

Resolutions & the DuBois complex

① Simplicial & cubical resolutions

X : alg. var / \mathbb{C}

Def.: A "simplicial variety augmented towards X " is a sequence

$$\dots \rightarrow X_2 \xrightarrow{\epsilon_{2,0}} X_1 \xrightarrow{\epsilon_{1,0}} X_0 \xrightarrow{\epsilon_{0,0}} X$$

$\downarrow \epsilon_{2,2}$

with $\epsilon_{i,j} \circ \epsilon_{i+1,j} = \epsilon_{i,j} \circ \epsilon_{i+1,j+1}$ $\forall i,j$ (*)

(*) implies that there is a unique morphism $\epsilon_k: X_k \rightarrow X \quad \forall k$
 given by any composition of $\epsilon_{i,j}$

e.g., $\epsilon_2 := \epsilon_{0,0} \circ \epsilon_{1,0} \circ \epsilon_{2,0}$

note that

$$\begin{aligned} \underbrace{\epsilon_{0,0} \circ \epsilon_{1,0} \circ \epsilon_{2,2}}_{\epsilon_{0,0} \circ \epsilon_{1,1}} &= \underbrace{\epsilon_{0,0} \circ \epsilon_{1,0}}_{\epsilon_{1,0} \circ \epsilon_{2,0}} \circ \epsilon_{2,1} \\ &= \underbrace{\epsilon_{1,1} \circ \epsilon_{2,1}}_{\epsilon_{0,0} \circ \epsilon_{1,0}} \end{aligned}$$

Rem.: A sequence

$$\dots \rightarrow X_2 \xrightarrow{\epsilon_{2,0}} X_1 \rightarrow X_0$$

is the same as a functor

$$\Delta^{\text{op}} \rightarrow \text{Var}_{\mathbb{C}}$$

where Δ is the category with objects $\{1, \dots, k\}$, $k \in \mathbb{N}$
 morphisms: order-preserving maps

Note : $X_0 \xrightarrow[\epsilon_0]{\alpha_0, 0} X$

One has $\epsilon_0^* \mathbb{Z}_X \cong \mathbb{Z}_{X_0}$

adjunction $\rightsquigarrow \mathbb{Z}_X \rightarrow \mathcal{R}\mathbb{Z}_{X_0}$

similarly $X_1 \xrightarrow[\epsilon_{1,1}]{\alpha_{1,0}} X_0$

one gets $\mathbb{Z}_{X_0} \rightarrow \mathcal{R}\mathbb{Z}_{X_1}$
 $\mathbb{Z}_{X_0} \rightarrow \mathcal{R}\mathbb{Z}_{X_1}$

apply $\mathcal{R}\mathbb{Z}_{\text{opt}}$ to both maps

→ two (different) maps

$$\mathcal{R}\mathbb{Z}_{\text{opt}} \mathbb{Z}_{X_0} \xrightarrow[a]{b} \mathcal{R}\mathbb{Z}_{\text{opt}} \mathbb{Z}_{X_1}$$

define $\varphi_1 : \mathcal{R}\mathbb{Z}_{\text{opt}} \mathbb{Z}_{X_0} \rightarrow \mathcal{R}\mathbb{Z}_{\text{opt}} \mathbb{Z}_{X_1}$
 to be $a - b$.

similarly: from $X_2 \rightarrow X_1$ we get

$$\mathcal{R}\mathbb{Z}_{\text{opt}} \mathbb{Z}_{X_1} \xrightarrow[\gamma]{\alpha, \beta} \mathcal{R}\mathbb{Z}_{\text{opt}} \mathbb{Z}_{X_2}$$

three maps.

