (Only r = 1 detection iteration shown.)

Figure: The two-dimensional detection step in the dimensions $\{1,2\}$. (Only r = 1 detection iteration shown.)

2##5

Figure: The two-dimensional index set $I_{\{1,2\}}$ and the three-dimensional candidate set $I_{\{1,2\}} \times I_{\{3\}}$.

Figure: The two-dimensional index set $I_{\{1,2\}}$ and the three-dimensional candidate set $I_{\{1,2\}} \times I_{\{3\}}$.

Figure: The two-dimensional index set $I_{\{1,2\}}$ and the three-dimensional candidate set $I_{\{1,2\}} \times I_{\{3\}}$.

Figure: The three-dimensional detection step with the detected index set $I_{\{1,2,3\}}.$

MCQMC · 21.08.2024 · Fabian Taubert

www.tu-chemnitz.de/~tafa

The algorithm

4 3 k_3 20 ${_01}^2 {^3}^4$ 0 23 4 k_2 k_1

Figure: The correctly detected index set $I = I_{\{1,2,3\}}$.

The algorithm Projected coefficients The dimension-incremental method

3 Numerical examples

Poisson equation (1D) Piece-wise continuous ODE Poisson equation (2D) Diffusion equation with random coefficients Heat equation

4 Conclusion

Poisson equation (one-dimensional)

$$-\frac{d^2}{dx^2}u(x) = f(x), \qquad x \in (0,1)$$

$$u(0) = u(1) = 0$$

• aim: learn
$$G(f) = u$$

 sampling: directly via the analytical solution

Parametrization of f

one-dimensional Fourier partial sum:

$$f(x) \approx \sum_{\ell=-4}^{4} a_{\ell} \mathrm{e}^{2\pi \mathrm{i}\ell x}$$

▶ n = 9 Fourier coefficients \implies overall dimension d + n = 1 + 9 = 10

Analytical solution

$$u(x, a) = \frac{a_0}{2}x(1-x) + \sum_{\substack{\ell = -4 \\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i\ell x} - 1) \qquad x \in [0, 1], \ a \in [0, 1$$

MCQMC · 21.08.2024 · Fabian Taubert

www.tu-chemnitz.de/~tafa

Poisson equation (one-dimensional)

$$-\frac{d^2}{dx^2}u(x) = f(x), \qquad x \in (0,1)$$

$$u(0) = u(1) = 0$$

• aim: learn
$$G(f) = u$$

 sampling: directly via the analytical solution

Parametrization of \boldsymbol{f}

one-dimensional Fourier partial sum:

$$f(x) \approx \sum_{\ell=-4}^4 a_\ell \mathrm{e}^{2 \pi \mathrm{i} \ell x}$$

▶ n = 9 Fourier coefficients \implies overall dimension d + n = 1 + 9 = 10

Analytical solution

$$u(x, a) = \frac{a_0}{2}x(1-x) + \sum_{\substack{\ell = -4\\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i\ell x} - 1) \qquad x \in [0, 1], \ a \in [0, 1]$$

Poisson equation (one-dimensional)

$$-\frac{d^2}{dx^2}u(x) = f(x), \qquad x \in (0,1)$$

$$u(0) = u(1) = 0$$

• aim: learn
$$G(f) = u$$

 sampling: directly via the analytical solution

Parametrization of f

one-dimensional Fourier partial sum:

$$f(x) \approx \sum_{\ell=-4}^4 a_\ell \mathrm{e}^{2 \pi \mathrm{i} \ell x}$$

▶ n = 9 Fourier coefficients \implies overall dimension d + n = 1 + 9 = 10

Analytical solution

$$u(x, \mathbf{a}) = \frac{a_0}{2}x(1-x) + \sum_{\substack{\ell = -4\\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i\ell x} - 1) \qquad x \in [0, 1], \ \mathbf{a} \in \mathbb{C}^9$$

MCQMC · 21.08.2024 · Fabian Taubert

14 / 22

www.tu-chemnitz.de/~tafa

$$u(x, \mathbf{a}) = \frac{a_0}{2}x(1-x) + \sum_{\substack{\ell = -4\\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i\ell x} - 1) \qquad x \in [0, 1], \ \mathbf{a} \in \mathbb{C}^9$$

Transformation to [-1,1]

Approximation via Chebyshev polynomials

• shift/scale:
$$x = \frac{1}{2}(\tilde{x}+1)$$

▶ restrict:
$$a_{\ell} \in [-1, 1]$$

$$u\left(\frac{1}{2}(\tilde{x}+1), a\right) \eqqcolon \tilde{u}(\tilde{x}, a) \approx \sum_{k \in I} \hat{u}_k T_k(\tilde{x}, a)$$

Transformed solution

$$\tilde{u}(\tilde{x}, a) = \frac{a_0}{8}(1 - \tilde{x}^2) + \sum_{\substack{\ell = -4\\\ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2}((-1)^\ell \mathrm{e}^{\pi \mathrm{i}\ell \tilde{x}} - 1) \qquad \qquad \tilde{x} \in [-1, 1], \ a \in [-1, 1]^9$$

$$u(x, \boldsymbol{a}) = \frac{a_0}{2} x(1-x) + \sum_{\substack{\ell = -4 \\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i \ell x} - 1) \qquad x \in [0, 1], \ \boldsymbol{a} \in \mathbb{C}^9$$

