

The uniform sparse FFT

with application to PDEs with random coefficients

Fabian Taubert

joint work with Lutz Kämmerer and Daniel Potts

Chemnitz University of Technology Applied Functional Analysis

Curves and Surfaces 2022 21.06.2022

Introduction Setting The sparse FFT

2 The uniform sparse FFT The key idea Main result

3 Numerical examples

Affine random coefficient Lognormal random coefficient

Approximation (by using samples) of the solution $u({m x},{m y})$ of the PDE

$$\begin{split} -\nabla_{\boldsymbol{x}} \cdot (a(\boldsymbol{x},\boldsymbol{y}) \nabla_{\boldsymbol{x}} u(\boldsymbol{x},\boldsymbol{y})) &= f(\boldsymbol{x}), & \boldsymbol{x} \in D, \, \boldsymbol{y} \in D_{\boldsymbol{y}} \\ u(\boldsymbol{x},\boldsymbol{y}) &= 0, & \forall \, \boldsymbol{x} \in \partial D, \, \boldsymbol{y} \in D_{\boldsymbol{y}}. \end{split}$$

spatial variable x

 $oldsymbol{x}\in D\subset \mathbb{R}^{d_{oldsymbol{x}}}$, $d_{oldsymbol{x}}\in\{1,2,3\}$

random variable y

 $oldsymbol{y} = (y_j)_{j=1}^d \in D_{oldsymbol{y}}$, d very large

Affine random coefficient

 $m{y}$ typically uniformly distributed in $D_{m{y}}$, e.g. $m{y} \sim \mathcal{U}\left([-1,1]^d
ight)$

$$a(\boldsymbol{x}, \boldsymbol{y}) = a_0(\boldsymbol{x}) + \sum_{j=1}^d y_j \psi_j(\boldsymbol{x})$$

[Cohen, DeVore, Schwab '10], [Dick, Kuo, Le Gia, Schwab '16], [Bachmayr, Cohen, Dahmen '18], [Gantner, Herrmann, Schwab '18], ...

Lognormal random coefficient

 $m{y}$ typically normally distributed in $D_{m{y}}=\mathbb{R}^{d}$, i.e. $m{y}\sim\mathcal{N}\left(\mathbf{0},m{I}
ight)$

$$a({m x},{m y}) = a_0({m x}) + \exp(b({m x},{m y})), \qquad \qquad b({m x},{m y}) = b_0({m x}) + \sum_{j=1}^a y_j \, \psi_j({m x})$$

[Graham, Kuo, Nichols, Scheichl, Schwab, Sloan '13], [Cheng, Hou, Yan, Zhang '13], [Bachmayr, Cohen, DeVore, Migliorati '17], [Nguyen, Nuyens '21], ...

www.tu-chemnitz.de/~tafa

Affine random coefficient

 $oldsymbol{y}$ typically uniformly distributed in $D_{oldsymbol{y}}$, e.g. $oldsymbol{y} \sim \mathcal{U}\left([-1,1]^d
ight)$

$$a(\boldsymbol{x}, \boldsymbol{y}) = a_0(\boldsymbol{x}) + \sum_{j=1}^d y_j \psi_j(\boldsymbol{x})$$

[Cohen, DeVore, Schwab '10], [Dick, Kuo, Le Gia, Schwab '16], [Bachmayr, Cohen, Dahmen '18], [Gantner, Herrmann, Schwab '18], ...

Lognormal random coefficient

 $m{y}$ typically normally distributed in $D_{m{y}} = \mathbb{R}^d$, i.e. $m{y} \sim \mathcal{N}\left(m{0}, m{I}
ight)$

$$a({m x},{m y}) = a_0({m x}) + \exp(b({m x},{m y})), \qquad \qquad b({m x},{m y}) = b_0({m x}) + \sum_{j=1}^a y_j \, \psi_j({m x})$$

[Graham, Kuo, Nichols, Scheichl, Schwab, Sloan '13], [Cheng, Hou, Yan, Zhang '13], [Bachmayr, Cohen, DeVore, Migliorati '17], [Nguyen, Nuyens '21], ...