Define $\varphi_2 := \alpha - \beta + \gamma$

altogether, we obtain a sequence

of morphisms in $D^b(\mathbb{Z}_X)$

$$\mathbb{Z}_X \rightarrow R_{\mathbb{Z}_0} \mathbb{Z}_{X_0} \xrightarrow{\psi_1} R_{\mathbb{Z}_{1*}} \mathbb{Z}_{X_1} \xrightarrow{\psi_2} \dots$$

Def.: A "simplicial variety augmented towards X " is called a simplicial resolution (or hyper-resolution) if

- X_i smooth $\forall i \geq 0$

- $\mathbb{E}_{i,j}$ proper $\forall i,j$

- $\mathbb{Z}_X \xrightarrow{\sim} [R_{\mathbb{Z}_0} \mathbb{Z}_{X_0} \xrightarrow{\psi_1} R_{\mathbb{Z}_{1*}} \mathbb{Z}_{X_1} \xrightarrow{\psi_2} \dots]$

iterated cone of

$$R_{\mathbb{Z}_0} \mathbb{Z}_{X_0} \rightarrow R_{\mathbb{Z}_{1*}} \mathbb{Z}_{X_1} \rightarrow R_{\mathbb{Z}_{2*}} \mathbb{Z}_{X_2} \dots$$

take flabby resolutions of \mathbb{Z}_{X_i}

$$\begin{array}{c} \mathbb{E}_0 \mathbb{F}_{0,1} \rightarrow \mathbb{E}_1 \mathbb{F}_{1,1} \rightarrow \\ \downarrow \quad \downarrow \\ \mathbb{E}_0 \mathbb{F}_{0,2} \rightarrow \mathbb{E}_1 \mathbb{F}_{1,2} \rightarrow \\ \downarrow \quad \downarrow \\ \vdots \quad \vdots \end{array}$$

take the total ch.

iterated cone

(we say it satisfies conehomological descent)

Ex a) $X = V(y^2 - x^3) \subset \mathbb{C}^2$

$f: \tilde{X} \rightarrow X$ normalization

homeomorphism

Clearly $Rf_* \mathbb{Z}_{\tilde{X}} \cong \mathbb{Z}_X$

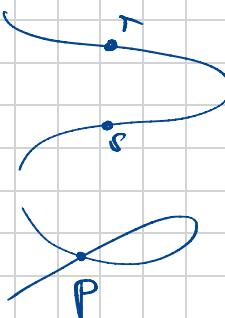
this is cohomological descent

$$\begin{array}{ccc} \tilde{X} & \rightarrow & X \\ \downarrow & & \leftarrow \text{hyperresolution of } X \\ X_0 & & \end{array}$$

b) $X = V(y^2 - x^2 - x^3) \subset \mathbb{C}^2$

$f: \tilde{X} \rightarrow X$ normalization

$f_* \mathbb{Z}_{\tilde{X}} \xrightarrow{\cong} \mathbb{Z}_X$



consider

$$\begin{array}{ccc} \{r, s\} & \xrightarrow{i} & \tilde{x} \\ f \downarrow & & \downarrow f \\ \{p\} & \xrightarrow{i} & x \\ X_1 = \{r, s\} & \xrightarrow{\begin{matrix} i \\ f \end{matrix}} & X_0 := \tilde{x} \sqcup \{p\} & \xrightarrow{(f, i)} & X \end{array}$$

Claim: this is a hyperres

$$\mathbb{Z}_{\{p\}} \oplus \mathbb{Z}_{\{p\}}$$

$$0 \rightarrow \mathbb{Z}_X \rightarrow Rf_* \mathbb{Z}_X \oplus R^{i_*} \mathbb{Z}_{\{p\}} \rightarrow f_* \mathbb{Z}_{\{p\}} \oplus f_* \mathbb{Z}_{\{p\}}$$

$$R(f, i)_* \mathbb{Z}_{X_0}$$

$$R_{i_*} \mathbb{Z}_{X_0}$$

↓

0

is a short exact sequence

→ we get a distinguished triangle in $D^b(\mathbb{Z}_X)$

$$\mathbb{Z}_x \rightarrow \text{Res}_{\mathbb{Z}_x} \xrightarrow{\varphi_x} \text{Res}_{\mathbb{Z}_x} \xrightarrow{\cong}$$

