
Faculty of Mathematics

Master thesis

A uniform sparse FFT approach on
differential equations with random coefficients

Fabian Taubert
Born August 22, 1996 in Stollberg

Chemnitz, March 16, 2021

First Advisor: Prof. Dr. Daniel Potts
Second Advisor: Dr. Lutz Kämmerer

Contents
1 Introduction 1

2 The one-dimensional case 3
2.1 The general approach . 3
2.2 Periodization . 4
2.3 Solving the ODE . 5

2.3.1 An efficient Fourier solver . 6
2.3.2 Independent numerical solvers . 11

2.4 The uniform sFFT . 13
2.4.1 The dimension-incremental method 13
2.4.2 Sampling strategies based on rank-1 lattices 15
2.4.3 Modifying the sFFT . 17

2.5 Expectation value of the approximation . 20
2.6 Numerical results . 21
2.7 Discussion of the numerical results . 34

3 The two-dimensional case 36
3.1 The uniform sFFT on finite elements . 36
3.2 Numerical results . 38

3.2.1 A radial random coefficient . 38
3.2.2 A random coefficient from a cosine product space 45

4 Summary & Outlook 51

References 53

1 Introduction
Parametric operator equations have gained significant attention in recent years. In par-
ticular, partial differential equations with random coefficients play an important role in
the study of uncertainty quantification, e.g., [5, 12, 13]. Therefore, the numerical solution
of these equations and how to compute them in an efficient and reliable way has become
more and more important.
In this work, we will consider partial differential equations with random coefficients of the
form

−∇x · (a(x, ξ)∇xu(x, ξ)) = f(x) x ∈ D, ξ ∈ Dξ (1.1a)
u(x, ξ) = 0 ∀x ∈ ∂D, ξ ∈ Dξ, (1.1b)

describing the diffusion characteristics of inhomogeneous materials and therefore being
called diffusion equations with the random diffusion coefficients a. Here, x ∈ D is the
spatial variable in a domain D ⊆ Rd, where d = 1, 2, or 3, and ξ = (ξj)

dξ

j=1 ∈ Dξ is a high
dimensional random variable with Dξ =×dξ

j=1 [αj, βj]. The here considered model of the
random field in the PDE is then realized by the random coefficient a of the general form

a(x, ξ) = a0(x) +
dξ∑
j=1

ξj ψj(x). (1.2)

Often, the random variables ξj, j = 1, ..., dξ, are assumed to be independent and each
uniformly distributed on an interval. This model with a linear appearance of the ξj has
been used in many recent papers, e.g., [1, 2, 6, 7, 8, 10, 17, 18, 21]. Further, [12, 13]
recently also considered the modeling with periodic random variables instead, which shows
also worth to be considered.
In each case, the random variable ξ is assumed to be high dimensional or even infinite
dimensional. Therefore, the most common approximation methods are subject to the
curse of dimensionality. Recent works commonly suggest to apply known solvers to the
differential equation for several fixed ξ. The quantities of interest are then computed
from this set of solutions. In [4], an approach using Fourier methods was presented, that
computes a complete approximate solution for one-dimensional diffusion equations with
random variables, i.e., d = 1. While the use of the sparse FFT approach as stated in
[16, 20] performs well even in high dimensions, the main advantage of this strategy can be
found in the detailed characteristics of the random variables. The proposed approach is
able to reveal information as the influence of each single variable ξj on the solution as well
as the interaction between those random variables.
In this work, we present a non-intrusive approach, based on the main idea of the algorithm
developed in [4]. While in [4] the sFFT was used w.r.t. the spatial variable x and the
random variable ξ, we will not include the spatial variable x in our Fourier approach this
time. In particular, we will use the sFFT approach to compute approximations of the
functions u(xg, ξ) w.r.t. the random variable ξ for several fixed points xg on a grid T ⊂ D.

1

Unfortunately, applying the sFFT at each of these points xg separately will lead to an
unnecessary huge increase of the computation time, ruining one of the main advantages
of our approach. Therefore, we will develop a modification of the sFFT, that avoids this
problem. In particular, our so-called uniform sFFT combines the candidate sets between
each dimension-increment and therefore uses the same sampling nodes ξ for each grid
point xg. This strategy manages to keep the number of used samples in a reasonable size,
which is highly important, since each sample is one computation of the solution of the
differential equation.
The main advantage of this approach is the adaptive choice of the frequency set performed
by the underlying sFFT. Most of the approaches in the aforementioned works are based
on tensorized polynomials or compressed sensing methods and assume the particular index
set needed to be known in advance. Especially when working with certain weights to
describe the index sets, slightly modified weights may result in tremendously large or
way too small index sets, that are computational unfeasible or not capable of yielding a
good approximation, respectively. In other words, reasonably estimating these weights is a
particular challenge, which might necessitate considerable additional effort. The uniform
sFFT only needs a candidate set and selects the important frequencies in this search domain
on its own. Also, the size of this candidate set is not as problematic as for other approaches,
since the number of used samples and the computation time suffer only mildly from larger
candidate sets.
Another main advantage of our algorithm is the non-intrusive and parallelizable behavior.
The uniform sFFT uses existing numerical solvers of the considered differential equation.
We can use suitable, reliable and efficient solvers with no need to re-implement them.
Hence, this approach works for ODEs as well as for PDEs. Further, the different samples
needed in each sampling step can be computed on multiple instances. This parallelization
allows to reduce the computation time even further and makes a higher number of used
samples less time consuming.
The work is organized as follows: In Section 2 we restrict ourself to a one-dimensional spa-
tial variable x and we explain the general approach in detail as well as the two ODE solvers
we use in the numerical tests later on. Section 2.4 outlines the dimension-incremental
method and, most important, explains the modifications made to achieve the uniform
sFFT. Afterwards, we will explain how to compute quantities of interest as for example
the expectation value of the solution of the differential equation. Sections 2.6 and 2.7
include several numerical tests on our method and some discussion about the used param-
eters and sampling strategies. In Section 3 we apply our uniform sFFT on two specific
PDEs with a two-dimensional spatial variable x using a finite element PDE solver. Section
4 summarizes the findings of the numerical tests, so the advantages and disadvantages of
our method and open questions.

2

2 The one-dimensional case

2.1 The general approach
We consider the ordinary differential equation

− ∂

∂x

(
a(x, ξ) ∂

∂x
u(x, ξ)

)
= f(x) x ∈ [α, β], ξ ∈ Dξ (2.1a)

u(α, ξ) = u(β, ξ) = 0 ∀ ξ ∈ Dξ (2.1b)

with homogeneous boundary conditions, where ξ ∈ Rdξ contains the random variables and
x is the one-dimensional spatial variable. The diffusion coefficient a : [α, β]×Dξ → R and
the right hand side f : [α, β] 7→ R are continuous functions and assumed to be known.
Here, Dξ =×dξ

j=1 [αj, βj] describes the domain of the random variables. We further assume,
that

0 < r ≤ a(x, ξ) ≤ R <∞ ∀(x, ξ) ∈ [α, β]×Dξ (2.2)

to guarantee the existence of a unique solution of (2.1) for each fixed ξ. We will now treat
this solution at a fixed point x0 as a function w.r.t. the random variable ξ and want to use
a Fourier approach to derive a good approximation of this function u(x0, ·). Unfortunately,
the function w.r.t. the random variable ξ is in general not periodic. Therefore, we need to
apply a suitably chosen, 1-periodic transformation function

ϕ : Tdξ → Dξ (2.3)

first, cf. Section 2.2. So we consider the periodization

ũ(x0, ξ̃) := u(x0, ϕ(ξ̃)) = u(x0, ξ),

which is then a 1-periodic function in ξ̃ for each fixed x0 and can therefore be approximated
by a Fourier partial sum

SIx0
[ũ(x0, ·)](ξ̃) =

∑
k∈Ix0

ck(ũ(x0, ·)) e2πik·ξ̃. (2.4)

Using the dimension-incremental sparse FFT approach stated in [20], we can recover a
frequency set Ix0 and an approximation ûx0,k of the corresponding Fourier coefficients
ck(ũ(x0, ·)) with k ∈ Ix0 , cf. Section 2.4.1. Note, that the frequency set Ix0 , chosen by the
algorithm, also depends on x0. Hence, we gain an approximation

ŜIx0
[ũ(x0, ·)](ξ̃) =

∑
k∈Ix0

ûx0,k e2πik·ξ̃.

of (2.4). Then we can get back to an approximation of the non-periodized signal via

ŜIx0
[u(x0, ·)](ξ) := ŜIx0

[ũ(x0, ·)](ϕ−1(ξ)) ∀ξ ∈ Dξ, (2.5)

with ϕ−1 being the inverse of the transformation function ϕ w.r.t. some interval as explained
in the next section.

3

2.2 Periodization
To simplify notifications, we will assume

Dξ =
dξ×
j=1

[−1, 1]

for the domain of the random variables from now on. We need to apply a suitable trans-
formation ϕ : Tdξ → [−1, 1]dξ to periodize the function u(x0, ξ). Therefore, we assume,
that ϕ acts component-wise on ξ̃, i.e.,

ϕ(ξ̃) =

ϕ1(ξ̃1)
ϕ2(ξ̃2)

...
ϕdξ

(ξ̃dξ
)

 =

ξ1
ξ2
...
ξdξ

 = ξ

and the transformation ϕj in each component j = 1, ..., dξ is the same. Further, we will
assume for all j = 1, ..., dξ, that
• ϕj is continuous, so ϕ ∈ C(Tdξ),

• ϕj(0) = ϕj(1) = −1 and ϕj(0.5) = 1, and thus ϕ is periodic with period one,

• ϕj(0.5− x) = ϕj(0.5 + x) for x ∈ [0, 0.5],

• ϕj is strictly monotonously increasing in (0, 0.5),
With this restrictions we ensure, that ϕ is bijective on the interval [0, 0.5]dξ . Hence, we can
write ϕ−1 in (2.5) to denote the corresponding inverse, mapping from [−1, 1]dξ → [0, 0.5]dξ .
In the following, we will see three examples of possible transformation functions, stated in
[4]. These periodizations are also illustrated in Figure 2.1.

Example 2.1
A simple periodization can be achieved by using the tent transformation, given by

ϕ : Tdξ → [−1, 1]dξ

ϕj(ξ̃j) = 1− |2− 4 ξ̃j| ∀j = 1, ..., dξ.
(2.6)

�

Example 2.2
We can construct a two times continuously differentiable periodization by using a spline
of order four, given by

ϕ : Tdξ → [−1, 1]dξ

ϕj(ξ̃j) =
−32ξ̃j

3 + 24ξ̃j
2 − 1 0 ≤ ξ̃j ≤ 0.5

32ξ̃j
3 − 72ξ̃j

2 + 48ξ̃j − 9 0.5 < ξ̃j ≤ 1
∀j = 1, ..., dξ.

(2.7)

�

4

0 0.5 1
−1

0

1

ξ̃

ϕ
(ξ̃

)

(a) tent transform from Ex-
ample 2.1

0 0.5 1
−1

0

1

ξ̃

ϕ
(ξ̃

)
(b) spline transform from

Example 2.2

0 0.5 1
−1

0

1

ξ̃

ϕ
(ξ̃

)

(c) cosine transform from
Example 2.3

Figure 2.1: The transformation functions ϕ from the Examples 2.1, 2.2 and 2.3 for dξ = 1.

Example 2.3
The periodization

ϕ : Tdξ → [−1, 1]dξ

ϕj(ξ̃j) = − cos(2πξ̃j) ∀j = 1, ..., dξ
(2.8)

is based on the cosine function and therefore infinitely differentiable. �

The tent transformation (2.6) is a very simple transformation due to its linearity on the
interval [0, 0.5] and therefore ϕ−1 is also of a linear structure. This also allows for certain
simplifications to be applied when used as periodization function, as we will see in Section
2.5. Unfortunately, it is not differentiable in ξ̃j = 0.5, so it might be an unfavorable choice
for a Fourier approach. Therefore, the usage of more smooth transformation functions ϕ
as (2.7) or (2.8) might yield better results.

2.3 Solving the ODE
As a further simplification, we will assume, that x ∈ [−1, 1] to simplify notations and
preserve clarity from now on. In order to use the sparse FFT approach stated in Chapter
2.1, we need a method to sample, i.e., to solve the ODE

− ∂

∂x

(
a(x, ξ) ∂

∂x
u(x, ξ)

)
= f(x) x ∈ [−1, 1], ξ ∈ Dξ (2.9a)

u(−1, ξ) = u(1, ξ) = 0 ∀ ξ ∈ Dξ (2.9b)

for a fixed ξ ∈ Dξ and evaluate u at a given point x0 ∈ [−1, 1]. Of course, there exist
many possible approaches, to solve such a differential equation. Here, we will consider two
different ways using a Fourier approach as in [4] and an already implemented numerical
solver provided by Matlab R©.

5

2.3.1 An efficient Fourier solver

Although the differential equation is of second order, it has a rather simple structure. We
can solve this ODE for every fixed ξ ∈ Dξ by integrating from −1 to x. Further we can
divide by a(x, ξ), since the condition (2.2) ensures, that we won’t divide by zero.

a(x, ξ) ∂
∂x
u(x, ξ) = −

∫ x

−1
f(τ)dτ + c1(ξ)

∂

∂x
u(x, ξ) = − 1

a(x, ξ)

(∫ x

−1
f(τ)dτ + c1(ξ)

)
= − 1

a(x, ξ)

∫ x

−1
f(τ)dτ︸ ︷︷ ︸

= v1(x, ξ)

−c1(ξ) 1
a(x, ξ)︸ ︷︷ ︸

= v2(x, ξ)

A second integration on both sides now yields

u(x, ξ) = −
∫ x

−1
v1(τ, ξ)dτ − c1(ξ)

∫ x

−1
v2(τ, ξ)dτ + c2(ξ). (2.10)

The integration constants c1(ξ) and c2(ξ) can be determined by using the boundary con-
ditions (2.9b). For x = −1 both integrals vanish and using u(−1, ξ) = 0 we obtain c2 = 0
for all ξ. In order to compute c1(ξ) we use x = 1 and the boundary condition yields

0 = u(1, ξ) = −
∫ 1

−1
v1(τ, ξ)dτ − c1(ξ)

∫ 1

−1
v2(τ, ξ)dτ.