Approximation of the solution $u(\boldsymbol{x}, \boldsymbol{y})$

Main problem

d typically very large ⇒ Curse of Dimensionality

Examples of other approaches:

- Quasi-Monte Carlo methods [Kuo, Schwab, Sloan '15], [Dick, Le Gia, Schwab '16], [Nguyen, Nuyens '21], ...
- collocation methods [Cheng, Hou, Yan, Zhang '13], [Ernst, Sprungk '14], [Zhang, Hu, Hou, Lin, Yan '14], ...
- methods based on certain (tensorized) functions (e.g., Legendre polynomials) [Cohen, DeVore, Schwab '10], [Bachmayr, Cohen, Migliorati '17], ...

These approaches are often heavily influenced by the choice (or computation) of some weights, functions or kernels in advance!

Also, they often just approximate some quantity of interest (e.g. $\mathbb{E}[F(u(\cdot,m{y}))]).$

Approximation of the solution $u(\boldsymbol{x}, \boldsymbol{y})$

Main problem

 $\begin{array}{l} d \text{ typically very large} \\ \Longrightarrow & \text{Curse of Dimensionality} \end{array}$

Examples of other approaches:

- Quasi-Monte Carlo methods [Kuo, Schwab, Sloan '15], [Dick, Le Gia, Schwab '16], [Nguyen, Nuyens '21], ...
- collocation methods [Cheng, Hou, Yan, Zhang '13], [Ernst, Sprungk '14], [Zhang, Hu, Hou, Lin, Yan '14], ...
- methods based on certain (tensorized) functions (e.g., Legendre polynomials) [Cohen, DeVore, Schwab '10], [Bachmayr, Cohen, Migliorati '17], ...

These approaches are often heavily influenced by the choice (or computation) of some weights, functions or kernels in advance!

Also, they often just approximate some quantity of interest (e.g. $\mathbb{E}[F(u(\cdot,m{y}))]).$

Approximation of the solution $u(\boldsymbol{x}, \boldsymbol{y})$

Main problem

 $\begin{array}{l} d \text{ typically very large} \\ \Longrightarrow & \text{Curse of Dimensionality} \end{array}$

Examples of other approaches:

- Quasi-Monte Carlo methods [Kuo, Schwab, Sloan '15], [Dick, Le Gia, Schwab '16], [Nguyen, Nuyens '21], ...
- collocation methods [Cheng, Hou, Yan, Zhang '13], [Ernst, Sprungk '14], [Zhang, Hu, Hou, Lin, Yan '14], ...
- methods based on certain (tensorized) functions (e.g., Legendre polynomials) [Cohen, DeVore, Schwab '10], [Bachmayr, Cohen, Migliorati '17], ...

These approaches are often heavily influenced by the choice (or computation) of some weights, functions or kernels in advance!

Also, they often just approximate some quantity of interest (e.g. $\mathbb{E}[F(u(\cdot, y))])$).

a sparse FFT (sFFT) approach [Indyk, Kapralov '12], [Potts, Volkmer '16]

The sFFT was originally designed to recover sparse trigonometric polynomials

$$p(\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathrm{I}} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

with unknown frequency set
$$I \subset \mathbb{Z}^d$$
.

Input

- $\blacktriangleright \text{ search space } \Gamma \subset \mathbb{Z}^d$
- sparsity $s \ge |\mathbf{I}|$
- ▶ black box sampling $(\boldsymbol{y} \mapsto p(\boldsymbol{y}))$

Output

- frequency set $I = \operatorname{supp} \hat{p} \subset \Gamma \subset \mathbb{Z}^d$
- coefficients $\hat{p}_{k}, k \in I$

a sparse FFT (sFFT) approach [Indyk, Kapralov '12], [Potts, Volkmer '16]

The sFFT was originally designed to recover sparse trigonometric polynomials

$$p(\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathcal{I}} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{y}}$$

with unknown frequency set $I \subset \mathbb{Z}^d$.