Transformation to $[-1,1]^{10}$

Approximation via Chebyshev polynomials

• shift/scale:
$$x = \frac{1}{2}(\tilde{x}+1)$$

• restrict:
$$a_{\ell} \in [-1, 1]$$

$$u\left(\frac{1}{2}(\tilde{x}+1), \boldsymbol{a}\right) \eqqcolon \tilde{u}(\tilde{x}, \boldsymbol{a}) \approx \sum_{\boldsymbol{k} \in I} \hat{u}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\tilde{x}, \boldsymbol{a})$$

Transformed solution

$$\tilde{u}(\tilde{x}, a) = \frac{a_0}{8} (1 - \tilde{x}^2) + \sum_{\substack{\ell = -4 \\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} ((-1)^\ell \mathrm{e}^{\pi \mathrm{i}\ell \tilde{x}} - 1) \qquad \quad \tilde{x} \in [-1, 1], \ a \in [-1, 1]^9$$

$$u(x, \mathbf{a}) = \frac{a_0}{2}x(1-x) + \sum_{\substack{\ell = -4\\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i\ell x} - 1) \qquad x \in [0, 1], \ \mathbf{a} \in \mathbb{C}^9$$

Transformation to $[-1, 1]^{10}$ Approximation via Chebyshev polynomials> shift/scale: $x = \frac{1}{2}(\tilde{x}+1)$ $u\left(\frac{1}{2}(\tilde{x}+1), \boldsymbol{a}\right) \eqqcolon \tilde{u}(\tilde{x}, \boldsymbol{a}) \approx \sum_{\boldsymbol{k} \in I} \hat{u}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\tilde{x}, \boldsymbol{a})$ > restrict: $a_{\ell} \in [-1, 1]$

Transformed solution

$$\tilde{u}(\tilde{x}, a) = \frac{a_0}{8}(1 - \tilde{x}^2) + \sum_{\substack{\ell = -4\\\ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} ((-1)^\ell \mathrm{e}^{\pi \mathrm{i}\ell \tilde{x}} - 1) \qquad \qquad \tilde{x} \in [-1, 1], \ a \in [-1, 1]^9$$

$$u(x, \boldsymbol{a}) = \frac{a_0}{2} x(1-x) + \sum_{\substack{\ell = -4 \\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} (e^{2\pi i \ell x} - 1) \qquad x \in [0, 1], \ \boldsymbol{a} \in \mathbb{C}^9$$

Transformation to $[-1, 1]^{10}$ Approximation via Chebyshev polynomials> shift/scale: $x = \frac{1}{2}(\tilde{x} + 1)$ $u\left(\frac{1}{2}(\tilde{x} + 1), a\right) =: \tilde{u}(\tilde{x}, a) \approx \sum_{k \in I} \hat{u}_k T_k(\tilde{x}, a)$ > restrict: $a_\ell \in [-1, 1]$

Transformed solution

$$\tilde{u}(\tilde{x}, \boldsymbol{a}) = \frac{a_0}{8}(1 - \tilde{x}^2) + \sum_{\substack{\ell = -4\\ \ell \neq 0}}^4 \frac{a_\ell}{4\pi^2 \ell^2} ((-1)^\ell \mathrm{e}^{\pi \mathrm{i}\ell \tilde{x}} - 1) \qquad \qquad \tilde{x} \in [-1, 1], \ \boldsymbol{a} \in [-1, 1]^9$$

MCQMC · 21.08.2024 · Fabian Taubert

www.tu-chemnitz.de/~tafa

- sparsity s = 1000search space $\Gamma = [0, 64]^{10}$
- testing with 10⁴ randomly drawn a
- relative l₂ error evaluated on 1000 equidistant points

Transformed solution

$$\tilde{u}(\tilde{x}, \boldsymbol{a}) = \frac{a_0}{8} (1 - \tilde{x}^2) + \sum_{\substack{\ell = -4\\\ell \neq 0}}^{4} \frac{a_\ell}{4\pi^2 \ell^2} ((-1)^\ell \mathsf{e}^{\pi \mathsf{i}\ell\tilde{x}} - 1)$$

Transformed solution

sparsity s = 1000
 search space Γ = [0, 64]¹⁰

highly structured index set I

$$\tilde{u}(\tilde{x}, \boldsymbol{a}) = \frac{a_0}{8} (1 - \tilde{x}^2) + \sum_{\substack{\ell = -4\\\ell \neq 0}}^{4} \frac{a_\ell}{4\pi^2 \ell^2} ((-1)^\ell \mathsf{e}^{\pi \mathsf{i}\ell \tilde{x}} - 1)$$

Generalisation to higher dimensions

- ▶ learned structure can be generalized to higher dimensions for better resolutions of f, e.g., $n \approx 100$
- \blacktriangleright same approximation problem, but index set I is no longer unknown
- ▶ coefficients \hat{u}_{k} can be computed directly using a QMC method, e.g., rank-1 lattices