$\Rightarrow \mathbb{Z}_x$ is the cone of φ_x

c) In general, given a proper $f: \tilde{X} \rightarrow X$
and $Z \subset X$ with

$$\tilde{X} \setminus E \cong X \setminus Z \quad (E := f^{-1}(Z)_{\text{red}})$$

then we get a square

$$\begin{array}{ccc} E & \xrightarrow{\cong} & \tilde{X} \\ f \downarrow & & \downarrow f \\ Z & \xrightarrow[i]{} & X \end{array}$$

set $X_0 = \tilde{X} \cup Z$

$$X_1 = E$$

get:

$$X_1 \supseteq X_0 \rightarrow X \quad (\Delta)$$

which satisfies homological descent

Therefore, (\mathcal{S}) is a hypersolution of X
whenever E, Z, X are smooth.

d) If E is not smooth, but a snc divisor

\cap
 X smooth

$$E = E_1 + \dots + E_n$$

set $X_k := \bigsqcup_{i_0 < \dots < i_k} E_{i_0} \cap \dots \cap E_{i_k}$

$$\varepsilon_{kj} : X_k \rightarrow X_{k-1} \text{ induced by inclusions}$$

Simplest case : $E = E_1 + E_2$

$$X_1 = E_1 \cap E_2 \quad X_0 = E_1 \cup E_2$$

cohomological descent follows from

Mayer-Vietoris sequence

$$0 \rightarrow \mathbb{Z}_E \rightarrow \mathbb{Z}_{E_1} \oplus \mathbb{Z}_{E_2} \rightarrow \mathbb{Z}_{E_1 \cap E_2} \rightarrow 0$$

$\rightsquigarrow X_1 \xrightarrow{\quad} X_0 \rightarrow E$ is a hyperresolution

Def. A (n-) cubical variety is a functor

$$\square_n^{\text{op}} \rightarrow \text{Var}_c$$

(category of subsets of $\{0, \dots, n-1\}$
+ inclusions)

$n=2$

$$\begin{array}{ccc} X_{\{0,1\}} & \xrightarrow{\quad} & X_{\{1\}} \\ \downarrow & & \downarrow \\ X_{\{0\}} & \xrightarrow{\quad} & X_{\emptyset} \end{array}$$

$n=3$

$$\begin{array}{ccccc} & & X_{012} & \longrightarrow & X_{12} \\ & \swarrow & \downarrow & \searrow & \downarrow \\ X_{0,1} & \xrightarrow{\quad} & X_1 & & X_2 \\ \downarrow & & \downarrow & & \downarrow \\ & X_{02} & \xrightarrow{\quad} & X_2 & \\ & \swarrow & & & \downarrow \\ X_0 & \longrightarrow & X_{\emptyset} & & \end{array}$$

It is called a cubical resolution of X
if $\bullet X_{\emptyset} = X$

- X_I smooth $\forall I \subset \{0, \dots, n-1\}$
 $I \neq \emptyset$
- $E_{I \subseteq J}$ proper $\forall I, J$
- the associated hyperresolution $\xrightarrow{\text{cohomological descent}}$ satisfies

Rk: A cubical variety determines a simplicial variety augmented towards X_0

ex $n=3$

$$X_0 := X_{\{2\}} \cup X_{\{1,2\}} \cup X_{\{2,3\}} \longrightarrow X_\infty \text{ clear}$$

$\begin{smallmatrix} E_{1,0} \\ \nearrow \\ E_{1,1} \end{smallmatrix}$

$$X_1 := X_{\{0,2\}} \cup X_{\{0,1,2\}} \cup X_{\{1,2\}}$$

$$E_{1,0} : X_{\{0,2\}} \rightarrow X_{\{0\}}, \quad X_{\{0,2\}} \rightarrow X_{\{0\}}, \quad X_{1,2} \rightarrow X_1$$

$$E_{1,1} : X_{0,1} \rightarrow X_1, X_{02} \rightarrow X_2, X_{12} \rightarrow X_2$$

Existence of resolutions

Thm (Deligne, Guillén - Navarro - Hernández - Pascal - Guadarrama - Puerto)