After rearranging the terms we see, that we can compute c1(ξ) as

c1(ξ) = −

∫ 1

−1
v1(τ, ξ)dτ∫ 1

−1
v2(τ, ξ)dτ

. (2.11)

The final formula (2.10) now includes multiple integrations of the form∫ x

−1
w(τ, ξ)dτ,

which we will realize by a Fourier approximation. To periodize the integrand w.r.t. the
spatial variable τ , we again use the transformation function ϕ, which we discussed in
Section 2.2. With this periodization, we can rewrite the integral as

h(x, ξ) :=
∫ x

−1
w(τ, ξ)dτ =

∫ ϕ−1(x)

ϕ−1(−1)
w(ϕ(τ), ξ) ϕ′(τ)dτ =

∫ ϕ−1(x)

0
w̃(τ, ξ) ϕ′(τ)dτ, (2.12)

6

where w̃(τ, ξ) = w(ϕ(τ), ξ). Now we approximate the integrand on the right-hand side by
a Fourier partial sum:

SN [w̃ϕ′] (τ, ξ) =
N−1∑
k=−N

âk(ξ) e2πikτ (2.13a)

âk(ξ) =
∫ 1

0
w̃(τ, ξ)ϕ′(τ) e−2πikτdτ k = −N, ..., N − 1. (2.13b)

We approximate the Fourier coefficients in the common way using the rectangle rule.
Notice, that for Fourier coefficients this leads to the same formula as the trapezoidal rule
would. Further, we won’t use the equidistant grid

{
j
M

: j = 0, ...,M − 1
}
to avoid using

ϕ′(0.5), since this value sometimes might be undefined for example when working with the
tent transformation. Instead we use the shifted grid

T̃M =
{
j + 0.5
M

}M−1

j=0

and approximate the Fourier coefficients as

âk(ξ) =
∫ 1+ 1

2M

1
2M

w̃(τ, ξ)ϕ′(τ) e−2πikτdτ

≈ 1
M

M−1∑
j=0

w̃
(
j + 0.5
M

, ξ
)
ϕ′
(
j + 0.5
M

)
e−2πik j+0.5

M

= 1
M

e−πi k
M

M−1∑
j=0

w̃
(
j + 0.5
M

, ξ
)
ϕ′
(
j + 0.5
M

)
e−2πik j

M , k = −N, ..., N − 1, (2.14)

which we will compute later using an FFT of length M = 2N . Now we integrate the
Fourier partial sum (2.13a) and have

∫
SN [w̃ϕ′] (τ, ξ) dτ = â0(ξ)τ +

N−1∑
k=−N
k 6=0

âk(ξ)
2πik e2πikτ + C = â0(ξ)τ +

N−1∑
k=−N

b̂k(ξ)e2πikτ + C

with

b̂k(ξ) =
0 k = 0
âk(ξ)
2πik k 6= 0

k = −N, ..., N − 1.

Since we only compute approximations of the Fourier coefficients âk in (2.14), we will also
end up with approximations of the scaled coefficients b̂k as well.
Note, that since ϕ′ is symmetric, i.e., ϕ′(0.5 − x) = −ϕ′(0.5 + x) for x ∈ (0, 0.5), the
Fourier coefficient â0(ξ) vanishes. Therefore we will neglect the term â0(ξ)τ in the following

7

considerations. Finally, we rewrite the integral (2.12) as

h(x, ξ) =
∫ x

−1
w(τ, ξ)dτ =

∫ ϕ−1(x)

0
w̃(τ, ξ) ϕ′(τ)dτ

≈
∫ ϕ−1(x)

0
SN [w̃ϕ′] (τ, ξ)dτ

=
N−1∑
k=−N

b̂k(ξ)
(
e2πikϕ−1(x) − e0

)

=
N−1∑
k=−N

b̂k(ξ)
(
e2πikϕ−1(x) − 1

)
. (2.15)

Further, we evaluate the first part of the sum in (2.15) with an FFT. Therefore, we use
x ∈ T̃M as in the quadrature formula (2.14) with M = 2N . Using these two modifications,
(2.15) now reads as

h̃
(
j + 0.5
M

, ξ
)

= h
(
ϕ
(
j + 0.5
M

)
, ξ
)

:=
∫ ϕ(j+0.5

M)
−1

w(τ, ξ)dτ

≈
N−1∑
k=−N

b̂k(ξ)
(
e2πik j+0.5

M − 1
)

=
N−1∑
k=−N

b̂k(ξ)
(
eπi k

M e2πik j
M − 1

)
(2.16)

for all j = 0, ...,M − 1. Note, that when plugging in x ∈ T̃M we receive the expression
ϕ−1(ϕ

(
j+0.5
M

)
). This simplifies to j+0.5

M
for all j = 0, ...,M − 1 when using the inverse of ϕ

w.r.t. the interval [0, 0.5] for j = 0, ..., N − 1 and the inverse w.r.t. the interval [0.5, 1] for
j = N, ...,M − 1.
In order to determine the integration constant c1(ξ) when solving the ODE, we need the
values

∫ 1
−1 v1(τ, ξ)dτ and

∫ 1
−1 v2(τ, ξ)dτ . But since we constructed our grid T̃M to not

contain 0.5, we don’t get these values in our integration algorithm. Thus, we evaluate
h̃(0.5, ξ) = h(1, ξ) separately via

h̃(0.5, ξ) = h(1, ξ) ≈
N−1∑
k=−N

b̂k(ξ)
(
eπi k

M e2πik 1
2 − 1

)

=
N−1∑
k=−N

b̂k(ξ)
(
eπi k

M (−1)k − 1
)
. (2.17)

The final integration algorithm using matrix-vector notation and the Fast Fourier Trans-
form is stated in Algorithm 1.
We now use this algorithm in order to compute the integrals over f , v1 and v2 in (2.10).
With equation (2.11) we compute the constant c1(ξ), so that we can finally state the
one-dimensional backward algorithm to solve the ODE (2.9), see Algorithm 2.

8

Algorithm 1 Integration algorithm
Input: W function values w̃(j+0.5

M
, ξ) = w(ϕ(j+0.5

M
), ξ),

j = 1, ...,M = 2N
Φ function values ϕ′(j+0.5

M
), j = 1, ...,M = 2N

Â = FFT(W ◦ Φ)
for k = −N, ..., N − 1, k 6= 0 do

B̂[k +N] = e−πi k
M

2πikM · Â[k +N]
B̃[k +N] = eπi k

M · B̂[k +N]
B[k +N] = (−1)kB̃[k +N]

end for
H = FFT(B̃)− sum(B̂) · 1
h = sum(B)− sum(B̂)
Output: H function values h̃(j+0.5

M
, ξ) = h(ϕ(j+0.5

M
), ξ),

cf. (2.16)
h function value h̃(0.5, ξ) = h(1, ξ), cf. (2.17)

Algorithm 2 One-dimensional backward algorithm
Input: F function values f̃(j+0.5

M
) = f(ϕ(j+0.5

M
))

A function values ã(j+0.5
M

, ξ) = a(ϕ(j+0.5
M

), ξ)
Φ function values ϕ′(j+0.5

M
)

[Z,∼] = integration(F,Φ), i.e., Algorithm 1 applied to F
V1 = −Z � A 1 , V2 = −1� A
[I1, i1] = integration(V1,Φ), i.e., Algorithm 1 applied to V1
[I2, i2] = integration(V2,Φ), i.e., Algorithm 1 applied to V2
U = I1 − i1

i2
· I2

Output: U approximation of the function values
ũ(j+0.5

M
, ξ) = u(ϕ(j+0.5

M
), ξ)

So we end up with an approximation of the solution u(·, ξ) for the fixed ξ given on the
grid

{
ϕ
(
j + 0.5
M

)}M−1

j=0
=
{
ϕ
(
j + 0.5
M

)}N−1

j=0
=: TN .

Note, that, since ϕ is symmetric, the points for j = N, ...,M − 1 are equal to the first N
points. Therefore it is enough to use j = 0, ..., N − 1. Further, our approximation fulfills
the boundary conditions (2.9b) by construction, so we can even work on the larger grid
T 0
N := TN ∪ {−1, 1}.

1Here, � is the Hadamard (or component-wise) division for vectors and matrices.

9

Example 2.4
We consider the ODE (2.9) with right-hand side f(x) = 10 and the random coefficient
a(x, ξ) = 1 for all x ∈ [−1, 1], ξ ∈ Dξ. The exact solution to this differential equation with
the zero boundary conditions (2.9b) is

u(x, ξ) = −5x2 + 5 ∀ξ ∈ Dξ.

Since every part of the ODE is independent of ξ, we will neglect it for the moment. Now
we want to solve this problem with Algorithm 2. To this end, we compare the exact values
u(x) with the values of our approximation of the solution û(x) on every grid point x ∈ TN
in terms of a p vector norm. So our error estimation is computed as

Errp(N) =
 1
N

∑
x∈TN

|û(x)− u(x)|p
 1

p

,

or, for p =∞, as

Err∞(N) = max
x∈TN

|û(x)− u(x)| .

Figure 2.2 illustrates this error Errp(N) for p = 1, 2,∞ and the different transformation
functions ϕ presented in section 2.2. Note, that due to the simple structure of the differ-
ential equation, the approximated solution already is exact even for small N when using
the infinitely differentiable cosine transformation. �

Example 2.5
We now consider a more advanced example from [4], i.e., the ODE (2.9) with right-hand
side f(x) = 10 and the random coefficient

a(x, ξ) = 4.3 +
10∑
j=1

ξ2j−1
cos(jπx)

j2 + ξ2j
sin(jπx)

j2 ,

where ξ with dξ = 20 are uniformly distributed, i.e., ξ ∼ U([−1, 1]20). Further notes on
this examples can be found in Section 2.6.
Again, we solve this problem with Algorithm 2 and compute the estimated error Errp(N)
on the grid TN , this time for a fixed ξ. Further, we average this for a few random ξi ∈
Dξ, i = 1, ..., ntest. So our error estimation is computed as

Errp(N) = 1
ntest

ntest∑
i=1

(

1
N

∑
x∈TN

∣∣∣û(x, ξi)− u(x, ξi)
∣∣∣p) 1

p if 1 ≤ p <∞,
maxx∈TN

∣∣∣û(x, ξi)− u(x, ξi)
∣∣∣ if p =∞,

this time. Again, Figure 2.3 illustrates the estimated errors Errp(N) with ntest = 50 for
p = 1, 2,∞ and the different transformation functions ϕ. �

10

102 103 10410−16

10−12

10−8

10−4

100

N

Er
r ∞

(N
) Tent

Spline
Cosine

(a) p =∞

102 103 10410−16

10−8

100

N

Er
r 1

(N
) Tent

Spline
Cosine

(b) p = 1

102 103 10410−16

10−8

100

N

Er
r 2

(N
) Tent

Spline
Cosine

(c) p = 2
Figure 2.2: Error estimates Errp(N) for Example 2.4 for the different transformation func-

tions ϕ from section 2.2.

Remember, that for now, we want to evaluate this solution at a certain point x0. If the
given point x0 already is a part of this grid, we just extract the function value u(x0, ξ) and
are done. Unfortunately, most of the time this will not be the case. If x0 lies in between
the grid points xl and xr, we will use a straight forward linear interpolation of the form
y = mx+ n, resulting in

u(x0, ξ) = u(xr, ξ)− u(xl, ξ)
xr − xl︸ ︷︷ ︸

m

x0 +
(
u(xl, ξ)− u(xr, ξ)− u(xl, ξ)

xr − xl
xl

)
︸ ︷︷ ︸

n

.

Note, that since we can use the boundary conditions (2.9b), there will always be grid points
xl, xr to the left and right of x0.

2.3.2 Independent numerical solvers

The second way to solve the differential equation (2.9) we will discuss is by simply using
an already implemented numerical solver. We will treat the used solver as a black box

11

102 103 10410−16

10−12

10−8

10−4

100

N

Er
r ∞

(N
)

Tent
Spline
Cosine

(a) p =∞

102 103 10410−16

10−8

100

N

Er
r 1

(N
)

Tent
Spline
Cosine

(b) p = 1

102 103 10410−16

10−8

100

N

Er
r 2

(N
)

Tent
Spline
Cosine

(c) p = 2
Figure 2.3: Error estimations Errp(N) for Example 2.5 for the different transformation

functions ϕ from section 2.2 and ntest = 50.

algorithm. If u(x0, ξ) for the fixed x0 is not provided by the ODE solver, we will use an
easy interpolation using surrounding points to approximate it.
Although this method will probably be slower than the Fourier approach, it is easier to
adapt when it comes to other kinds of ODEs or when moving forward to PDEs. We only
need to choose a suitable solver for the specific differential equation and extract the desired
function value of u.