The algorithm Projected coefficients The dimension-incremental method

3 Numerical examples

Poisson equation (1D) Piece-wise continuous ODE Poisson equation (2D) Diffusion equation with random coefficients Heat equation

4 Conclusion

Heat equation (one-dimensional)

$$\partial_t u = \frac{1}{16} \partial_{xx} u, \quad x, t \in (0, 1)$$
$$u(x, 0) = f(x), \qquad x \in (0, 1)$$
$$u(0, t) = u(L, t), = 0 \qquad t \in (0, 1)$$

sampling: solve for given f with method of lines based solver

Parametrization of *f*

► sine series:

$$f(x) \approx \sum_{\ell=1}^{9} a_{\ell} \sin(\ell \pi x)$$
restricting $a_{\ell} \in [-1, 1]$

Exact solution

$$u(x,t,\boldsymbol{a}) = \sum_{\ell=1}^{9} a_{\ell} \sin(\ell \pi x) \exp\left(\frac{1}{16}\ell^2 \pi^2 t\right)$$

Heat equation (one-dimensional)

$$\partial_t u = \frac{1}{16} \partial_{xx} u, \quad x, t \in (0, 1)$$
$$u(x, 0) = f(x), \qquad x \in (0, 1)$$
$$u(0, t) = u(L, t), = 0 \qquad t \in (0, 1)$$

sampling: solve for given f with method of lines based solver

Parametrization of f

sine series:

$$f(x) \approx \sum_{\ell=1}^{9} a_{\ell} \sin(\ell \pi x)$$

• restricting
$$a_{\ell} \in [-1, 1]$$

Exact solution

$$u(x,t,\boldsymbol{a}) = \sum_{\ell=1}^{9} a_{\ell} \sin(\ell \pi x) \exp\left(\frac{1}{16}\ell^2 \pi^2 t\right)$$

Heat equation (one-dimensional)

$$\partial_t u = \frac{1}{16} \partial_{xx} u, \quad x, t \in (0, 1)$$
$$u(x, 0) = f(x), \qquad x \in (0, 1)$$
$$u(0, t) = u(L, t), = 0 \qquad t \in (0, 1)$$

 \blacktriangleright sampling: solve for given f with method of lines based solver

Parametrization of f

sine series:

$$f(x) \approx \sum_{\ell=1}^{9} a_{\ell} \sin(\ell \pi x)$$

• restricting
$$a_{\ell} \in [-1, 1]$$

Exact solution

$$u(x,t,a) = \sum_{\ell=1}^{9} a_{\ell} \sin(\ell \pi x) \exp\left(\frac{1}{16}\ell^2 \pi^2 t\right)$$

- sparsity s = 1000search space $\Gamma = [0, 64]^{11}$
- relative ℓ_2 approximation error: $\approx 2 \cdot 10^{-3}$
- highly structured index set I:

Transformed solution

$$\tilde{u}(\tilde{x}, \tilde{t}, \boldsymbol{a}) = \sum_{\ell=1}^{9} a_{\ell} \sin\left(\frac{1}{2}\ell\pi(\tilde{x}+1)\right) \exp\left(\frac{1}{32}\ell^{2}\pi^{2}(\tilde{t}+1))\right)$$

Introduction Motivation

2 The algorithm

Projected coefficients The dimension-incremental method

3 Numerical examples

Poisson equation (1D) Piece-wise continuous ODE Poisson equation (2D) Diffusion equation with random coefficients Heat equation

4 Conclusion

What did we do?

- approached the solution operator of differential equations
- applied high-dimensional approximation methods
- identified structural information about the solution

What did we do?

- approached the solution operator of differential equations
- applied high-dimensional approximation methods
- identified structural information about the solution

What did we see?

- reasonable numerical results and approximation errors
- accessible information about the approximation by its index set I
- results being consistent with analytical solutions for toy examples

What did we do?

- approached the solution operator of differential equations
- applied high-dimensional approximation methods
- identified structural information about the solution

What did we see?

- reasonable numerical results and approximation errors
- accessible information about the approximation by its index set I
- results being consistent with analytical solutions for toy examples

Open problems?

- Application of our method to more difficult differential problems?
- Efficient reconstruction methods for our method in various bases?

- Daniel Potts, Fabian Taubert Operator learning based on sparse high-dimensional approximation ArXiv e-prints, 2024. arXiv:2406.03973 [math.NA]
- Lutz Kämmerer, Daniel Potts, Fabian Taubert Nonlinear approximation in bounded orthonormal product bases Sampl. Theory Signal Process. Data Anal., 2023.

- Daniel Potts, Fabian Taubert Operator learning based on sparse high-dimensional approximation ArXiv e-prints, 2024. arXiv:2406.03973 [math.NA]
- Lutz Kämmerer, Daniel Potts, Fabian Taubert Nonlinear approximation in bounded orthonormal product bases Sampl. Theory Signal Process. Data Anal., 2023.

Thank you for your attention! Questions? Ideas? Suggestions?