- search space $\Gamma \subset \mathbb{Z}^d$
- sparsity $s \ge |\mathbf{I}|$
- black box sampling $(\boldsymbol{y} \mapsto p(\boldsymbol{y}))$

Output

- $\blacktriangleright \text{ frequency set } \mathbf{I} = \mathsf{supp } \ \hat{p} \subset \Gamma \subset \mathbb{Z}^d$
- coefficients $\hat{p}_{k}, k \in I$

a sparse FFT (sFFT) approach [Indyk, Kapralov '12], [Potts, Volkmer '16]

The sFFT was originally designed to recover sparse trigonometric polynomials

$$p(\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathrm{I}} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

with unknown frequency set $I \subset \mathbb{Z}^d$.

Input

- ▶ search space $\Gamma \subset \mathbb{Z}^d$
- sparsity $s \ge |\mathbf{I}|$
- black box sampling $(\boldsymbol{y} \mapsto p(\boldsymbol{y}))$

Output

- $\blacktriangleright \ \ {\rm frequency \ set} \ {\rm I} = {\rm supp} \ \hat{p} \subset \Gamma \subset \mathbb{Z}^d$
- coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in I$

a sparse FFT (sFFT) approach [Indyk, Kapralov '12], [Potts, Volkmer '16]

The sFFT was originally designed to recover sparse trigonometric polynomials

$$p(\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathrm{I}} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

with unknown frequency set $I \subset \mathbb{Z}^d$.

Input

- ▶ search space $\Gamma \subset \mathbb{Z}^d$
- sparsity $s \ge |\mathbf{I}|$
- black box sampling $(m{y}\mapsto p(m{y}))$

Output

- $\blacktriangleright \ \ {\rm frequency \ set} \ {\rm I} = {\rm supp} \ \hat{p} \subset \Gamma \subset \mathbb{Z}^d$
- coefficients $\hat{p}_{k}, k \in I$

$$-8$$
 0 k_1 k_1 k_2 frequency candidates

$$\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}}$$

$$k_1 = -8, \ldots, 8$$

www.tu-chemnitz.de/ \sim tafa

$$-8$$
 0 k_1 k_1 k_3 frequency candidates

$$\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}}$$

$$k_1 = -8, \ldots, 8$$

www.tu-chemnitz.de/ \sim tafa

frequency candidates

$$k_1 = -8, \ldots, 8$$

frequency candidates

 $\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) \, \mathrm{e}^{-2\pi \mathrm{i} \frac{\ell k_1}{17}}$

$$\begin{split} \hat{p}_{k_1} &:= \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \\ &= \sum_{\substack{(h_2,h_3) \in \{-8,\dots,8\}^2\\ (k_1,h_2,h_3)^\top \in \operatorname{supp} \hat{p}}} \hat{p}_{\binom{h_2}{h_3}} e^{2\pi i (h_2 x'_2 + h_3 x'_3)}, \end{split}$$

$$k_1 = -8, \ldots, 8$$

1-dim. FFT

21.06.2022 · Fabian Taubert

www.tu-chemnitz.de/~tafa

Find an approximation of $u(\boldsymbol{x}, \boldsymbol{y})$.

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each \boldsymbol{x}_{i}

$$u^{ extsf{sfft}}(oldsymbol{x}_g,oldsymbol{y})\coloneqq \sum_{oldsymbol{k}\in \mathrm{I}_{oldsymbol{x}_g}} c^{ extsf{sfft}}_{oldsymbol{k},oldsymbol{x}_g}\,\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}\cdotoldsymbol{y}}$$

Problem: Amount of samples

Find an approximation of u(x, y).

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each $oldsymbol{x}$

$$u^{ ext{sFFT}}(oldsymbol{x}_g,oldsymbol{y})\coloneqq \sum_{oldsymbol{k}\in \mathrm{I}_{oldsymbol{x}_g}} c^{ ext{sFFT}}_{oldsymbol{k},oldsymbol{x}_g} \,\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}\cdotoldsymbol{y}}$$

Problem: Amount of samples

Find an approximation of $u(\boldsymbol{x}, \boldsymbol{y})$.

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each $oldsymbol{x}_g$

$$u^{\texttt{sFFT}}(\boldsymbol{x}_g, \boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_g}} c^{\texttt{sFFT}}_{\boldsymbol{k}, \boldsymbol{x}_g} \, \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

Problem: Amount of samples

Find an approximation of $u(\boldsymbol{x}, \boldsymbol{y})$.