Remark 2.1
Later on, we will use the function bvp4c provided by Matlab R© to solve the ODE in our
numerical tests. After inserting a system of first-order equations, the boundary conditions
and an initial guess, the function approximates the solution on a grid. Further we access
the required value u(x0, ξ) via interpolation with a polynomial of degree 3. We compute
the interpolation by using the values of u and u′ on the two surrounding grid points xl and

12

xr around x0, which are all provided by the solver itself:
u(xl, ξ)
u′(xl, ξ)
u(xr, ξ)
u′(xr, ξ)

 =

x3
l x2

l xl 1
3x2

l 2xl 1 0
x3
r x2

r xr 1
3x2

r 2xr 1 0

c3
c2
c1
c0

u(x0, ξ) = c3x

3
0 + c2x

2
0 + c1x0 + c0

�

2.4 The uniform sFFT
The methods from the previous section allow us to compute approximate solutions of the
ODE for fixed ξ. As described in Section 2.1, we can use these values u(x0, ξ) for a chosen
x0 as sampling values to recover an approximation of the function u(x0, ξ) w.r.t. the random
variable ξ. This can be realized by using the aforementioned so-called sFFT as presented
in [20].
Using this approach, the sFFT will compute an index set Ix0 and the approximations ûx0,k

of the Fourier coefficients ck(ũ(x0, ·)) and with formula (2.5) we can evaluate the function
u(x0, ξ) for a given x0. However, the function is defined for every x ∈ [−1, 1] and therefore
we want to consider a set TG of points xg ∈ (−1, 1) with g = 1, ..., G. So we need to call
the whole algorithm for each value xg, which significantly increases the number of used
samples. Since sampling one time means solving a differential equation, a further increase
in the number of samples seems to be highly inefficient. To get a better understanding,
why this is a huge problem in our case and how to handle this, we roughly outline the
dimension-incremental method and possible sampling strategies.

2.4.1 The dimension-incremental method

This dimension-incremental approach was presented in [20] and proceeds similarly as a
dimension-incremental method for anharmonic trigonometric polynomials based on Prony’s
method in [19].
We consider a given search domain Γ ⊂ Zd, |Γ| < ∞, and our aim is to determine the
non-zero Fourier coefficients p̂k, k ∈ I, of a multivariate trigonometric polynomial p and
the unknown frequency set I ∈ Γ, |I| � |Γ|, based on samples.
First, we introduce some further notation as in [20] and assume for this explanation, that we
are dealing with a multivariate trigonometric polynomial p. We denote the projection of a
frequency k := (k1, ..., kd)> ∈ Zd to the components i := (ii, ..., im) ∈ {ι ∈ {1, ..., d}m : ιt 6=
ιt′ for t 6= t′} by Pi(k) := (ki1 , ..., kim)> ∈ Zm. Correspondingly, we define the projection
of a frequency set I ⊂ Zd to the components i by Pi(I) := {(ki1 , ..., kim) : k ∈ I}. Using
these notations, the general approach is the following:

1. Determine the first components of the unknown frequency set, i.e., determine a set
I(1) ⊆ P1(Γ) which should be identical to the projection P1(supp p̂) or contain this
projection, I(1) ⊇ P1(supp p̂).

13

2. For dimension increment step t = 2, ..., d, i.e., for each additional dimension:

(a) Determine the t-th components of the unknown frequency set, i.e., determine
a set I(t) ⊆ Pt(Γ) which should be identical to the projection Pt(supp p̂) or
contain this projection, I(t) ⊇ Pt(supp p̂).

(b) Determine a suitable sampling set X (1,...,t) ⊂ Td, |X (1,...,t)| � |Γ|, which allows
to detect those frequencies from the set (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) belonging
to non-zero Fourier coefficients p̂k.

(c) Sample the trigonometric polynomial p along the nodes of the sampling set
X (1,...,t).

(d) Compute the Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).
(e) Determine the non-zero Fourier coefficients from ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1)× I(t))∩
P(1,...,t)(Γ) and obtain the set I(1,...,t) of detected frequencies. The I(1,...,t) index
set should be equal to the projection P(1,...,t)(supp p̂).

3. Use the set I(1,...,d) and the computed Fourier coefficients ˜̂p(1,...,t),k, k ∈ I(1,...,d) as an
approximation for the support supp p̂ and the Fourier coefficients p̂k, k ∈ supp p̂.

Note, that this method can also be used for the computation of the approximately largest
Fourier coefficients f̂k, k ∈ I, of a function f with suitable thresholding techniques.
The proposed approach includes the construction of a suitable sampling set in step 2b
and the computation of (projected) Fourier coefficients in step 2d. Of course, there exist
different methods for the realization of these steps. The algorithm should work with
any sampling method, which reliably computes Fourier coefficients on a given index set.
Preferable sampling sets combine the four properties:

• low oversampling factors,

• stability and thus reliability,

• efficient construction methods,

• fast Fourier transform algorithms.

In the next sections, we briefly present three different approaches stated in [15, 16, 20]
for the realization of these steps based on spatial discretizations called rank-1 lattices.
Further explanations on these sampling sets as well as their behavior when used in the
dimension-incremental approach can be found in the referred papers.

14

2.4.2 Sampling strategies based on rank-1 lattices

We follow the main lines in [20] in order to present the definition of rank-1 lattices and their
use as spatial discretizations when reconstructing multivariate trigonometric polynomials.
As discussed in [14], we are able to exactly reconstruct the Fourier coefficients p̂k,k ∈ I,
of an arbitrarily chosen trigonometric polynomial p(x) := ∑

k∈I p̂k e2πik·x with frequencies
supported on a given index set I ⊂ Zd from sampling values p(xj). Here, the sampling
nodes xj, j = 0, ...,M − 1, are the nodes of a rank-1 lattice

Λ(z,M) :=
{
j

M
z mod 1 : j = 0, ...,M − 1

}
(2.18)

with a so called generating vector z ∈ Zd and lattice size M ∈ N.
Note, that formally the Fourier coefficients p̂k with frequency k are given by

p̂k :=
∫
x∈Td

p(x) e−2πik·xdx.

Applying the rank-1 lattice rule with rank-1 lattice Λ(z,M) as in (2.18) yields

p̂k ≈
1
M

M−1∑
j=0

p(xj) e−2πik·xj = 1
M

M−1∑
j=0

p
(
j

M
z
)

e−2πik·z/M

= 1
M

M−1∑
j=0

∑
k′∈I

p̂k′ e2πijk′·z/M e−2πik·z/M

=
∑
k′∈I

p̂k′
1
M

M−1∑
j=0

e2πij(k′−k)·z/M

=
∑
k′∈I

p̂k′ δ0((k′ − k) · z mod M).

This means, the rank-1 lattice rule is exact if and only if

k · z 6≡ k′ · z (mod M) ∀k,k′ ∈ I,k 6= k′.

Introducing the difference set D(I) := {k − k′ : k,k′ ∈ I} for the frequency set I, we can
rewrite this condition as

m · z 6≡ 0 (mod M) ∀m ∈ D(I) \ {0},

which we call reconstruction property from now on. A rank-1 lattice Λ(z,M) will be
called reconstructing rank-1 lattice Λ(z,M, I) for the frequency set I, if the reconstruction
property is fulfilled.
So while we can evaluate an arbitrarily chosen multivariate trigonometric polynomial p with
frequencies supported on the frequency set I at all nodes of an arbitrary rank-1 lattice
Λ(z,M), the unique reconstruction of the Fourier coefficients p̂k, k ∈ I, of p requires
sampling values on a reconstructing rank-1 lattice Λ(z,M, I). Both computations can

15

be efficiently done in O(M logM + d|I|) arithmetic operations, i.e., we only need a one-
dimensional fast Fourier transform and the scalar products k · z, k ∈ I, to rearrange the
results.
In [20, Theorem 2.1] it is shown that for a given frequency set I there always exists a suitable
prime rank-1 lattice size M and generating vector z, such that Λ(z,M) = Λ(z,M, I) is a
reconstructing rank-1 lattice for I. Further, there exist upper bounds on the size of the
rank-1 lattice M and the arithmetic operations needed to construct the generating vector
z.
While single rank-1 lattices provide a perfectly stable, reliable and efficient way to recon-
struct Fourier coefficients, the bottleneck of this approach is the relatively large number of
samples M up to M & |I|2 and the expensive construction of the generating vector z. In
[16] so-called multiple rank-1 lattices

Λ(z1,M1, ...,zL,ML) :=
L⋃
`=1

Λ(z`,M`),

consisting of L rank-1 lattices Λ(z`,M`), ` = 1, ..., L, are used as spatial discretizations.
Again, a reconstruction property is needed to ensure, that the multiple rank-1 lattice allows
for the reconstruction of all Fourier coefficients p̂k, k ∈ I. The reconstruction property we
will use reads as

k · z` 6≡ k′ · z` mod M` for all k ∈ I`, k′ ∈ I, k 6= k′, ∪L`=1I` = I.

The corresponding approach chooses L rank-1 lattices with size M` ∼ |I| and random
generating vectors z` ∈ [1,M` − 1]d ∩ Zd. Then we reconstruct every Fourier coefficient
p̂k belonging to a non-aliasing frequency k ∈ I` for each of the L rank-1 lattices. With a
certain success probability 1− δ, each frequency k ∈ I is non-aliasing in at least one rank-1
lattice Λ(z`,M`) and therefore every Fourier coefficient p̂k, k ∈ I, can be reconstructed.
The number of required rank-1 lattices L can be bounded by O(log |I| − log δ) with the
failure probability δ ∈ (0, 1). Therefore, the total number M of samples used in this
approach is bounded by O(|I|(log |I| − log δ)). Further, the complexity of the construction
of the multiple rank-1 lattice and the reconstruction of the Fourier coefficients reads as
O(M logM+L(d+log |I|)|I|), cf. [16]. Note, that these sample and arithmetic complexities
are a lot better than for single rank-1 lattices, since M . |I| log |I| holds for a fixed failure
probability.
The third approach we want to consider uses random rank-1 lattices to reduce the number
of samples even more. This method was stated in [15] and assumes, that there are only
a few active frequencies k ∈ I∗ in the index set I, while all the other Fourier coefficients
p̂k,k ∈ I \ I∗ are zero. Therefore, it only uses L rank-1 lattices with size M` ∼ |I∗|
and randomly chosen generating vectors z` for the reconstruction. Since there will occur
aliasing effects, the algorithm counts for fixed frequency k ∈ I how many of the computed
coefficients p̂(`)

k , ` = 1, ..., L are non-zero. If the count is above a threshold νL, ν typically
chosen to be 1/2, the frequency k is kept, as it is likely to be part of the active frequencies
k ∈ I∗. If the fraction is below this threshold, one discards the frequency k since the few

16

samples arithmetic operations
single R1L O(dr3s2N) O(dr3s3 + dr3s2N logO(1)(...))

multiple R1L O(dr2sN logO(1)(...)) O(d2r2sN logO(1)(...))
random R1L O(drs logO(1)(...)) O(d2rsN logO(1)(...))

Table 1: Sampling and arithmetic complexities of the sFFT approach when using different
sampling strategies based on rank-1 lattices.

non-zero p̂(`)
k most likely are aliasing effects that show up. Choosing L odd and using the

threshold ν = 1/2 allows for the additional computation of the unknown Fourier coefficients
by

p̂k := median
{
Re (p̂(`)

k) : ` = 1, ..., L
}

+ i ·median
{
Im (p̂(`)

k) : ` = 1, ..., L
}

Since the number of rank-1 lattices L again behaves like O(log |I| − log δ) for the failure
probability δ, we end up with a total number of samples M . O(|I∗|(log |I| − log δ)). The
computational complexity O(M logM + Ld|I|) is similar to the complexity for multiple
rank-1 lattices, but also benefits from the lower number M of samples used.
Overall, rank-1 lattices provide efficient and reliable sampling strategies which can be used
in the dimension-incremental method. While single rank-1 lattices are perfectly stable and
do not depend on a failure probability, multiple and random rank-1 lattices may reduce the
number of samples and arithmetic operations drastically. Therefore, we will consider all
of these three different approaches in our numerical experiments. A short and simplified
summary of the sampling and arithmetic complexities for the sFFT using the different
sampling strategies is given in Table 1.
Up to now, we have an algorithm that computes an approximation of the solution u(xg, ξ)
for a single xg. Considering a whole set of points xg ∈ TG, we have to call the existing
method G times, which ends up with unnecessary many samples. Therefore, we now modify
the dimension-incremental method, such that we can work on the grid TG and one call of
the algorithm computes approximations of all the Fourier coefficients ck(ũ(xg, ·)) for each
g = 1, ..., G, including a clever usage of the sampling nodes ξ.

2.4.3 Modifying the sFFT

As we saw in the previous section, the dimension-incremental method based on rank-1
lattice sampling provides an efficient and reliable way to approximate high-dimensional
functions based on the fast Fourier transform. Especially the sampling complexity, which
is particularly important in our application, behaves way better than for other possible
methods, cf. [15, Table 1.1].
Matching our expectations, the computation time of the sampling step 2c still outweigh all
the other steps of the sFFT by a lot already for small input parameters as Table 2 indicates.
Especially, when using the slower numerical solver, the large number of sampling points
leads to a significant increase in computation time. The following modifications provide

17

Steps 1 2a 2b 2c total # of samples
numerical solver 26.4512 2.7511 3843.9731 0.0919 3873.5796 367835
Fourier solver

(N = 28, ϕ: spline) 55.8121 3.7617 948.3809 0.1406 1008.3482 342850

Table 2: Computation time of the sFFT steps for Γ = [−8, 8]20, s = 100, r = 5, using single
rank-1 lattices and different differential equation solvers, in seconds, averaged over
20 runs each.

a possibility to compute approximations of the Fourier coefficients ck(ũ(xg, ·)) for each
g = 1, ..., G without applying the sFFT algorithm explained above for each xg separately
and therefore without increasing the number of used samples by the factor G.
We force the dimension-incremental method to select a frequency set I containing the s
approximately largest Fourier coefficients ck(ũ(x, ·)) for each xg in the equidistant grid TG.
Therefore, we compute the set of detected frequencies I(1,...,t)

xg
for each xg in each dimension-

increment t, but after that we form the union of these sets ⋃Gg=1 I(1,...,t)
xg

, which will be the
set of detected frequencies I(1,...,t) that is given to the next dimension-incremental step. So
we start each iteration with a larger frequency candidate set (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ),
which is suitable for all xg from TG. This way, the chosen sampling set X (1,...,t) is the same
for each xg and we can take advantage of the fact, that our differential equation solvers
from section 2.3 can evaluate their solutions u(x, ξ) for a given ξ for multiple values of
x on a grid in [−1, 1]. So we only need to solve the differential equation once for each
sampling point ξ and still get all the sampling values ũ(xg, ξ) for all xg in our grid TG.
Note, that this also holds for the one-dimensional detections in steps 1 and 2a since the
used sampling sets here do not depend on the particular function u(xg, ·) and therefore are
the same for each xg. Also note, that we will probably still need to interpolate since the
solution grids from 2.3 might differ from the grid TG. Obviously, the larger candidate sets
(I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) will also result in larger sampling sets, but even if only a few
indices of the detected frequencies I(1,...,t)

xg
are the same for different xg ∈ TG, we already

safe time compared to dealing with slightly smaller candidate sets for each xg separately.
We could also think of further thresholding methods to cut the number of frequencies back
to the sparsity s at the end of each dimension-incremental step or at least at the end of
the whole algorithm. In this work, we will not do this, but take a look at the total number
of frequencies in the output of the algorithm in relation to the sparsity s.
We will call this modified version of the sFFT the uniform sFFT or short usFFT from
now on, where uniform is meant w.r.t. a discrete set of points, e.g., TG. The full method is
stated in Algorithm 3. Note, that the notations in Algorithm 3 are taken from the original
works on the sFFT [20], [16] and [15] to set the focus on the modifications and therefore
slightly differ from our here used notations.

