
Curvature of lassifying spaes for Brieskorn lattiesClaus Hertling Christian SevenhekAugust 8, 2008AbstratWe study tt
∗-geometry on the lassifying spae for regular singular TERP-strutures,e.g., Fourier-Laplae transformations of Brieskorn latties of isolated hypersurfae singu-larities. We show that (a part of) this lassifying spae an be anonially equipped witha hermitian struture. We derive an estimate for the holomorphi setional urvature ofthis hermitian metri, whih is the analogue of a similar result for lassifying spaes ofpure polarized Hodge strutures.

1 IntrodutionIn this paper, we study a generalization of variations of Hodge strutures and the assoiatedperiod maps. These generalizations are alled TERP-strutures; they �rst appeared under thename topologial-antitopologial fusion (also alled tt∗-geometry) in [CV91, CV93, Dub93℄ andwere rigourously de�ned and studied in [Her03℄ and [HS07℄.An important situation where TERP-strutures naturally our, is the theory of (µ-onstantfamilies) of isolated hypersurfae singularities, and more spei�ally, the Fourier-Laplae trans-formation of their Brieskorn latties. In this ase the TERP-strutures are regular singular.Irregular TERP-strutures arise by a similar though more general onstrution where the initialobjet is a regular funtion on an a�ne variety. These funtions appear as mirror partners ofthe quantum ohomology algebra of smooth projetive varieties or more generally, orbifolds. Itis a hallenging problem to study the indued TERP-strutures on the quantum ohomologyside, although progress seems to have been made very reently in this diretion ([Iri07℄). Let usnotie that TERP-strutures are intimately related to the theory of harmoni bundles, via theso alled twistor strutures, i.e. (families of) holomorphi bundles on P1. Any TERP-struturegives rise to a twistor whih is alled pure if it is a trivial bundle on P1 and pure polarized if anaturally de�ned hermitian metri on its spae of global setions is positive de�nite. This hasto be seen as a generalization of the notion of variations of (pure polarized) Hodge strutures.2000 Mathematis Subjet Classi�ation. 14D07, 32S30, 32S40, 53C07, 32G20.Keywords: TERP-strutures, twistor strutures, lassifying spaes, tt
∗ geometry, mixed Hodge strutures, ur-vature, hyperboliity.C.H. aknowledges partial support by the ESF researh grant MISGAM.1



By a basi result of Simpson ([Sim97℄), variations of pure polarized twistor strutures are equiv-alent to harmoni bundles on the parameter spae. Given a variation of TERP-strutures on aomplex manifold, one obtains a variation of pure polarized twistor strutures resp. a harmonibundle on an open subset of this manifold, whih is a union of onneted omponents of theomplement of a real analyti subvariety. Notie also ([Sab08℄) that the TERP-struture of atame funtion on an a�ne manifold is always pure polarized.The main topi of this paper are the lassifying spaes that appear as targets of period maps ofvariations of regular singular TERP-strutures. In fat, these spaes were already investigatedunder a di�erent name (as lassifying spaes of Brieskorn latties) in [Her99℄. The main newpoint treated here is to show how tt∗-geometry arises on the lassifying spaes and to prove theanalogue of a ruial result in lassial Hodge theory (see [Sh73℄, [GS69℄, [GS75℄ and [Del71℄):the negativity of the setional urvature of the Hodge metri in horizontal diretions. Similarlyto the situation in Hodge theory, we expet this result to be a ornerstone in the study of theabove mentioned period maps. We prove a few quite diret onsequenes of our result at theend of this paper.Let us give a short overview on the ontent of this artile. In setion 2, we reall the basi de�-nitions both of variations of TERP-strutures and of the lassifying spaes for Brieskorn lattiesresp. regular singular TERP-strutures. In order to do that, we also reall the onstrutionof the polarized mixed Hodge struture and its ohomologial invariants, the spetral numbersassoiated to a regular singular TERP-struture. In setion 3, we onstrut a Kodaira-Spenermap from the tangent bundle of the lassifying spae to some auxiliary bundle whih gives aloal trivialization of the tangent bundle needed later. In partiular, this indues a positivede�nite hermitian metri on the pure polarized part of the lassifying spae. We also onsiderthe subsheaf of the tangent bundle of the lassifying spae onsisting of horizontal diretions.Contrary to the ase of Hodge strutures, it is not loally free in general. Finally, in setion 4the main result of the paper is stated and proved. The proof is onsiderably more ompliatedthan in the ase of Hodge strutures as the lassifying spaes of TERP-strutures/Brieskornlatties are not homogenous. We �nish the paper by deduing from our main theorem a rigidityresult for variations of TERP-strutures on a�ne spaes.Notations: For a omplex manifold X, we write E ∈ VBX for a loally free sheaf of OX -modules E , the assoiated vetor bundle is denoted by E. If E omes equipped with a �atonnetion, we denote by E∇ the orresponding loal system.2 Classifying spaesIn this setion we introdue the lassifying spaes of regular singular TERP-strutures whihwere onsidered, under a di�erent name, in [Her99℄. We start by realling very brie�y thebasi de�nition of a TERP-struture and some of its assoiated data. After this, we give thede�nition of the lassifying spaes.For the following basi de�nition we also refer to [Her03℄ and [HS07℄.De�nition 2.1. Let X be a omplex manifold and w an integer. A variation of TERP-strutures on X of weight w onsists of a holomorphi vetor bundle H on C × X, an in-tegrable onnetion ∇ : H → H ⊗ Ω1
C×X(∗{0} × X), a �at real subbundle H ′