1982

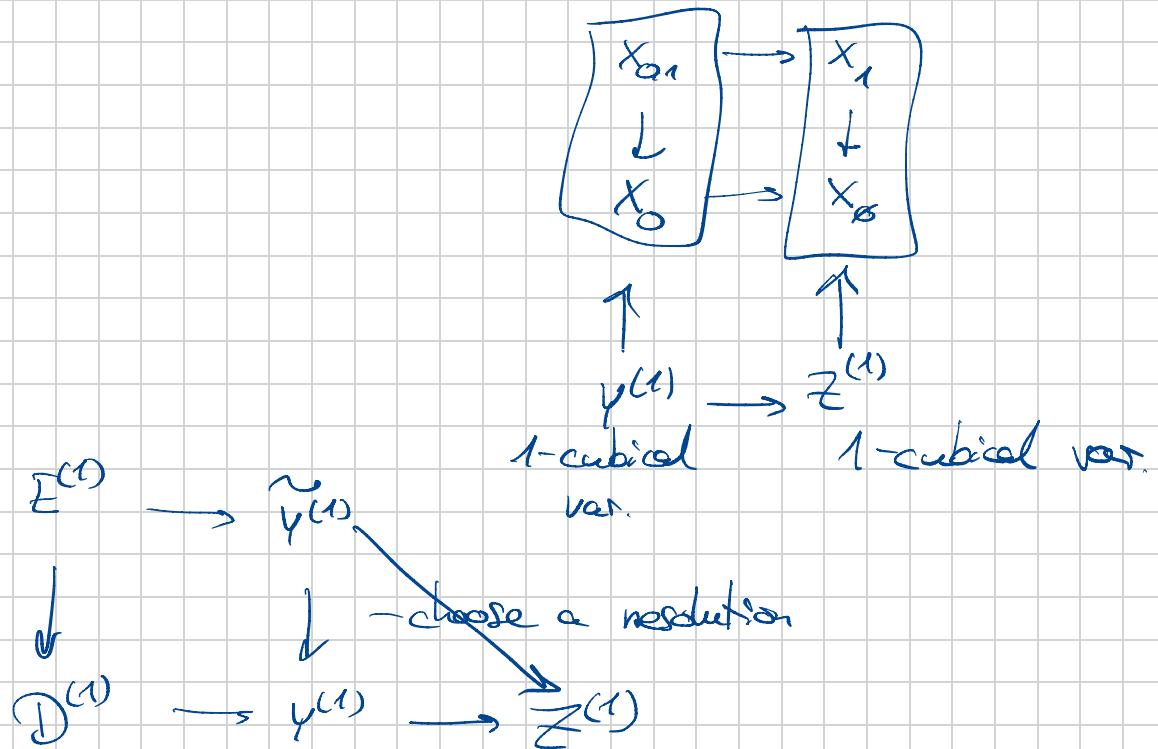
A variety X of dimension n admits a hyperresolution with $\dim X_i \leq n-i$ (of length $\leq n$).

Proof sketch: One proves the existence of a $(n+1)$ -cubical resolution with $\dim X_I \leq n - |I| + 1$.

Step 1: Choose a resolution $\pi: \tilde{X} \rightarrow X$, $D \subset X$ minimal closed

$$\tilde{X} \setminus \pi^{-1}(D) \cong X \setminus D$$

and set $X_{\emptyset}^{(1)} = X$, $X_{\{0\}}^{(1)} = \tilde{X}$, $X_{\{1\}}^{(1)} = D$,
 $X_{\{0,1\}}^{(1)} = \pi^{-1}D$.



The other square is a 3-cubical var.

ok.

in every step:

- morphisms proper
- $\dim X_I \leq n - |I| + 1$
- X_I is smooth if I does not contain highest index

finally: the other X_I are 0-dim,
hence smooth also.