18

Algorithm 3 The uniform sFFT on a grid {χg : g = 1, ..., G}
Input: Γ ⊂ Zd search space in frequency domain, candidate set for I = supp p̂

p(◦, ◦) trigonometric polynomial p as black box (function handle) (Here:
p(χ,x) = u(x, ξ))

TG grid points χg, g = 1, ..., G
s, slocal ∈ N sparsity parameter, s ≤ slocal
Algorithm A efficient algorithm A that guarantees the identification of the

frequency support of each slocal-sparse trigonometric polynomial
w.h.p., cf. Section 2.4.2, and computes the Fourier coeffcients

θ ∈ R+ absolute threshold
r ∈ N number of detection iterations

(Step 1 & 2a) [Single frequency component identification]
for t := 1, . . . , d do

Set Kt := max(Pt(Γ))−min(Pt(Γ)) + 1, I(t) := ∅, I(t)
g := ∅ ∀g = 1, . . . , G.

for i := 1, . . . , r do
Choose x′j ∈ T, j ∈ {1, . . . , d} \ {t} uniformly at random.

Set x(`) :=
(
x

(`)
1 , . . . , x

(`)
d

)>
, x(`)

j :=
{
`/Kt, j = t,

x′j , j 6= t,
for all ` = 0, . . . ,Kt − 1.

for g := 1, . . . , G do
Compute ˜̂pt,kt,g := 1

Kt

∑Kt−1
`=0 p

(
χg,x

(`)
)

e−2πi`kt/Kt , kt ∈ Pt(Γ), via FFT.
Set I(t)

g := I
(t)
g ∪ {kt ∈ Pt(Γ) : ˜̂pt,kt,g is among the largest slocal (in absolute value)

elements of { ˜̂pt,j,g}j∈Pt(Γ) and | ˜̂pt,kt,g| ≥ θ}.
end for g
Set I(t) := I(t) ∪ I(t)

g .
end for i

end for t
(Step 2) [Coupling frequency components identification]
for t := 2, . . . , d do

If t < d, set r̃ := r and s̃ := slocal, otherwise r̃ := 1 and s̃ := s.
Set I(1,...,t) := ∅ and I(1,...,t)

g := ∅ ∀g = 1, . . . , G.
for i := 1, . . . , r̃ do
Choose components x′t+1, . . . , x

′
d ∈ T of sampling nodes uniformly at random.

(Step 2b)
Generate a sampling set X ⊂ Tt for Jt := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) that allows
for the application of Algorithm A. Set Xt,i := {x := (x̃, x′t+1, . . . , x

′
d) : x̃ ∈ X} ⊂ Td.

(Step 2c)
Sample p along the nodes of the sampling set Xt,i for every χg.
for g := 1, . . . , G do

(Step 2d)
Apply Algorithm A to obtain the support J̃t,i.g ⊂ Jt, |J̃t,i.g| ≤ s̃, of frequencies
belonging to the at most s̃ largest Fourier coefficients, each larger than θ in absolute
value, using the sampling values p(χg,xj), xj ∈ Xt,i.

19

Algorithm 3 continued.
(Step 2e)

Set I(1,...,t)
g := I

(1,...,t)
g ∪ J̃t,i,g.

end for g
Set I(1,...,t) := I(1,...,t) ∪ I(1,...,t)

g .
end for i

end for t
(Step 3) [Computation of Fourier coefficients]
Generate a sampling set X ⊂ Td for I(1,...,d) such that the corresponding Fourier matrix
A(X , I(1,...,d)) is of full column rank and its pseudoinverse can be applied efficiently.
for g := 1, . . . , G do

Compute the corresponding Fourier coefficients
(

˜̂p(1,...,d),k,g
)
k∈I(1,...,d)

.
end for g
Set Ĩ := I(1,...,d)

Output: Ĩ ⊂ Γ ⊂ Zd index set of detected frequencies
˜̂pg ∈ C|Ĩ| corresponding Fourier coefficients, | ˜̂p(1,...,d),k,g| ≥ θ for all χg

2.5 Expectation value of the approximation
With Algorithm 3 we can compute an approximated solution ŭ of the ODE (2.1). Often,
we are also interested in further quantities of interest as for example the nth moments of
the solution. A general approach on the computation of these quantities can be found in
[4]. In this work, we only consider the expectation value

E(ŭ(x, ·)) :=
∫
Dξ

ŭ(x, ξ) dµ(ξ) =
∫
Dξ

ŭ(x, ξ) p(ξ)dξ,

where p is the probability density function of the random variable vector ξ.
The evaluation of the formula above using our approximation ŭ obviously depends on the
used periodization ϕ and the distribution of the random variable ξ. In Section 2.6, we will
only work with uniformly distributed ξ, i.e., ξ ∼ U([−1, 1]dξ). Further, we will only use
the tent transform, cf. Example 2.1, as periodization function on our random variables ξ.
This allows us to realize the computation of the expectation value in an easy way, following
the main idea in [3]. As stated in Section 2.1, our approximation ŭ(x0, ξ) at a fixed point
x0 reads as

ŭ(x0, ξ) := ŜIx0
[u(x0, ·)](ξ) = ŜIx0

[ũ(x0, ·)](ϕ−1(ξ))
=

∑
k∈Ix0

ûx0,k e2πik·(ϕ−1(ξ)) ∀ ξ ∈ Dξ = [−1, 1]dξ .

20

Using the inverse of the tent transform ϕ−1 w.r.t. the interval [0, 0.5], we get

ŭ(x0, ξ) =
∑
k∈Ix0

ûx0,k e2πik· ξ+1
4

=
∑
k∈Ix0

ûx0,k eπik· ξ+1
2 ∀ ξ ∈ Dξ = [−1, 1]dξ .

Therefore and since the probability density function of the uniform distribution is just a
constant, we have

E(ŭ(x0, ·)) = 2−dξ

∫
[−1,1]dξ

ŭ(x0, ξ) dξ

= 2−dξ

∫
[−1,1]dξ

∑
k∈Ix0

ûx0,k eπik· ξ+1
2 dξ

= 2−dξ
∑
k∈Ix0

ûx0,k

∫
[−1,1]dξ

eπik· ξ+1
2 dξ

= 2−dξ
∑
k∈Ix0

ck ûx0,k, (2.19)

with

ck =
dξ∏
j=1

ckj
and ckj

=

−4
πikj

kj ≡ 1 mod 2
2 kj = 0
0 else.

(2.20)

This formula now allows us to evaluate the expectation value of our approximated solution
ŭ by simply summing up the computed Fourier coefficients with a certain scaling. A simliar
approach for the computation of the variance of our solution could be derived as in [3], but
will not be considered here.

2.6 Numerical results
For the numerical tests on our algorithm, we use a differential equation from [4]. We
consider the boundary-value problem

− ∂

∂x

(
a(x, ξ) ∂

∂x
u(x, ξ)

)
= 10 x ∈ [−1, 1], ξ ∈

20×
j=1

[−1, 1] (2.21a)

u(−1, ξ) = u(1, ξ) = 0 ∀ ξ ∈
20×
j=1

[−1, 1] (2.21b)

with the random coefficient

a(x, ξ) = a0 +
dξ/2∑
j=1

ξ2j−1
cos(jπx)

jγ
+ ξ2j

sin(jπx)
jγ

, (2.22)

21

ρ N s θ r

I 16 250 1 · 10−12 5
II 32 250 1 · 10−12 5
III 16 500 1 · 10−12 5
IV 32 500 1 · 10−12 5
V 64 500 1 · 10−12 5
VI 32 1000 1 · 10−12 5
VII 64 1000 1 · 10−12 5
VIII 32 2000 1 · 10−12 5
IX 64 2000 1 · 10−12 5

Table 3: Parameter settings for the numerical tests of Algorithm 3 with dξ = 20.

where γ ∈ R, γ > 1, a0 ∈ R, a0 > 2ζ(γ), dξ ∈ 2N, and ζ denotes the Riemann zeta
function. Further, we also choose a0 = 4.3, γ = 2, dξ = 20 and ξ uniformly distributed,
i.e., ξ ∼ U([−1, 1]dξ). Note, that (2.2) is fulfilled, since a ∈ [a0− 2ζ(γ), a0 + 2ζ(γ)] and for
our parameters this means a ∈ [4.3− π2/3, 4.3 + π2/3].
As already mentioned in Section 2.5, we only consider the tent transform as periodization
function on the random variables ξ in our approach, because it is one of the easiest and
straight forward periodizations one could think of. Further, the choice seems to be un-
favorable in terms of approximation quality because of the lack of smoothness, such that
other periodizations will probably lead to even smaller errors than the ones we will see in
the following examples.
We will use the notation ŭρ† for our approximated solution, where † = sR1L,mR1L, rR1L
characterizes the different kinds of our algorithm using single, multiple or random rank-1
lattices and ρ denotes the used uniform sFFT parameters, which can be found in Table
3. Note, that Algorithm 3 always works with the full grid Ĝdξ

N := {−N, ..., N}dξ as search
space Γ.
Further, all of our numerical tests will consider the equidistant grid

T +
199 :=

{
xg = g

100 − 1
}200

g=0
,

consisting of the 199 inner grid points T199 and the boundary points x0 = −1 and x200 = 1.

Remark 2.2
One important difference mentioned in Section 2.4.3 is the number of Fourier coefficients
in the output. While the sFFT will only output the sparsity s largest Fourier coefficients,
our modification of this algorithm will output an unknown number of Fourier coefficients,
but includes the sparsity s largest for each inner grid point xg ∈ T199. Our numerical tests
show, that the total number of Fourier coefficients in the output of the uniform sFFT is
roughly 2s, e.g., for sparsity s = 500 the algorithm detected amounts like 1013, 1021, 1027

22

or 1033 Fourier coefficients. Some random tests for larger grid sizes like T999 also showed
this behavior. Note, that for other input parameters than ours, significantly larger or
smaller grid sizes or other differential equations, this behavior might not hold. �

First, we will now take a look at the number of samples used in our algorithm using the
different parameters and rank-1 lattice approaches. Note, that the following Examples
always work with the ODE solver given in Remark 2.1. The Fourier solver from Section
2.3.1 will be considered in Example 2.10 separately.

Example 2.6
Table 4 shows the number of used samples for the different input parameters ρ of our
algorithm when using the different sampling strategies from Section 2.4.2 and the ODE
solver from Section 2.3.2. Note, that these number of samples were summed up over all
d = 20 dimensions and r = 5 detection iterations. Further, the amount of considered
frequency candidates is also given. Since the frequency candidate set is the same for each
detection iteration r, these are obviously not summed up over r = 5 but again over the
d = 20 dimensions.
The number of frequency candidates is nearly the same for same parameters ρ when using
different sampling strategies. This is not surprising, since it only depends on the size of
the index sets of detected frequencies I(1,...,t−1) and I(t), which do not depend on the used
sampling strategy, cf. Section 2.4.3 and Remark 2.2.
The number of used samples for multiple rank-1 lattices is larger than for single rank-1
lattices. This is, because our single rank-1 lattices probably behave way better than the
worst case bounds given in Section 2.4.2. Also, the relative difference between single and
multiple rank-1 lattices decays, when increasing the sparsity s and the extension of the
full grid N . So for larger s and N single rank-1 lattices will probably use more samples,
matching our expectations on the asymptotic behavior.
As expected by the results in Section 2.4.2, random rank-1 lattices seem to be superior
in terms of used samples, especially when it comes to large extensions N . Doubling the
extension N and therefore the number of frequency candidates, results in an increase in the
amount of used samples by roughly the same factor for single and multiple rank-1 lattices.
Random rank-1 lattices do not show this behavior, increasing the extension N only results
in a small increase in the amount of sampling nodes used. We also see the better behavior of
random rank-1 lattices for larger sparsities s compared to single rank-1 lattices. Therefore,
the random rank-1 lattice approach really outperforms the other approaches especially for
large input parameters ρ by a lot. �

Further, we want to test the precision of the uniform sFFT. To this end, as in [4], we first
compare our approximations of the solution pointwise against a suitable approximation of
the true solution of (2.21).