R
of maximal2



rank of the restrition H ′ := H|C∗×X and a �at non-degenerate (−1)w-symmetri pairing
P : H′ ⊗ j∗H′ → OC∗×X, where j(z, t) := (−z, t), subjet to the following onditions:1. ∇ has a pole of type one (also alled of Poinaré rank one) along {0}×X, i.e., the sheaf

H is stable under z2∇z and z∇T for any T ∈ p−1TX , where p : C× X ։ X.2. P takes values in iwR on H ′
R3. P extends as a non-degenerate pairing P : H⊗ j∗H → zwOC×X , in partiular, it induesa non-degenerate symmetri pairing [z−wP ] : H/zH⊗H/zH → OX .

(H, H ′
R
,∇, P, w) is alled regular singular, if (H,∇) is regular singular along {0} × X, i.e, ifsetions of H have moderate growth along {0} × X ompared to �at setions of H′.The ase X = {pt} is referred to as a single TERP-struture. There is a anonially assoiatedset of data, whih we all �topologial�.De�nition 2.2. Let (H, H ′

R
,∇, P, w) be a TERP-struture, then we put

H∞ := {�at multivalued setions of H′}.We let H∞
R

be the subspae of real �at multivalued setions, then H∞
R

omes equipped with themonodromy endomorphism M ∈ Aut(H∞
R

), whih deomposes as M = Ms ·Mu into semi-simpleand unipotent part. Let H∞ := ⊕H∞
λ be the deomposition into generalized eigenspaes withrespet to M .We restrit here to the ase where all eigenvalues have absolute value 1, as this is automatiallythe ase for mixed TERP-strutures, as de�ned in de�nition 2.4. We put H∞

6=1 := ⊕λ6=1H
∞
λ , sothat H∞ = H∞

1 ⊕ H∞
6=1, and let N := log(Mu) be the nilpotent part of M .

P indues a polarizing form S on H∞ de�ned as follows: First note that P orresponds (after aounter-lokwise shift in the seond argument) to a pairing L on the loal system (H ′)∇, thengiven A, B ∈ H∞, we put S(A, B) := (−1)(2πi)wL(A, t(B)) where
t(B) =





(M − Id)−1(B) ∀B ∈ H∞
6=1

−(
∑
k≥1

1
k!

Nk−1)−1(B) ∀B ∈ H∞
1 .

S is nondegenerate, monodromy invariant, (−1)w-symmetri on H∞
1 , (−1)w−1-symmetri on

H∞
6=1, and it takes real values on H∞

R
[Her03, Lemma 7.6℄. We all the tuple (H∞, H∞

R
, M, S, w)the topologial data of (H, H ′

R
,∇, P, w).Note that by [HS07, lemma 5.1℄ the topologial data are equivalent to the data (H ′, H ′

R
,∇, P, w).Let us now suppose that (H, H ′

R
,∇, P, w) is regular singular. Then the following lassialobjets will play a key role in the sequel of this paper.De�nition 2.3. Let (H, H ′

R
,∇, P, w) be a regular singular TERP-struture.3



1. De�ne for any α ∈ C, Cα := zαId− N
2πi H∞

e−2πiα ⊂ i∗(H′)0 to be the spae of elementarysetions of H ′ of order α. Let V α (resp. V >α) the free OC-module generated by elementarysetions of order at least (resp. stritly greater than) α, i.e. V α :=
∑

β≥α OCCβ and
V >α :=

∑
β>α OCCβ. The meromorphi bundle (i.e., loally free OC[z−1]-module) V >−∞is de�ned as V >−∞ :=

⋃
α V α. Any V α and V >α is a lattie inside V >−∞ and thedereasing �ltration V • is alled Kashiwara-Malgrange-�ltration (or V-�ltration) of V >−∞.Notie that the objets Cα, V α, V >α and V >−∞ only depend on the topologial data ofthe TERP-struture, i.e. on (H ′, H ′

R
,∇, P, w), but not on the extension H of the vetorbundle H ′ on C∗ to a vetor bundle on C.2. The regularity assumption on (H,∇) an be rephrased by saying that H ⊂ V >−∞. TheV��ltration indues a �ltration on H, whih is used to de�ne a dereasing �ltration onthe spae H∞ in the following way. De�ne for any α ∈ (0, 1] + iR

F pH∞
e−2πiα := zp+1−w−α+ N

2πi Grα+w−1−p
V H,then F • is a dereasing exhaustive �ltration on H∞. We will use a twisted versionof this �ltration, whih is obtained as F̃ • := G−1F •, where G :=