- cohomological descent is preserved
during this procedure

② The filtered De Rham complex

Recall: $f: Z \rightarrow Y$ proper of smooth var's

$$\rightsquigarrow f^* \Omega_Y^\bullet \rightarrow \Omega_Z^\bullet \quad (\text{pullback of forms})$$

compatible with stepwise filtration

$$\rightsquigarrow \Omega_Y^\bullet \rightarrow Rf_* \Omega_Z^\bullet$$

Let X be a cx. var., $\dim X = n$, $\epsilon_*: X_* \rightarrow X$

hyperresolution

Def.:

$$\underline{\Omega}_X^\bullet := \left[R\epsilon_{0*} \Omega_{X_0}^\bullet \xrightarrow{\psi_1} R\epsilon_{1*} \Omega_{X_1}^\bullet \xrightarrow{\psi_2} R\epsilon_{2*} \Omega_{X_2}^\bullet \dots \right]$$

(as before with \mathbb{Z}_{X_i})

$$=: R\epsilon_{*} \Omega_X^\bullet$$

iterated
cone

Filtration: $F^p \Omega_{x_i}^\bullet = \Omega_{x_i}^{\geq p}$

$$\rightsquigarrow F^p R\epsilon_{i*} \Omega_{x_i}^\bullet := R\epsilon_{i*} \Omega_{x_i}^{\geq p}$$

this leads to a distinguished triangle

$$F^{p-1} R\epsilon_{i*} \Omega_{x_i}^\bullet \rightarrow F^p R\epsilon_{i*} \Omega_{x_i}^\bullet \rightarrow R\epsilon_{i*} \Omega_{x_i}^p [p] \xrightarrow{+1}$$

Define

$$F^p \underline{\Omega}_x^\bullet := R\epsilon_* \Omega_x^{\geq p}$$

$$:= \left[R\epsilon_{0*} \Omega_{x_0}^{\geq p} \xrightarrow{\psi_1} R\epsilon_{1*} \Omega_{x_1}^{\geq p} \rightarrow \dots \right]$$

$$\underline{\Omega}_x^p := g_F^p \underline{\Omega}_x^\bullet [p]$$

$$\begin{aligned}
 & \cong \text{R}e_{\cdot \ast} \underline{\Omega}_{X'}^P \\
 & = \left[\text{R}e_{0 \ast} \underline{\Omega}_{X_0}^P \xrightarrow{\varphi_1} \text{R}e_{1 \ast} \underline{\Omega}_{X_1}^P \rightarrow \dots \right]
 \end{aligned}$$

pth De Bois complex of X.

Thm (De Bois) $X'_0 \rightarrow X_0$ morph. of hyperresolutions of X
 induces a quasi-isomorphism

$\underline{\Omega}_{X'}^P \rightarrow \underline{\Omega}_X^P$.
 In part, $\underline{\Omega}_X^P$ and hence $\underline{\Omega}_X^\bullet$ are
 well-defined.

explicitly. Σ_x^P is the total complex of

$$\begin{array}{ccccccc} \Sigma_{0x}^P & \xrightarrow{p_0} & \Sigma_{1x}^P & \xrightarrow{p_1} & \Sigma_{2x}^P & \xrightarrow{p_2} & \dots \\ \downarrow \varphi_0 & & \downarrow \varphi_1 & & \downarrow \varphi_2 & & \dots \\ \Sigma_{0x}^P & \xrightarrow{p_1} & \Sigma_{1x}^P & \xrightarrow{p_2} & \Sigma_{2x}^P & \xrightarrow{p_3} & \dots \\ \downarrow \varphi_1 & & \downarrow \varphi_2 & & \downarrow \varphi_3 & & \dots \\ \Sigma_{0x}^P & \xrightarrow{p_2} & \Sigma_{1x}^P & \xrightarrow{p_3} & \Sigma_{2x}^P & \xrightarrow{p_4} & \dots \\ \downarrow \varphi_2 & & \downarrow \varphi_3 & & \downarrow \varphi_4 & & \dots \\ \vdots & & \vdots & & \vdots & & \dots \end{array}$$

Ex : X smooth, $\varepsilon = \text{id}$

$$\underline{\Omega}_x^\bullet = \underline{\Omega}_x^\bullet, \quad \underline{\Omega}_x^\rho = \underline{\Omega}_x^\rho$$