23

I II III IV V
s = 250, N = 16 s = 250, N = 32 s = 500, N = 16 s = 500, N = 32 s = 500, N = 64

single R1L
samples 5.35 · 106 1.17 · 107 1.35 · 107 3.21 · 107 6.91 · 107

freq. cand. 2.83 · 105 5.63 · 105 5.63 · 105 1.17 · 106 2.28 · 106

multiple R1L
samples 2.27 · 107 4.17 · 107 4.74 · 107 1.01 · 108 1.87 · 108

freq. cand. 2.96 · 105 5.57 · 105 5.74 · 105 1.13 · 106 2.20 · 106

random R1L
samples 6.14 · 106 6.48 · 106 1.29 · 107 1.44 · 107 1.43 · 107

freq. cand. 2.97 · 105 5.63 · 105 5.87 · 105 1.13 · 106 2.21 · 106

VI VII VIII IX
s = 1000, N = 32 s = 1000, N = 64 s = 2000, N = 32 s = 2000, N = 64

single R1L
samples 9.78 · 107 2.11 · 108 3.00 · 108 6.59 · 108

freq. cand. 2.35 · 106 4.87 · 106 4.67 · 106 9.40 · 106

multiple R1L
samples 2.14 · 108 4.47 · 108 4.85 · 108 9.98 · 108

freq. cand. 2.38 · 106 4.64 · 106 4.68 · 106 9.46 · 106

random R1L
samples 2.88 · 107 3.04 · 107 5.94 · 107 6.21 · 107

freq. cand. 2.41 · 106 4.87 · 106 5.14 · 106 1.04 · 107

Table 4: Number of used samples and considered frequency candidates over all dimension
increments and detection iterations for different parameters with dξ = 20.

Example 2.7
We compute an averaged error by calculating the pointwise difference of our approximated
solution ŭρ†(xg, ξi) and a suitable approximation of the true solution ǔ(xg, ξi) for each point
xg ∈ T +

199. The approximation ǔ is computed as given in (2.10) via numerical integration
using an relative error tolerance of 10−6. So we end up with

Errρ†(xg) := 1
ntest

ntest∑
i=1
|ǔ(xg, ξi)− ŭρ†(xg, ξi)|. (2.23)

Figure 2.4 illustrates this averaged pointwise error for ntest = 10000 when using single rank-
1 lattices. The green line shows the averaged function values ǔ(xg, ξi) for comparison, since
we are only working with absolute errors. The shown parameter settings ρ use different
sparsities s and the same extension N = 32.
The error is smaller for higher sparsities s and therefore more frequencies k and Fourier
coefficients ck(ũ(xg, ·)) used in the Fourier partial sum (2.5). The same holds for the shape

24

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−5

10−4

10−3

10−2

10−1

100

s=250 s=500 s=1000 s=2000

Figure 2.4: Averaged pointwise error ErrρsR1L with ntest = 10000 when using single rank-
1 lattices for parameter settings ρ = II, IV, VI, VIII, so with N = 32 and
different sparsities s. The green line is the function value ǔ(xg, ξi), averaged
over the ξi.

of the graph, the boundary conditions lead to a fast decay of the error when coming closer
to the boundary.
The error decreases by a lot when using for example s = 500 instead of s = 250. This
confirms, that for small sparsities s there are still large Fourier coefficients ck the algorithm
does not detect. On the other hand, for s = 1000 and s = 2000 we see, that even the
sparsity increase by 1000 only results in a relatively small error decrease. Therefore, we
expect, that we really detected the most important frequencies k in our search domain
Γ = Ĝ20

32 and a further increase of the sparsity s will result in even smaller error decreases,
since it only detects new frequencies k belonging to even smaller Fourier coefficients ck.
The same behavior shows when using multiple or random rank-1 lattices as sampling
strategies as we can see in Figure 2.5. The errors seem to be in the same order of magnitude
as for single rank-1 lattices. We will compare the errors when using the different rank-1
lattice sampling strategies soon. But first, we take a look at the role of the extension N
and therefore the search space Γ.
In Figure 2.6 the same error as in Figure 2.4 is shown, but this time for fixed sparsity
s = 500 and different extensions N . We see, that our approximation suffers, if we choose
the extension N too small. In fact, working with N = 32 or N = 64 allows the algorithm
to detect large Fourier coefficients in a much bigger search domain Γ. For N = 16, our
algorithm simply ignores some large Fourier coefficients outside of [−16, 16]20 due the
restriction of the search domain Γ.
The increase of N from 32 to 64 for sparsity s = 500 did result in a relatively small error
decrease. For this small sparsity, most of the s largest Fourier coefficients are already

25

−1 −0.5 0 0.5 110−6

10−5

10−4

10−3

s=250 s=500
s=1000 s=2000

(a) Multiple rank-1 lattices.
−1 −0.5 0 0.5 110−6

10−5

10−4

10−3

s=250 s=500
s=1000 s=2000

(b) Random rank-1 lattices.
Figure 2.5: Averaged pointwise error ErrρsR1L with ntest = 10000 when using multiple and

random rank-1 lattices for parameter settings ρ = III, IV, V, so with s = 500
and different extensions N .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110−5

10−4

10−3

N=16 N=32 N=64

Figure 2.6: Averaged pointwise error ErrρsR1L with ntest = 10000 when using single rank-1
lattices for parameter settings ρ = III, IV, V, so with s = 500 and different
extensions N .

located in [−32, 32]20. For larger sparsities, e.g., s = 2000, we obviously want to use larger
search domains Γ, as we see in Figure 2.7. This time, the larger extension N = 64 really
results in a lot of different detected frequencies belonging to larger Fourier coefficients and
therefore increasing the accuracy of our approximation. This behavior is matching our
theoretical expectations and reminds us to choose large enough extension N when working
with high sparsities s.

26

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−5

10−4

N=32 N=64

Figure 2.7: Averaged pointwise error ErrρsR1L with ntest = 10000 when using single rank-1
lattices for parameter settings ρ = VIII and IX , so with s = 2000 and different
extensions N .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−5

10−4

single R1L
multiple R1L
random R1L

Figure 2.8: Averaged pointwise error ErrρsR1L with ntest = 10000 when using different rank-1
lattice methods for parameter setting ρ = VI, so with s = 1000 and N = 32.

In Example 2.6 we saw, that the chosen sampling strategy strongly impacts the number of
used samples. Figure 2.8 shows the averaged pointwise error Errρ† for s = 1000 and N = 32
and the different sampling strategies. While the errors are very similar, we still see, that
multiple and random rank-1 lattices seem to outperform the single rank-1 lattice approach.
For multiple rank-1 lattices, we could argue by the larger total number of samples used,
since therefore the approximation contains more information about the real solution. Un-
fortunately, this argumentation will not hold when explaining the behavior for random
rank-1 lattices, since a significantly smaller number of samples was used there, cf. Table 4.
Another possible explanation is the way each sampling strategy deals with aliasing: Multi-
ple and random rank-1 lattices use averaging and median arguments when computing the

27

Fourier coefficients, cf. Section 2.4.2 and the given references therein. It seems, that these
methods tend to reduce the occurring aliasing errors and therefore increase the accuracy
of the whole approximation. �

Up to now, we considered averaged pointwise errors. In other words, we saw the error
we can expect in general when using our algorithm for arbitrarily chosen ξ. On the other
hand, there might be some worst case scenarios, where the particular ξ leads to a worse
approximation with a way larger pointwise error. Therefore, we now take a look at the
largest error occurring for each grid point xg for a set of ntest randomly chosen ξ. This
error can be considered as an approximate upper bound on the pointwise error for any ξ
and therefore on the approximation error in such worst case scenarios.

Example 2.8
We consider the maximum pointwise error

MaxErrρ†(xg) := max
i=1,...,ntest

|ǔ(xg, ξi)− ŭρ†(xg, ξi)|,

which is the largest error occurring for all ntest randomly chosen ξ. Note, that the particular
choice of the random parameter ξ impacts the differential equation and therefore the
accuracy of our approximation. The maximum error MaxErrρ† only considers the worst
approximation ŭρ†(xg, ξi) occurring for a certain ξi for each xg separately.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110−4

10−3

10−2

10−1

100

s=250 s=500
s=1000 s=2000

Figure 2.9: Maximum pointwise error MaxErrρsR1L with ntest = 100000 when using single
rank-1 lattices for parameter settings ρ = II, IV, VI, VIII, so with N = 32 and
different sparsities s. The green line is the smallest function value ǔ(xg, ξi)
occuring for each xg w.r.t. ξi.

28

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−3

10−2

s=500, N=32 s=500, N=64
s=1000, N=32 s=1000, N=64
s=2000, N=32 s=2000, N=64

Figure 2.10: Maximum pointwise error MaxErrρsR1L with ntest = 100000 when using single
rank-1 lattices for all parameter settings from ρ = IV to ρ = IX.

Figure 2.9 shows these errors for the same settings as in Figure 2.4. We increased the
number ntest by a factor of 10 to receive a smoother error plot. We see, that the errors
are slightly larger than before. So while the averaged error tends to be smaller than 10−3,
certain fixed random variables ξ may lead to errors up to 10−2. As for the averaged errors
we also notice, that the error is larger near the boundary around x = −0.7 and x = 0.7
than at x = 0. The increase of the sparsity s still reduces the error, but not as much as
before in Example 2.7.
A closer look at the maximum error MaxErrρ† for different pairings of s and N is given in
Figure 2.10. First, we take a look at the area around x = 0. There it shows, that for N = 32
the larger sparsities show nearly no increase in the approximation accuracy. The solution
at these grid points xg seems to be very sparse in the search domain Γ = [−32, 32]20,
such that the sparsity s = 500 already covers most of the important Fourier coefficients.
A similar observation can be seen for N = 64, but with smaller errors due to the larger
search domain Γ.
Near x = −0.7 and x = 0.7, the behavior is slightly different. Especially at the left side
x = −0.7, a larger search domain Γ shows nearly no impact for the sparsities s = 500 and
s = 1000. The structure of the solution at these points seems to be way more complicated
and we really need a lot of Fourier coefficients to achieve a good approximation.
In Figure 2.11 we make the same observation as before in Figure 2.8. The approximations
when using the different sampling strategies lead to nearly the same errors. Again, only
single rank-1 lattices seem to be slightly worse than multiple and random rank-1 lattices,
probably for the reason already stated above in Example 2.7. �

Since we know from Section 2.5 how to compute the expectation value of our approximated
solution, we can use it as another possibility to test the accuracy of our algorithm.

29

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−3

10−2

single R1L
multiple R1L
random R1L

Figure 2.11: Maximum pointwise error MaxErrρ† with ntest = 100000 when using different
sampling strategies for the parameter setting ρ = VIII, i.e., with s = 2000
and N = 32.

Example 2.9
We use the approach from Section 2.5, i.e., the formula (2.19) with the ck as defined in
(2.20). As a comparison, we compute the Monte-Carlo approximation of the expectation
value by

unMC(xg) := 1
nMC

nMC∑
i=1

ǔ(xg, ξi)

for each fixed xg. The error at these points is then computed by

Resρ†(xg) := |unMC(xg)− Eŭρ†(xg, ·)|.

In the following computations, we used nMC = 107, since we noticed the Monte-Carlo
approximation to be inaccurate for smaller nMC in our tests. Note, that especially for large
sparsities s and extensions N , which are leading to a smaller error, as we saw in Example
2.7, we want an even larger number of samples nMC. Otherwise, the error estimation Resρ†
suffers from the missing precision of our Monte-Carlo approximation and is therefore no
reliable error estimator.
Figure 2.12 illustrates this error for ρ = VI when using random rank-1 lattices. As men-
tioned earlier, we use numerical integration with an relative error tolerance of 10−6 to
compute the approximation of the true solution ǔ. Combined with the randomness when
drawing the ξ, the non-smooth structure of our error can be explained. In detail, the
Monte-Carlo approximation tends to oscillate around the computed expectation value of
our approximation of the solution. Nevertheless, the error tends to be very small compared
to the function values, matching our pointwise results from Example 2.7.

30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−7

10−5

10−3

10−1

ResρrR1L unMC

Figure 2.12: Expectation value error ResρrR1L with nMC = 107 when using random rank-1
lattices for parameter setting ρ = VI, so with N = 32 and sparsity s = 1000.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10−7

10−6

10−5

10−4

s = 500, N = 16 s = 2000, N = 64

Figure 2.13: Expectation value error ResρrR1L with nMC = 107 when using random rank-1
lattices for parameter setting ρ = III and IX.

The non-smooth structure of Resρ† makes it difficult to compare these errors for different
parameter settings ρ and sampling strategies †. Figure 2.13 shows the error for two very
different parameter settings ρ = III and ρ = IX. Therefore, the difference of the results
is large enough so they do not overlap each other too often and a tendency is visible. So
again we can see, that the larger sparsity s = 2000 combined with the larger extension
N = 64 results in a better approximation. This is obviously not surprising, but again a
good confirmation of our former results and theoretical expectations. �

31

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−5

10−4

s=500, N=32 s=500, N=64
s=1000, N=32 s=1000, N=64
s=2000, N=32 s=2000, N=64

Figure 2.14: Averaged pointwise error ErrρrR1L with ntest = 10000 when using the Fourier
solver based on the cosine periodization with NFourier = 256 for all parameter
settings from ρ = IV to ρ = IX.

Up to now, we have only worked with the numerical solver explained in Remark 2.1. The
following example uses the Fourier method proposed in Section 2.3.1 instead.