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each $oldsymbol{x}_g$

$$u^{ ext{sFFT}}(oldsymbol{x}_g,oldsymbol{y})\coloneqq \sum_{oldsymbol{k}\in \mathrm{I}_{oldsymbol{x}_g}} c^{ ext{sFFT}}_{oldsymbol{k},oldsymbol{x}_g}\,\mathrm{e}^{2\pi\mathrm{i}oldsymbol{k}\cdotoldsymbol{y}}$$

Problem: Amount of samples

Find an approximation of u(x, y).

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each $oldsymbol{x}_g$

$$u^{\mathrm{sFFT}}(\boldsymbol{x}_g, \boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_g}} c^{\mathrm{sFFT}}_{\boldsymbol{k}, \boldsymbol{x}_g} \, \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

Problem: Amount of samples

Find an approximation of u(x, y).

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each $oldsymbol{x}_g$

$$u^{\mathrm{sFFT}}(\boldsymbol{x}_g, \boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_g}} c^{\mathrm{sFFT}}_{\boldsymbol{k}, \boldsymbol{x}_g} \, \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

Problem: Amount of samples

Find an approximation of $u(\boldsymbol{x}, \boldsymbol{y})$.

Spatial discretization

Fix $x_g \in \{x_1, \dots, x_G\}$ and consider the *d*-variate function $u(x_g, \cdot)$.

Adaptive approximation at each $oldsymbol{x}_g$

$$u^{\mathrm{sFFT}}(\boldsymbol{x}_g, \boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}_{\boldsymbol{x}_g}} c^{\mathrm{sFFT}}_{\boldsymbol{k}, \boldsymbol{x}_g} \, \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}}$$

Problem: Amount of samples

 $G \cdot \mathcal{O}\left(ds \max(s, N_{\Gamma}) \log^2 \frac{ds N_{\Gamma}}{\delta}\right)$

Solution: the uniform sFFT (usFFT)

21.06.2022 · Fabian Taubert

www.tu-chemnitz.de/~tafa

21.06.2022 · Fabian Taubert

11 / 21

www.tu-chemnitz.de/~tafa

$$u(\boldsymbol{x}_g, \boldsymbol{y}) \approx u^{\mathrm{usFFT}}(\boldsymbol{x}_g, \boldsymbol{y}) \coloneqq \sum_{\boldsymbol{k} \in \mathrm{I}} c_{\boldsymbol{k}, \boldsymbol{x}_g}^{\mathrm{usFFT}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{y}} \qquad g = 1, \dots, G$$

- ▶ index set $I \subset \Gamma \subset \mathbb{Z}^d$ with $I_{\boldsymbol{x}_q} \subset I$ for all g = 1, ..., G
- ▶ approximations $c_{\boldsymbol{k},\boldsymbol{x}_{a}}^{\text{usFFT}}, \boldsymbol{k} \in \mathbf{I}$, for all g = 1, ..., G

$$\mathcal{O}\left(ds\,\max(s,N_{\Gamma})\,\log^2\frac{ds\,G\,N_{\Gamma}}{\delta} + \max(sG,N_{\Gamma})\,\log\frac{ds\,G}{\delta}\right)$$

- ▶ index set $I \subset \Gamma \subset \mathbb{Z}^d$ with $I_{\boldsymbol{x}_q} \subset I$ for all g = 1, ..., G
- ▶ approximations $c_{\boldsymbol{k},\boldsymbol{x}_{g}}^{\text{usFFT}}, \boldsymbol{k} \in \mathbf{I}$, for all g = 1, ..., G

$$\mathcal{O}\left(ds\,\max(s,N_{\Gamma})\,\log^2\frac{ds\,G\,N_{\Gamma}}{\delta} + \max(sG,N_{\Gamma})\,\log\frac{ds\,G}{\delta}\right)$$

- ▶ index set $I \subset \Gamma \subset \mathbb{Z}^d$ with $I_{\boldsymbol{x}_q} \subset I$ for all g = 1, ..., G
- ▶ approximations $c_{\boldsymbol{k},\boldsymbol{x}_{g}}^{\text{usFFT}}, \boldsymbol{k} \in \mathbf{I}$, for all g = 1, ..., G

$$\mathcal{O}\left(ds\,\max(s,N_{\Gamma})\,\log^2\frac{ds\,\boldsymbol{G}\,N_{\Gamma}}{\delta} + \max(s\boldsymbol{G},N_{\Gamma})\,\log\frac{ds\,\boldsymbol{G}}{\delta}\right)$$