Ex : $X = V(y^2 - x^3 = 0)$

$f: \tilde{X} \rightarrow X$ normalization is hyperresolution

$$\Rightarrow \underline{\Omega}_x^\bullet \cong f_* \underline{\Omega}_{\tilde{X}}^\bullet \cong f_* \mathcal{O}_{\tilde{X}} \not\cong \mathcal{O}_x$$

$$\left(\mathbb{C}[t^3] \text{ vs. } \frac{\mathbb{C}[x,y]}{(y^2 - x^3)} \right)$$

$$\underline{\Omega}_x^1 \cong f_* \omega_{\tilde{X}} \not\cong \omega_x$$

↳ by dualizing the above
non-isomorphism

Ex: $X = V(y^2 - x^2 - x^3)$ $f: \tilde{X} \rightarrow X$ normalization

$\underline{\Omega}_X^\circ$ = cone of

$$\begin{array}{ccc} R(f_i)_* \mathcal{O}_{X_i} & \longrightarrow & Rf_* X_i \\ \parallel & & \parallel \\ f_* \mathcal{O}_{\tilde{X}} \oplus \mathcal{O}_{\{p\}} & \longrightarrow & f_* \mathcal{O}_{\{r,s\}} \end{array}$$

recall hypers. coming
from

$$\begin{array}{ccc} \{r,s\} & \xrightarrow{i} & \tilde{X} \\ f \downarrow & & \downarrow f \\ \{p\} & \xrightarrow{i} & X \end{array}$$

observe that one has a short exact sequence

$$0 \rightarrow \mathcal{O}_X \rightarrow f_* \mathcal{O}_{\tilde{X}} \oplus \mathcal{O}_{\{p\}} \rightarrow f_* \mathcal{O}_{\{r,s\}} \rightarrow 0$$

$$\Rightarrow \underline{\Omega}_X^\circ \cong \mathcal{O}_X \quad (\text{exercise})$$

i.e. here one gets a nice result for $\underline{\Omega}_X^\circ$ but the hypersresolution is more complicated than "just" normalization

$$\Omega_X^1 \cong f_* \omega_{\tilde{X}} \neq \omega_X$$

Ex: $X = C(Y) \subset \mathbb{C}^3$

cone over a smooth conic in \mathbb{P}^2

$$\begin{array}{ccc} C & \xrightarrow{\sim} & \tilde{X} \\ \downarrow & & \downarrow f \\ \{0\} & \xrightarrow{\sim} & X \end{array}$$

blow-up of
the vertex
 $\{0\}$

$$\Omega_X^1 = \left[\underbrace{Rf_* \mathcal{O}_{\tilde{X}}}_{\text{II2}} \oplus \mathcal{O}_{\{0\}} \right] \rightarrow \left[Rf_* \mathcal{O}_C \right]_{\text{cone}}$$

\mathcal{O}_X

$(X$ has rational singularities)

$\mathcal{O}_{\mathbb{P}^2}$
($C \cong \mathbb{P}^1$)

$$\Rightarrow \underline{\Omega}_X^0 \cong \ker (G_X \oplus G_{\{p\}} \rightarrow G_{\{p\}})$$

$$(f, g) \mapsto f|_p - g$$

$$\cong G_X$$

$$\underline{\Omega}_X^0 \cong Rf_* \Omega_X^2 \cong f_* \omega_X \cong \omega_X$$

X has rational
singularities

$$\underline{\Omega}_X^1 \cong [Rf_* \Omega_X^1 \rightarrow Rf_* \Omega_C^1]_{\text{cone}}$$

consider the long exact sequence

$$0 \rightarrow H^0 \Omega^1_x \rightarrow f_* \Omega^1_{\tilde{x}} \rightarrow \underbrace{f_* \omega_C}_{=0 \quad (C \cong \mathbb{P}^1)} \rightarrow H^1 \Omega^1_{\tilde{x}} \rightarrow 0$$

$$\rightarrow R^1 f_* \Omega^1_{\tilde{x}} \rightarrow R^1 f_* \omega_C \rightarrow H^2 \Omega^1_{\tilde{x}} \rightarrow 0$$

isomorphism
(exercise?)

one can show that

$$\Rightarrow \underline{\Omega^1_x} \cong f_* \Omega^1_{\tilde{x}} \quad (\cong \Omega^1_x)$$