Example 2.10
Again, we consider the averaged pointwise error Errρ†(xg) as defined in (2.23). This time,
Algorithm 2 is used to compute the sampling values in our uniform sFFT. To avoid confu-
sion at this point, we now use the notation NFourier for the number of Fourier coefficients
used in the Fourier solver, cf. Section 2.3.1, and keep the variable N as the extension of the
full grid Ĝdξ

N . Further, the following tests always use the random rank-1 lattice approach
as sampling strategy, cf. Section 2.7.
In Figure 2.14 the Fourier solver was used with the cosine function, cf. Example 2.3, and
NFourier = 256. In Example 2.5 we saw, that for these choices the Fourier method solves the
differential equation with high precision. Therefore, it is not surprising, that the results
now are very similar to Example 2.7. The magnitude of the averaged pointwise Error
ErrρrR1L is the same as before and we also see the same behavior as before when using
different sparsities s and extensions N . One noticeable difference is the Fourier typical
oscillation of the error plot around x = 0, especially for large sparsities s.
By now, we tested the accuracy of our uniform sFFT based on the corresponding param-
eters and sampling strategies. While the non-intrusive algorithm allows for different ODE
solvers to be used inside the uniform sFFT, one could ask for the influence of the precision
of this solver on the final result. Now we can take a look at this influence by changing
the parameters of our Fourier solver. In Figure 2.3 we saw, how the precision of our solver
changes when working with different periodization functions ϕ and different NFourier. Fig-
ure 2.15 illustrates the results for the different periodizations and three different NFourier.
Note, that these periodization mappings are only used w.r.t. the spatial variable x for the

32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110−5

10−4

10−3

10−2

NFourier = 16 NFourier = 64 NFourier = 256

(a) Cosine periodization.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110−5

10−4

10−3

10−2

NFourier = 16 NFourier = 64 NFourier = 256

(b) Spline periodization.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

10−3

10−2

10−1

NFourier = 16 NFourier = 64 NFourier = 256

(c) Tent periodization.
Figure 2.15: Averaged pointwise error ErrρrR1L with ntest = 10000 when using the different

periodization functions ϕ and different NFourier for parameter setting ρ = IV,
so with s = 500 and N = 32.

ODE solver. As mentioned before, the uniform sFFT here only uses the tent transform on
the random variables ξ every time.
We notice, that the error for each pair of ϕ and NFourier, the errors are smaller at the
Fourier nodes. The larger errors between these nodes is because of the linear interpolation
to compute the missing sampling values there. Obviously, this effect is significantly larger
when using less Fourier nodes, so a smaller NFourier. On the other hand, near the Fourier
nodes, the magnitude of the errors for the spline and cosine periodizations for NFourier = 64
and NFourier = 256 are nearly the same. It seems like the precision of the solver is already
good enough for the spline function with NFourier = 64, such that a further increase of
NFourier or working with the better cosine periodization, does not result in a different
approximation up to the better interpolation behavior for largerNFourier as explained above.
For NFourier = 16, the error of our solver in Example 2.5 is in the same magnitude as the

33

error of our final result in Figure 2.15 near the Fourier nodes. It seems, that here the
precision of our solver is limiting our approximation. On the other hand, for the larger
NFourier, the solver works precise enough while the precision of the uniform sFFT in general
is limiting the results.
Using the tent transformation here as periodization function seems to achieve way worse
results. The non-smooth periodization, leading to a very slow error decrease as seen in
Example 2.5, results in heavily disturbed sampling values for the uniform sFFT, such that
the final approximation is nearly useless, especially for small NFourier. �

2.7 Discussion of the numerical results
First of all, the results in our numerical tests in Section 2.6 matched our theoretical ex-
pectations on the dimension-incremental algorithm in general, cf. Section 2.4.1.
The sparsity s as well as the extension N of the full grid Ĝdξ

N := {−N, ..., N}dξ and therefore
the size of our search space Γ influence the output of our algorithm significantly. We saw,
that in general the solution u(x, ξ) can be approximated really well already with small
sparsities as for example s = 1000 when choosing a suitable extension N .
Further, as discussed in Example 2.8, the errors might be slightly larger in some cases. So
while in general we will expect errors as in Example 2.7, we always have to keep in mind,
that there is a certain spread due to the randomness and so there are also cases for certain
ξ, where the approximation of our solution behaves slightly worse with errors as seen in
e.g., Figure 2.10.
The Fourier solver developed in Section 2.3.1 works very well compared to the numerical
solver. For large enough NFourier and a smooth periodization, the accuracy of the solver
is good enough and results in similar approximations. Note, that for large sparsities s
and extensions N we also need to choose a larger NFourier and/or a smoother periodiza-
tion. Otherwise, the precision of the Fourier solver is the limiting factor again and further
increases in the uniform sFFT parameters will show no effect. In general, we would rec-
ommend using very smooth periodizations as for example the cosine transformation (2.8).
Non-smooth periodizations require a very large NFourier to work reliably. This results in a
huge increase of the computation time of the solver and therefore the whole sampling step
of our uniform sFFT.
The different sampling strategies, proposed in Section 2.4.2 and the given references therein,
had a large impact on our Algorithm 3. The number of used samples in the uniform
sFFT is an important value. While we worked with two different ODE solvers given in
Section 2.3, the algorithm itself is non-intrusive and one may use any suitable solver on
the differential equation to compute the required sampling values. Each sample in our
algorithm is then one application of this differential equation solver. Even though these
executions are parallelizable, this will be the most expensive step of our algorithm for
almost every interesting differential equation we want to solve, as already mentioned in
Section 2.4.3.
In Example 2.6 we saw, that random rank-1 lattices outperform single and multiple rank-1
lattices in terms of used samples by a lot. So the usage of this sampling strategy seems

34

to be superior and results in the fastest overall computation time in the sampling step as
well as all other steps of the dimension-incremental algorithm, cf. Section 2.4.2 and Table
1. Further, the approximation errors occurring when using random rank-1 lattices do not
suffer from this lack of information as one could expect. The numerical examples showed,
that the errors for multiple and random rank-1 lattices are nearly the same and are also
slightly smaller than for single rank-1 lattices.
Overall, random rank-1 lattices seems to be the superior sampling strategy used in our
algorithm in many ways. The usage of single and multiple rank-1 lattices is way more
expensive and does not result in significantly better approximations. Therefore, in the
following part of this work, we will only consider Algorithm 3 with random rank-1 lattices
as used sampling strategy.

35

3 The two-dimensional case
As already stated in the previous section, the uniform sFFT is not limited to one-dimensional
spatial variables x. Therefore, we now proceed to partial differential equations with x ∈ D,
where D is assumed to be a bounded Lipschitz domain D ⊂ R2. So we now consider the
second order divergence form elliptic Dirichlet problem

−∇x · (a(x, ξ)∇xu(x, ξ)) = f(x), x ∈ D, ξ ∈ Dξ (3.1a)
u(x, ξ) = 0, ∀x ∈ ∂D, ξ ∈ Dξ, (3.1b)

with random coefficient a(x, ξ). The weak formulation of (3.1) reads: Given f ∈ H−1(D),
for every ξ ∈ Dξ find u(·, ξ) ∈ H1

0 (D), s.t.∫
D
a(x, ξ)∇xu(x, ξ) · ∇xv(x)dx =

∫
D
f(x)v(x)dx, ∀v ∈ H1

0 (D). (3.2)

Again, we ask the random coefficient a(x, ξ) to fulfill the uniform ellipticity assumption

0 < r ≤ a(x, ξ) ≤ R <∞ for almost all x ∈ D, for all ξ ∈ Dξ (3.3)

to ensure well-posedness of the problem (3.1). Further and more general notes on the
formulation of the PDE and its well-posedness can be found in [9] or [5].

3.1 The uniform sFFT on finite elements
As in Section 2, we assume Dξ = [−1, 1]dξ from now on. We will perform some minor
changes on our algorithm before using it on the two-dimensional problem. Most important,
we need a suitable method to solve the PDE (3.1) for a given ξ. Obviously, as in Section
2.3, any suitable solver can be used to do so due to the non-intrusive approach of the
uniform sFFT.
Here, we will only consider a similar approach as in Section 2.3.2, using an FEM. To this
end we work with the Partial Differential Equation ToolboxTM provided by Matlab R©. It
provides a numerical solution of the PDE using finite element analysis, i.e., we end up
with a finite element mesh for the given domain D and fixing ξ, the solver provides the
values u(x, ξ) for each node x of the mesh. Since the finite element mesh only depends
on the domain D and certain refinement parameters, we can ensure to use the same mesh
for each call of the PDE solver. Therefore, it seems reasonable to work with the nodes of
this mesh in the uniform sFFT instead of using an equidistant grid on the domain D as
in Section 2.4. Note, that only inner nodes x 6∈ ∂D are considered in the uniform sFFT.
The boundary condition (3.1b) ensures, that all Fourier coefficients for boundary nodes
x ∈ ∂D are zero, since the solution u(x, ξ) is constant zero w.r.t. the variable ξ at these
nodes.
As in the one-dimensional case, we denote the set of points the uniform sFFT is working
on, i.e., all the inner nodes of the FE mesh, as TG with G being the number of inner nodes.
The full FE mesh including the boundary nodes is accordingly denoted by T +

G .

36

Hmax # of elements # of nodes # of inner nodes
0.3 116 261 205
0.2 228 497 417
0.15 394 841 737
0.1 906 1893 1733

0.075 1652 3413 3197
0.05 3656 7473 7153

Table 5: Properties of the generated finite element mesh on D = [−1, 1]2 for different Hmax.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Hmax = 0.3
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) Hmax = 0.2
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c) Hmax = 0.1
Figure 3.1: Generated finite element mesh on D = [−1, 1]2 for different Hmax.

Example 3.1
We consider the domain D = [−1, 1]2. We use the refinement parameter Hmax, specifying
the target maximum mesh edge length. It is an approximate upper bound on the mesh
edge lengths and therefore a smaller value results in a more refined mesh.
Table 5 shows the numbers of elements and nodes of a finite element mesh using different
values for Hmax. Figure 3.1 illustrates some of these meshes. �

Remark 3.1
If another suitable method is used to solve the PDE (3.1), one maybe need to rethink this
particular grid strategy for x. For example, as in Section 2.3, one could choose a grid in
advance and receive the corresponding values u(x, ξ) via a suitable interpolation. This
strategy tends to be very general and can be used for most solvers, but obviously a more
specific approach fitting the particular solver might be favorable to avoid error increase by
the interpolation as seen in Example 2.10 and also end up with faster computation times.

�

37

Figure 3.2: The Monte-Carlo approximation of the expectation value of the solution of the
PDE using the random coefficient (3.4) and nMC = 107. The black dots are
the nodes of the FE mesh, on which the solution is approximated. The error
estimate is interpolated between these points for a better visualization.

3.2 Numerical results
For the numerical results on our uniform sFFT, we consider two examples using slightly
different random coefficients a(x, ξ). Both random coefficients are of the general form
a(x, ξ) = a0(x) + ∑

ξjaj(x). In the first example, the spatial variable x appears only
inside an Euclidean norm. Therefore, we will call this a(x, ξ) a radial random coefficient.
In the second example, the coefficient functions aj(x) are built by a product of cosine
functions in each spatial dimension xi, i = 1, 2.

3.2.1 A radial random coefficient

We consider the PDE (3.1) with the domain D = [−1, 1]2 and right-hand side f ≡ 10. As
in [5, Section 6], we use the random coefficient

a(x, ξ) = a0(x) +
dξ∑
j=1
ξj

cos(πj‖x‖)
jµ

, x ∈ [−1, 1]2, ξ ∈ [−1, 1]dξ (3.4)

with parameters µ = 2, a0 ≡ 4.3 and dξ = 20 as before, fulfilling the uniform ellipticity
assumption (3.3). Again, we assume the random variable ξ to be uniformly distributed,
i.e., ξ ∼ U([−1, 1]dξ). Figure 3.2 shows the Monte-Carlo approximation of the expectation
value of the solution to reveal the magnitude of the solution for comparison to the absolute
errors, which we see in the following examples.

38

(a) s = 250 (b) s = 500

(c) s = 1000 (d) s = 2000
Figure 3.3: Averaged pointwise error Errρ with ntest = 10000, Hmax = 0.15 and parameter

settings ρ =II, IV, VI and VIII, so with different sparsities s and extension
N = 32.

Example 3.2

We consider the averaged pointwise error Errρ(xg) as in Example 2.7, i.e.,

Errρ(xg) := 1
ntest

ntest∑
i=1
|ǔ(xg, ξi)− ŭρ(xg, ξi)|. (3.5)

Note, that xg ∈ [−1, 1]2, g = 1, ..., G, are now the inner nodes TG of our finite element mesh
as explained in Section 3.1. We choose Hmax = 0.15 for now, so we end up with G = 737
spatial nodes in our uniform sFFT. We use the same parameter settings ρ as for the one-
dimensional case, cf. Table 3, the random rank-1 lattice approach as sampling strategy for
the reasons stated in Section 2.7, and we choose ntest = 10000 as in the one-dimensional
examples.
Figure 3.3 shows the averaged pointwise error Errρ for different sparsities s and the exten-
sion N = 32. While we only evaluate the approximation error at the nodes of the FE mesh

39

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,00010−5

10−4

sparsity s

max, N = 32 max, N = 64
mean, N = 32 mean, N = 64

Figure 3.4: The maximum and mean value of the averaged pointwise errors Errρ with
ntest = 10000, Hmax = 0.15 for different sparsities s and two different extensions
N .

T+
G , i.e., the black dots in the plots, we use an interpolation based on these non-equidistant

data points T+
G provided by Matlab R© to visualize the results on the whole domain [−1, 1]2.

The approximation error seems to show the same behavior as in the one-dimensional test:
It increases very fast when moving away from the boundary and takes its highest values
in a ring around the center. We saw the similar effect in Example 2.7, where the error
was largest around x = ±0.7 and slightly smaller in the center x = 0. The magnitude of
the approximation errors is already very good. Using s = 2000, we achieve a precision of
roughly 8 ·10−5, which is very small compared to the range of the solution as seen in Figure
3.2. Unfortunately, the error plots look very similar for s = 500, s = 1000 and s = 2000,
indicating, that our extension N is too small and therefore no better approximation can
be achieved when using more and more frequencies.
Figure 3.4 illustrates this behavior in another way. Here, we see the maximum and mean
value of the averaged pointwise errors ErrρrR1L w.r.t. all nodes xg ∈ T +

G , i.e.,

max
xg∈T +

G

Errρ(xg) and 1
|T +
G |

∑
xg∈T +

G

Errρ(xg). (3.6)

Note, that we now also used the expansion N = 64 of the candidate set Γ = [−N,N]dξ

together with sparsity s = 250 for comparison reasons, which were not part of the original
parameter settings shown in Table 3. For N = 32 we clearly see the stagnation in both the
maximum and the mean value. On the other hand, the red and purple lines show the errors
for N = 64. These errors are smaller than for N = 32, as we would expect. Moreover,
we also seem to observe a beginning stagnation for larger sparsities s, but this stagnation
starts for larger s compared to the case N = 32.