- ▶ index set $I \subset \Gamma \subset \mathbb{Z}^d$ with $I_{\boldsymbol{x}_q} \subset I$ for all g = 1, ..., G
- ▶ approximations $c_{\boldsymbol{k},\boldsymbol{x}_{g}}^{\text{usFFT}}, \boldsymbol{k} \in \mathbf{I}$, for all g = 1, ..., G

$$\mathcal{O}\left(d\,s\,\max(s,N_{\Gamma})\,\log^2rac{d\,s\,G\,N_{\Gamma}}{\delta}\!+\!\max(sG,N_{\Gamma})\,\lograc{d\,s\,G}{\delta}
ight)$$

- ▶ index set $I \subset \Gamma \subset \mathbb{Z}^d$ with $I_{\boldsymbol{x}_q} \subset I$ for all g = 1, ..., G
- ▶ approximations $c_{\boldsymbol{k},\boldsymbol{x}_{g}}^{\text{usFFT}}, \boldsymbol{k} \in \mathbf{I}$, for all g = 1, ..., G

$$\mathcal{O}\left(d\,s\,\max(s,N_{\Gamma})\,\log^2rac{d\,s\,G\,N_{\Gamma}}{\delta} + \max(sG,N_{\Gamma})\,\lograc{d\,s\,G}{\delta}
ight)$$

PDE (Example from [Eigel, Gittelson, Schwab, Zander 14']) $-\nabla_{\boldsymbol{x}} \cdot (a(\boldsymbol{x}, \boldsymbol{y}) \nabla_{\boldsymbol{x}} u(\boldsymbol{x}, \boldsymbol{y})) = 1 \qquad \qquad \boldsymbol{x} \in D, \ \boldsymbol{y} \in D_{\boldsymbol{y}}$

 $u(\boldsymbol{x},\boldsymbol{y})=0$

Spatial domainRandom domainDistribution
$$D = (0,1)^2$$
 $D_{\boldsymbol{y}} = [-1,1]^{20}$ $\boldsymbol{y} \sim \mathcal{U}\left([-1,1]^{20}\right)$

Affine random coefficient

$$a(\boldsymbol{x}, \boldsymbol{y}) = 1 + \sum_{j=1}^{20} y_j \psi_j(\boldsymbol{x}) \quad \text{with} \quad \psi_j(\boldsymbol{x}) \coloneqq \frac{0.9}{\zeta(2)} j^{-2} \cos(2\pi m_1(j)x_1) \cos(2\pi m_2(j)x_2)$$

and

_	$_{j}$	Ш	1		2	Ш	3	4	5	6	7	8	9	10	11	12	13	14	····
	$m_1(j)$	П	0	Γ	1	Π	0	1	2	0	1	2	3	0	1	2	3	4	
	$m_2(j)$	П	1		0	Ш	2	1	0	3	2	1	0	4	3	2	1	0	

 $\forall x \in \partial D, y \in D_u$

Figure: Largest error $\operatorname{err}_{2}^{\eta}$ w.r.t. the nodes x_{g} for different parameter settings, i.e., $s \in \{100, 250, 500, 750, 1000, 1500, 2000\}$, for the affine example.

$$\mathsf{err}_2^{\eta}(\pmb{x}_g) \coloneqq \sqrt{\frac{1}{n_{\mathsf{test}}}\sum_{j=1}^{n_{\mathsf{test}}} \left|\check{u}\left(\pmb{x}_g,\pmb{y}^{(j)}\right) - u^{\mathsf{usFFT}}\left(\pmb{x}_g,\pmb{y}^{(j)}\right)\right|^2}$$

number ℓ of non-zero frequency components

Figure: Analysis of the approximation for the affine example with s = 2000, N = 32.