40

(a) s = 500, N = 64, Hmax = 0.15 (b) s = 500, N = 64, Hmax = 0.075

(c) s = 1000, N = 32, Hmax = 0.15 (d) s = 1000, N = 32, Hmax = 0.075
Figure 3.5: Averaged pointwise error Errρ with ntest = 10000, parameter settings ρ =V and

VI and two different Hmax.

Up to now, we have worked with a FE mesh of G = 737 inner nodes using the parameter
Hmax = 0.15. Figure 3.5 illustrates the difference when using a finer mesh with G = 3197
inner nodes, i.e., Hmax = 0.075. We see, that for our particular example the finer mesh
does not achieve a significant decrease of the error, neither for the parameter setting ρ =
V nor ρ = VI. We end up with more points, where we evaluated the solution, but the error
size and the structure of the error is nearly the same in both cases. Accordingly, it will
not be necessary to further refine the FE mesh for our current example. �

Remark 3.2
Note, that for other choices of the random coefficient a(x, ξ) or other kinds of PDEs the
used FE mesh might not be fine enough. For example, if the solution is not very smooth at
some areas in the domain or possess very large derivatives there, it might be necessary to
refine the FE mesh in advance on the whole domain or at least on these particular areas,
to ensure a good approximation. Also, if we work with other domains than [−1, 1]2 as for

41

(a) s = 500 (b) s = 1000
Figure 3.6: Maximum pointwise error MaxErrρ with ntest = 10000, Hmax = 0.15 and pa-

rameter settings ρ =V and VII, so with different sparsities s and extension
N = 64.

example an L-shaped domain, we might also have to pay additional attention to certain
areas and the FE mesh there. �

In the one-dimensional examples we also studied the maximum pointwise errors MaxErrρ†
to achieve an approximation on the upper bound of the approximation error. The following
example does the same for our current PDE example, since the spread of the ξ will obviously
yield also larger errors than the ones shown in Example 3.2 in some cases.

Example 3.3
As in Example 2.8, we now consider the maximum pointwise error

MaxErrρ(xg) := max
i=1,...,ntest

|ǔ(xg, ξi)− ŭρ(xg, ξi)|. (3.7)

Figure 3.6 shows this error for the extension N = 64 and the sparsities s = 500 and
s = 1000. The general structure of the approximation error is the same as before up to
some small deviations, e.g., at x = (±0.8, 0)>.
Some more insight on the actual magnitude of the errors is given in Figure 3.7. There,
we see the maximum and mean values of the averaged pointwise errors Errρ as explained
in (3.6) and the same quantities for the maximum pointwise errors MaxErrρ. While the
maximum value of MaxErrρ(xg) at any grid point xg, so the largest possible error for these
parameters for any xg and any ξi, seems to stagnate around 1 · 10−3, the maximum value
of Errρ(xg) is about 30 times smaller.
Another observation we also made here and in Figure 3.4 is the small difference between
the maximum and mean value for both errors Errρ and MaxErrρ. Hence, the largest value
of these errors at any grid point xg is not that much larger than the error in general. So
there are no particular peaks, where the approximation is significantly worse than on the

42

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,00010−5

10−4

10−3

sparsity s

max, Errρ max, MaxErrρ

mean, Errρ mean, MaxErrρ

Figure 3.7: The maximum and mean value of the maximum pointwise errors MaxErrρ and
the averaged pointwise errors Errρ with ntest = 10000, Hmax = 0.15 for different
sparsities s and extension N = 64.

rest of the domain. We also see this in the colored plots, where the red color illustrates the
respectively largest errors but is also dominating the whole plot anyway. Here, we want to
stress on the fact, that the mean value of both errors is computed for all mesh nodes T+

G ,
i.e., the averaging also includes all boundary nodes, where the approximation error is zero
anyway. Therefore, the mean value is even smaller than the one computed by averaging
only over the inner nodes TG, where we actually computed our approximations. �

In Section 2.5 we explained, how to compute moments of the solution in general and gave
an easy formula for the computation of the expectation value under certain assumptions.
Since these assumptions still hold and the given approach is independent of the dimension
of the spatial variable x, we can use the same formula (2.19) now for the estimation of the
expectation value of our two-dimensional approximation.

Example 3.4
We consider an estimation of the expectation value of our approximation Eŭρ(xg, ·) using
the formula (2.19) with the ck as defined in (2.20). Again, we compare these estimations
with the Monte-Carlo approximation of the expectation value, i.e., with

unMC(xg) := 1
nMC

nMC∑
i=1

ǔ(xg, ξi)

for each xg ∈ TG. The error is then again computed by

Resρ(xg) := |unMC(xg)− Eŭρ(xg, ·)|. (3.8)

43

(a) s = 1000, N = 32 (b) s = 1000, N = 64

(c) s = 2000, N = 32 (d) s = 2000, N = 64
Figure 3.8: Expectation value error Resρ with nMC = 107 and Hmax = 0.15 for the param-

eter settings ρ = VI, VII, VIII and IX.

Figure 3.8 illustrates this error Resρ for different parameter settings ρ. The MC approxi-
mation used nMC = 107 samples and was already shown in Figure 3.2.
The magnitude of these errors is, as expected, slightly smaller than for the averaged point-
wise errors. Surprisingly, the setting ρ = IX, i.e., sparsity s = 2000 and extension N = 64,
yields slightly worse results than the settings with smaller parameters. A possible expla-
nation for this can be found in the stagnation for large sparsities, which we have seen in
Figures 3.4 and 3.7. The increase from s = 1000 to s = 2000 showed nearly no effect in each
case, i.e., the additional detected frequencies and the corresponding Fourier coefficients did
not influence the approximation in a significant way. While these additional terms result
in no harm but also nearly no improvement for the case N = 32 now, the error Res really
suffers from these small deviations in the approximation. So this is another indicator, that
we may need to use larger search domains, i.e., larger extensions N , when working with
this example for these high sparsities s. �

44

Remark 3.3
In Section 2.4.3 we mentioned, that the uniform sFFT detects more than sparsity s fre-
quencies due to the union of the sets of detected frequencies in each dimension-increment.
For the one-dimensional example, the algorithm terminated with roughly 2s Fourier coef-
ficients, cf. Remark 2.2.
However, the current example, i.e. the PDE (3.1) with the random coefficient (3.4), shows a
similar behaviour. The amount of detected frequencies in our tests is c ·s, with c ∈ [1.7, 1.9]
for the different sparsities s, extensions N and the two used refinement parameters Hmax.
So the factor c tends to be even smaller now than for the one-dimensional example, where
we found c to be slightly larger than 2 most of the time. �

3.2.2 A random coefficient from a cosine product space

Remember, that we are talking about random coefficients of the general form

a(x, ξ) = a0(x) +
dξ∑
j=1

ξj aj(x).

In the previous section, the spatial variable x appeared only inside of an Euclidean norm
in the coefficients aj(x) and therefore also in the whole random coefficient a(x, ξ). We now
test our uniform sFFT on another example, where the two components x1 and x2 appear
separately. Therefore, we use an example from [9], where the coefficients aj(x) in the sum
are chosen to be

aj(x) := ᾱ

jµ
cos(2πβ1(j)x1) cos(2πβ2(j)x2) (3.9)

with µ > 1 and some 0 < ᾱ < 1/ζ(µ), where ζ denotes the Riemann zeta function. We
choose µ = 2 to receive a similar decay as in (3.4). Further, we work with the choices
ᾱ = 0.9/ζ(2) ≈ 0.547 and a0 ≡ 1 to ensure the well-posedness of the problem. Finally, the
βi are defined as

β1(j) := j − k(j)(k(j) + 1)
2 and β2(j) := k(j)− β1(j)

with k(j) := b−1/2 +
√

1/4 + 2jc. Further notes on these coefficients and the parameter
choices can be found in [9, Section 11]. The random variable ξ is still assumed to be
uniformly distributed in dξ = 20 dimensions as before. The influence of the non-radial
structure of the random coefficient a(x, ξ) can be seen in Figure 3.9.

45

Figure 3.9: Two solutions of the PDE (3.1) using the random coefficient a(x, ξ) with (3.9)
for different, randomly chosen ξ.

(a) s = 1000, N = 32 (b) s = 1000, N = 64

(c) s = 2000, N = 32 (d) s = 2000, N = 64
Figure 3.10: Averaged pointwise error Errρ with ntest = 10000, Hmax = 0.15 and parameter

settings ρ = VI - IX.

46

Example 3.5

Figure 3.10 again illustrates the averaged pointwise error Errρ as given in (3.5). First of all,
we notice a completely different structure of the approximation error than before. There
are certain peaks, where the error Errρ is visibly larger than on the rest of the domain. The
highest peaks are very close to the boundary around (0,±1) and (±1, 0). So we see, that
the non-radial structure of the random coefficient a(x, ξ) results in solutions, that behave
completely different w.r.t. the random variable ξ.
The magnitude of the approximation error Errρ behaves similar w.r.t. the parameters s and
N as in Section 3.2.1. Especially off the peaks, the approximation is very good, resulting
in a small error on most parts of the domain. �

(a) s = 1000, N = 32 (b) s = 1000, N = 64

(c) s = 2000, N = 32 (d) s = 2000, N = 64
Figure 3.11: Maximum pointwise error MaxErrρ with ntest = 10000, Hmax = 0.15 and

parameter settings ρ = VI - IX.

47

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,00010−5

10−4

10−3

sparsity s

max, Errρ max, MaxErrρ

mean, Errρ mean, MaxErrρ

Figure 3.12: The maximum and mean value of the maximum pointwise errors MaxErrρ
and the averaged pointwise errors Errρ with ntest = 10000, Hmax = 0.15 for
different sparsities s and extension N = 64.

Example 3.6
We consider the maximum pointwise error MaxErrρ as given in (3.7). We see a similiar
behavior as for the averaged pointwise error Errρ. There we saw the four larger error peaks
around (0,±1) and (±1, 0) and several small peaks, especially in the case N = 64. In the
plots of MaxErrρ, we see all of these peaks more clearly. They are roughly located at the
intersections of the lines xi = 0 and xi = ±0.5 with i = 1, 2. Nevertheless, the largest peaks
appear near the boundaries x2 = ±1, which is similar to our observation in Example 3.5.
When increasing the sparsity from s = 1000 to s = 2000, the maximum value of the errors
does not change that much, but the approximations off the main peaks gets way better
and results in smaller errors on most parts of the domain. It remains to be investigated, if
a refinement of the FE mesh, especially near those peaks, can also reduce the errors even
further.
Figure 3.12 again compares the maximum and averaged values of the maximum pointwise
errors MaxErrρ and the averaged pointwise errors Errρ w.r.t. the spatial nodes xg. We
see, that the maximum values are much larger than the averaged values of both error
estimations. This is matching our observations, that the error at the observed peaks is
way larger than on the rest of the domain.
We notice, that the relative difference between MaxErrρ and Errρ is very similar to the one
we observed in Example 3.3. So the overall structure of the random coefficient might be
a little more difficult, but the influence of the random variable ξ and the spread resulting
from the randomness behave very similar. �

Finally, we take a look at the approximation of the expectation value of this solution as
well.

48

Figure 3.13: The Monte-Carlo approximation of the expectation value of the solution of
the PDE using the random coefficient a(x, ξ) with (3.9) and nMC = 107.