$$\varrho(\mathbf{J}, \tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}}) \coloneqq \frac{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}, \mathbf{J}}^{\mathrm{usFFT}})}{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}})} = \frac{\sum_{\boldsymbol{k} \in \mathbf{J} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}}{\sum_{\boldsymbol{k} \in \mathbf{I} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}} \in [0, 1],$$

21.06.2022 · Fabian Taubert

www.tu-chemnitz.de/~tafa

PDE (Example from [Cheng, Hou, Yan, Zhang 13'], modified)

$$\begin{array}{l} -\nabla_{\boldsymbol{x}} \cdot (a(\boldsymbol{x}, \boldsymbol{y}) \nabla_{\boldsymbol{x}} u(\boldsymbol{x}, \boldsymbol{y})) = f(\boldsymbol{x}) & \boldsymbol{x} \in D, \ \boldsymbol{y} \in D_{\boldsymbol{y}} \\ u(\boldsymbol{x}, \boldsymbol{y}) = 0 & \forall \boldsymbol{x} \in \partial D, \ \boldsymbol{y} \in D_{\boldsymbol{y}} \end{array}$$
with $f(\boldsymbol{x}) = \sin(1.3\pi x_1 + 3.4\pi x_2) \cos(4.3\pi x_1 - 3.1\pi x_2)$

Spatial domain	Random domain	Distribution
$D = (0, 1)^2$	$D_{\boldsymbol{y}} = \mathbb{R}^{10}$	$oldsymbol{y} \sim \mathcal{N}\left(oldsymbol{0},oldsymbol{I} ight)$

Lognormal random coefficient

$$\log a(\boldsymbol{x}, \boldsymbol{y}) = \sum_{j=1}^{10} \frac{y_j}{j} \sin(2\pi j x_1) \cos(2\pi (11-j) x_2)$$

Figure: Largest error $\operatorname{err}_2^{\eta}$ w.r.t. the nodes \boldsymbol{x}_g for different parameter settings, i.e., $s \in \{100, 250, 500, 1000, 2000\}$, for the lognormal example.

$$\mathsf{err}_2^\eta(oldsymbol{x}_g)\coloneqq \sqrt{rac{1}{n_{\mathsf{test}}}\sum_{j=1}^{n_{\mathsf{test}}} \left|\check{u}\left(oldsymbol{x}_g,oldsymbol{y}^{(j)}
ight) - u^{\mathsf{usFFT}}\left(oldsymbol{x}_g,oldsymbol{y}^{(j)}
ight)
ight|^2}$$

number ℓ of non-zero frequency components

Figure: Analysis of the approximation for the lognormal example with s = 2000, N = 32.

$$\varrho(\mathbf{J}, \tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}}) \coloneqq \frac{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}})}{\sigma^{2}(\tilde{u}_{\boldsymbol{x}_{g}}^{\mathrm{usFFT}})} = \frac{\sum_{\boldsymbol{k} \in \mathbf{J} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}}{\sum_{\boldsymbol{k} \in \mathbf{I} \setminus \{\mathbf{0}\}} |c_{\boldsymbol{k}}^{\mathrm{usFFT}}(\tilde{u}_{\boldsymbol{x}_{g}})|^{2}} \in [0, 1],$$

- Main advantages of the usFFT:
 - fully adaptive, no critical a priori choice needed
 - sample efficient (in terms of sampling locations)
 - approximation gives insight on the influence and interactions of the y_j
 - non-intrusive (does not affect the PDE solver) and parallelizable
 - adapts easily to other domains, boundary conditions, ...
- Lutz Kämmerer, Daniel Potts, Fabian Taubert The uniform sparse FFT with application to PDEs with random coefficients ArXiv e-prints, 2021. arXiv:2109.04131 [math.NA]

Thank you for your attention!

- Main advantages of the usFFT:
 - fully adaptive, no critical a priori choice needed
 - sample efficient (in terms of sampling locations)
 - approximation gives insight on the influence and interactions of the y_j
 - non-intrusive (does not affect the PDE solver) and parallelizable
 - adapts easily to other domains, boundary conditions, ...
- Lutz Kämmerer, Daniel Potts, Fabian Taubert The uniform sparse FFT with application to PDEs with random coefficients ArXiv e-prints, 2021. arXiv:2109.04131 [math.NA]

Thank you for your attention!