Example 3.7

We consider the error estimation Resρ, cf. (3.8), as before in Example 3.4. Again, we used
nMC = 107 samples to compute the MC approximation unMC shown in Figure 3.13.
We observe a different structure of the expectation value error Resρ in Figure 3.14 than for
the pointwise errors before. The peaks near (0,±1), that we saw in the previous examples,
are more inconspicuous and especially for the case N = 64 they nearly vanished. The
smaller peaks near (±0.5,±1) are still visible for N = 64. On the other hand, the areas
around x1 = ±0.8 now yield the largest approximation errors in each case. These areas are
also not really matching the smaller peaks we noticed in the former considerations. This
observation could suggest, that at these areas the pointwise approximation error is more
biased. Also, we need to consider, that our comparison value is not the exact expectation
value but a Monte-Carlo approximation. Therefore, smaller errors in this Monte-Carlo
approximation could also be a reason for the observed behavior.
Nevertheless, the error estimation Resρ is very small, so we are already working with a
good approximation of the expectation value. Surprisingly, the maximum value of this
error estimation grows when moving from N = 32 to N = 64. Moreover, this increase of
the error size only applies to some of the red regions, where the error was largest anyway.
On the other hand, many other areas seem to yield a better approximation, e.g., for
s = 2000 the red and yellow areas with larger errors around x1 = ±0.35 seem to disappear
completely in the case N = 64. The increase of the search domain Γ leads to the detection
of different frequencies in our uniform sFFT. In Figure 3.12 we saw, that for this particular
PDE and our parameters the stagnation did not start yet or at least not as much as in
Section 3.2.1, cf. Figure 3.7. It seems, that the new frequencies manage to yield a better
approximation for some areas as the ones around x1 = ±0.35, but also a slightly worse
approximation for some other areas, especially around x1 = ±0.8. This again indicates,
that currently the sparsity s is the restricting parameter and should be chosen a little bit
larger for these extensions N . The increase of the maximum value of the approximation

49

(a) s = 1000, N = 32 (b) s = 1000, N = 64

(c) s = 2000, N = 32 (d) s = 2000, N = 64
Figure 3.14: Expectation value error Resρ with nMC = 107 and Hmax = 0.15 for the pa-

rameter settings ρ = VI, VII, VIII and IX.

error Resρ is about 2 · 10−6. Comparing the mean values of the errors w.r.t. the spatial
nodes xg, we observe slightly larger values for N = 64 compared to N = 32. The difference
is in the order of magnitude of 10−7. �

Remark 3.4
As in Remark 3.3, we finally take a look at the total number of frequencies detected for
the PDE with the random coefficient as defined in Section 3.2.2.
We denote the amount of detected frequencies in our tests with c · s again. The factor c
ranges from 2.46 to 2.54 this time. This larger c is a result of the more complicated structure
of the random coefficient a(x, ξ). The different functions u(xg, ·), g = 1, ..., G, are not as
similar as for the random coefficient defined in (3.4). Therefore, the detected index sets
in each dimension-increment of our algorithm share some less frequencies, resulting in a
larger number of total frequencies when joining them. �

50

4 Summary & Outlook
We show, that the uniform sFFT is a powerful tool for solving differential equations with
random coefficients. Our numerical tests showed, that even for small sparsities and search
domain parameters good approximations can be achieved. Moreover, we noticed, that
we need to choose these parameters carefully, since too large sparsities s show no effect
when the extension N and therefore the search domain Γ is too small and vice versa.
This is one example for a basic property of the sFFT that still holds true for our uniform
sFFT. Other properties and the influence of other sFFT parameters, as for example the
number of detection iterations r, will probably also have similar effects as in the sFFT,
but were not tested and studied in our examples. Further, we want to stress on the fact
that our algorithm automatically reveals detailed characteristics of the random variables.
These information, e.g., the influence of each random variable ξj on the solution or the
interactions between these random variables, are very meaningful and can be computed by
our algorithm with reasonable computational cost.
One of the most important steps in our approach is the periodization of the random variable
ξ. We presented some general assumptions on suitable periodizations and three particular
periodization mappings in Section 2.2, but the tent transformation was the only periodiza-
tion mapping used w.r.t. the random variable ξ in our numerical tests. Although this
choice simplifies some formulas and computations, e.g., the computation of the moments
of the solution, there might be better alternatives due to the lack of smoothness of the tent
transform. Therefore, smoother periodization mappings are highly interesting and should
be subject of further tests and research on this algorithm.
In this work, we only considered the diffusion equation with random coefficients a(x, ξ)
of a particular form and on the domain D = [−1, 1]d, d = 1, 2. As mentioned before,
our algorithm is not restricted to these particular assumptions due to the non-intrusive
approach. Approximations on more complicated domains, e.g., circular or L-shaped do-
mains, only require a suitable PDE solver and can easily be studied. Another interest-
ing topic is the type of the random coefficient a(x, ξ). Here, we used the linear model
a(x, ξ) = a0(x) +∑

ξjaj(x). Other models, e.g., log-normal random coefficients as in [11]
or periodic random coefficients as in [13], should be studied with this algorithm as well.
The influence of the random variables ξj and interactions between them can be revealed
by our algorithm and give deeper insight on the used models.
A crucial point in the uniform sFFT is the union of the detected frequencies in each
dimension-increment. We saw, that these frequencies were very similar for the different
grid points xg and therefore resulted in only a small increase in the number of output
frequencies. It remains to be investigated, if this increase in the amount of detected
frequencies can be bounded under certain assumptions. So for example, is it possible to
prove that the uniform sFFT detects the same frequencies in each dimension-increment up
to a certain variation if the functions u(xg, ·) for the different grid points xg are known to
be in certain function spaces? Such theoretical results are not shown yet, but will be very
important to gain a better understanding of the advantageous behavior of our algorithm.
Further, the uniform sFFT can be generalized on functionals. In this work, we considered

51

the evaluation of the solution u on certain points xg. In other words, we used the evaluation
functionals exg with exg(u(ξ)) := u(xg, ξ). We can generalize this approach by using other
and more complicated functionals Fk on the solution u instead. As before, we have to
take care that these functionals Fg are of a similar structure to end up with a reasonable
union of the detected frequencies in the dimension-incremental steps. Then, we end up
with approximations of all the Fg with one use of the uniform sFFT. Additionally, we then
may also investigate the detailed information on the influence of the random variable ξ on
these functionals.
The number of used samples and the computational cost of our uniform sFFT are signifi-
cantly smaller than for applying the sFFT G times separately, i.e., at each point xg ∈ TG.
Nevertheless, any further decrease of these attributes comes in handy. Especially the num-
ber of used samples plays an important role, since the call of the used differential equation
solver is very expensive in general. Therefore, the majority of the computation time of our
uniform sFFT is used in the sampling step. Hence, the application of very efficient differ-
ential equation solvers is highly recommended. We already reduced the number of used
samples in this work by using random rank-1 lattices instead of single or multiple rank-1
lattices, cf. Sections 2.4.2 and 2.7. Further methods to decrease the number of sampling
nodes without increasing the approximation error too much are desirable. And since the
call of the underlying PDE solver can be parallelized, the usage of multiple workers also
reduces the computation time by a significant amount if available.

52

References
[1] M. Bachmayr, A. Cohen, and W. Dahmen. “Parametric PDEs: Sparse or Low-Rank

Approximations?” In: IMA Journal of Numerical Analysis 38 (July 2016). doi: 10.
1093/imanum/drx052.

[2] M. Bachmayr, A. Cohen, and G. Migliorati. “Representations of Gaussian Random
Fields and Approximation of Elliptic PDEs with Lognormal Coefficients”. In: Journal
of Fourier Analysis and Applications 24 (June 2018). doi: 10.1007/s00041-017-
9539-5.

[3] M. Bochmann. “Hochdimensionale Fourier-Methoden für Differentialgleichungen mit
zufälligen Koeffizienten”. Bachelor Thesis. TU Chemnitz, 2017.

[4] M. Bochmann, L. Kämmerer, and D. Potts. “A sparse FFT approach for ODE with
random coefficients”. In: Advances in Computational Mathematics 46 (July 2020).
doi: 10.1007/s10444-020-09807-w.

[5] J.-L. Bouchot, H. Rauhut, and C. Schwab. Multi-level Compressed Sensing Petrov-
Galerkin discretization of high-dimensional parametric PDEs. Dec. 2017. arXiv: 1701.
01671v2 [math.NA].

[6] A. Cohen, R. DeVore, and C. Schwab. “Convergence Rates of Best N-term Galerkin
Approximations for a Class of Elliptic sPDEs”. In: Foundations of Computational
Mathematics 10 (Dec. 2010), pp. 615–646. doi: 10.1007/s10208-010-9072-2.

[7] J. Dick, F. Kuo, Q. Le Gia, and C. Schwab. “Multilevel Higher Order QMC Petrov–
Galerkin Discretization for Affine Parametric Operator Equations”. In: SIAM Journal
on Numerical Analysis 54 (Jan. 2016), pp. 2541–2568. doi: 10.1137/16M1078690.

[8] J. Dick, Q. Le Gia, and C. Schwab. “Higher Order Quasi–Monte Carlo Integration
for Holomorphic, Parametric Operator Equations”. In: SIAM/ASA Journal on Un-
certainty Quantification 4 (Sept. 2014). doi: 10.1137/140985913.

[9] M. Eigel, C. Gittelson, C. Schwab, and E. Zander. “Adaptive stochastic Galerkin
FEM”. In: Computer Methods in Applied Mechanics and Engineering 270 (Mar.
2014), pp. 247–269. doi: 10.1016/j.cma.2013.11.015.

[10] R. Gantner, L. Herrmann, and C. Schwab. “Multilevel QMC with Product Weights
for Affine-Parametric, Elliptic PDEs”. In: Contemporary Computational Mathematics
- A Celebration of the 80th Birthday of Ian Sloan (May 2018), pp. 373–405. doi:
10.1007/978-3-319-72456-0_18.

[11] I. Graham, F. Kuo, J. Nichols, R. Scheichl, C. Schwab, and I. Sloan. “Quasi-Monte
Carlo finite element methods for elliptic PDEs with log-normal random coefficients”.
In: SAM Report, ETH Zurich 2013-14 (May 2013). doi: 10.1007/s00211- 014-
0689-y.

[12] V. Kaarnioja, Y. Kazashi, F. Kuo, F. Nobile, and I. Sloan. Fast approximation by
periodic kernel-based lattice-point interpolation with application in uncertainty quan-
tification. July 2020. arXiv: 2007.06367 [math.NA].

53

https://doi.org/10.1093/imanum/drx052
https://doi.org/10.1093/imanum/drx052
https://doi.org/10.1007/s00041-017-9539-5
https://doi.org/10.1007/s00041-017-9539-5
https://doi.org/10.1007/s10444-020-09807-w
https://arxiv.org/abs/1701.01671v2
https://arxiv.org/abs/1701.01671v2
https://doi.org/10.1007/s10208-010-9072-2
https://doi.org/10.1137/16M1078690
https://doi.org/10.1137/140985913
https://doi.org/10.1016/j.cma.2013.11.015
https://doi.org/10.1007/978-3-319-72456-0_18
https://doi.org/10.1007/s00211-014-0689-y
https://doi.org/10.1007/s00211-014-0689-y
https://arxiv.org/abs/2007.06367

[13] V. Kaarnioja, F. Kuo, and I. Sloan. “Uncertainty Quantification Using Periodic Ran-
dom Variables”. In: SIAM Journal on Numerical Analysis 58 (Jan. 2020), pp. 1068–
1091. doi: 10.1137/19M1262796.

[14] L. Kämmerer. “Reconstructing Multivariate Trigonometric Polynomials from Sam-
ples Along Rank-1 Lattices”. In: Approximation Theory XIV: San Antonio 2013 (Jan.
2014), pp. 255–271. doi: 10.1007/978-3-319-06404-8_14.

[15] L. Kämmerer, F. Krahmer, and T. Volkmer. A sample efficient sparse FFT for ar-
bitrary frequency candidate sets in high dimensions. June 2020. arXiv: 2006.13053
[math.NA].

[16] L. Kämmerer, D. Potts, and T. Volkmer. “High-dimensional sparse FFT based on
sampling along multiple rank-1 lattices”. In: Applied and Computational Harmonic
Analysis 51 (Nov. 2017). doi: 10.1016/j.acha.2020.11.002.

[17] F. Kuo, C. Schwab, and I. Sloan. “Multi-level Quasi-Monte Carlo Finite Element
Methods for a Class of Elliptic PDEs with Random Coefficients”. In: Foundations
of Computational Mathematics 15 (Jan. 2015), pp. 411–449. doi: 10.1007/s10208-
014-9237-5.

[18] F. Kuo, C. Schwab, and I. Sloan. “Quasi-Monte Carlo Finite Element Methods for
a Class of Elliptic Partial Differential Equations with Random Coefficients”. In:
SIAM Journal on Numerical Analysis 50 (Jan. 2012), pp. 3351–3374. doi: 10.1137/
110845537.

[19] D. Potts and M. Tasche. “Parameter estimation for multivariate exponential sums”.
In: Electronic Transactions on Numerical Analysis 40 (Jan. 2013), pp. 204–224.

[20] D. Potts and T. Volkmer. “Sparse high-dimensional FFT based on rank-1 lattice
sampling”. In: Applied and Computational Harmonic Analysis 41 (June 2015). doi:
10.1016/j.acha.2015.05.002.

[21] C. Schwab. “QMC Galerkin Discretization of Parametric Operator Equations”. In:
Springer Proceedings in Mathematics and Statistics 65 (Jan. 2013), pp. 613–629. doi:
10.1007/978-3-642-41095-6_32.

54

https://doi.org/10.1137/19M1262796
https://doi.org/10.1007/978-3-319-06404-8_14
https://arxiv.org/abs/2006.13053
https://arxiv.org/abs/2006.13053
https://doi.org/10.1016/j.acha.2020.11.002
https://doi.org/10.1007/s10208-014-9237-5
https://doi.org/10.1007/s10208-014-9237-5
https://doi.org/10.1137/110845537
https://doi.org/10.1137/110845537
https://doi.org/10.1016/j.acha.2015.05.002
https://doi.org/10.1007/978-3-642-41095-6_32

Studentenservice – Zentrales Prüfungsamt
Selbstständigkeitserklärung

Name:

Vorname:

geb. am:

Matr.-Nr.:

Bitte beachten:

1. Bitte binden Sie dieses Blatt am Ende Ihrer Arbeit ein.

Selbstständigkeitserklärung*

Ich erkläre gegenüber der Technischen Universität Chemnitz, dass ich die vorliegende
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen
sind, habe ich als solche kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht und ist auch noch nicht
veröffentlicht.

Datum: ……………………………………. Unterschrift: ………………………………………………………………………

 d
* Statement of Authorship

I hereby certify to the Technische Universität Chemnitz that this thesis is all my own work and uses no external material other
than that acknowledged in the text.

This work contains no plagiarism and all sentences or passages directly quoted from other people’s work or including content
derived from such work have been specifically credited to the authors and sources.

This paper has neither been submitted in the same or a similar form to any other examiner nor for the award of any other
degree, nor has it previously been published.

	Introduction
	The one-dimensional case
	The general approach
	Periodization
	Solving the ODE
	An efficient Fourier solver
	Independent numerical solvers

	The uniform sFFT
	The dimension-incremental method
	Sampling strategies based on rank-1 lattices
	Modifying the sFFT

	Expectation value of the approximation
	Numerical results
	Discussion of the numerical results

	The two-dimensional case
	The uniform sFFT on finite elements
	Numerical results
	A radial random coefficient
	A random coefficient from a cosine product space

	Summary & Outlook
	References