∑
α∈(0,1]+iR G(α) ∈Aut (H∞ = ⊕αH∞

e−2πiα

) is de�ned as follows (see [Her03, (7.47)℄):
G(α) :=

∑

k≥0

1

k!
Γ(k)(α)

(−N

2πi

)k

=: Γ

(
α · id − N

2πi

)
.Here Γ(k) is the k-th derivative of the gamma funtion. In partiular, G depends onlyon H ′ and indues the identity on GrW

• where W• is the weight �ltration of the nilpotentendomorphism N . Note that the restrition of W•(N) to H∞
1 is by de�nition enteredaround w, and the restrition to H∞

6=1 is entered around w − 1.
F̃ • is the Hodge �ltration of Steenbrink if the TERP-struture is de�ned by an isolatedhypersurfae singularity.As a matter of notation, we also write F̃ •

H for the �ltration F̃ • on H∞ de�ned by H.3. The V -�ltration is also used to de�ne the spetrum of a regular singular TERP-struture
(H, H ′

R
,∇, P, w). Namely, let Sp(H,∇) =

∑
α∈C d(α) · α ∈ Z[C] where

d(α) := dimC

(
Grα

V H
Grα

V zH

)
= dimC Gr

⌊w−α⌋
F H∞

e−2πiα. (2.1)It is a tuple of µ omplex numbers α1 ≤ . . . ≤ αµ. By de�nition, d(α) 6= 0 only if e−2πiα isan eigenvalue of M . We have the symmetry property α1 + αµ = w. In most appliationsthe eigenvalues of M are roots of unity so that the spetrum atually lies in Z[Q].The following notion is quoted from [HS07℄, where it is shown to orrespond to �nilpotentorbits� of TERP-strutures. 4



De�nition 2.4. A regular singular TERP-struture (H, H ′
R
,∇, P, w) of weight w is alled mixedif the tuple

(H∞
6=1, (H

∞
6=1)R,−N, S, F̃ •) resp. (H∞

1 , (H∞
1 )R,−N, S, F̃ •)is a polarized mixed Hodge struture of weight w − 1 resp. of weight w. We refer to [Her03℄ or[HS07℄ for the notion of a polarized mixed Hodge struture (PMHS for short) used here. Thedata here are Ms-invariant. In [HS07, lemma 5.9℄ it is shown that any semi-simple automor-phism of a PMHS has eigenvalues in S1. This is ompatible with our assumptions in de�nition2.2. that Ms has all its eigenvalues in S1 and justi�es this assumption.Next we reformulate the de�nitions of the lassifying spaes DBL resp. DPMHS for Brieskornlatties resp. PMHS from [Her99℄ in terms of regular singular TERP-strutures. We start witha PMHS of one single weight w with a semisimple automorphism. As we have seen, a mixedTERP-struture de�nes a sum of PMHS's of di�erent weights on H∞

1 ⊕ H∞
6=1, so that later weneed a slight adjustment of this situation (this is done in de�nition 2.7).The next lemma gives an equivalene of onditions for a �ltration to indue a PMHS.Lemma 2.5. Let (H∞, H∞

R
, N, S, F •

0 ) be a PMHS of weight w and let Ms be a semisim-ple automorphism of it. Then the eigenvalues of Ms are elements of S1. Let W• be theweight �ltration entered at weight w whih is indued by N . Let Pl be the primitive sub-spae Pl := ker(N l−w+1 : GrW
l → GrW

2w−l−2) of GrW
l (for l ≥ w) and let GC be the group

GC := Aut(H∞, N, S, Ms). The primitive subspae Pl deomposes into the eigenspaes of Ms,
Pl =

⊕
λ Pl,λ. Then for any Ms-invariant �ltration F • on H∞, the following onditions areequivalent.1. dim F pPl,λ = dim F p

0 Pl,λ, N(F p) ⊂ F p−1, F pN jPl = N jF p+jPl,
F p GrW

l =
⊕

j≥0 F pN jPl+2j, S(F p, F w+1−p) = 0.2. There exists an Ms-invariant ommon splitting Ĩp,q of F • and W• with the properties inlemma 2.3 (a)�(d) in [Her99℄.3. F • is the image of F •
0 by an element of GC.4. dim F pPl,λ = dim F p

0 Pl,λ, S(F p, F w+1−p) = 0, and all powers of N are strit with respetto F •.As to the proof, let us just remark that obviously 2. implies 1., 3., and 4. The equivalene of1., 2. and 3. is proved in [Her99, Ch. 2℄. The only remaining point is that 4. implies 1.-3.,whih is rather tehnial. As we will not use the haraterization 4., it is skipped here.Also the following is proved in [Her99, hapter 2℄.Proposition 2.6. In the situation of lemma 2.5, onsider the set
ĎPMHS (H∞, H∞

R
, N, S, F •

0 , Ms, w) :=
{�ltrations F •H∞ | F •H∞ is Ms-invariantand satis�es the equivalent onditions in lemma 2.5}.It is a omplex homogeneous spae on whih GC ats transitively. The set

DPMHS(H∞, H∞
R , N, S, F •

0 , Ms, w) :=
{�ltrations F •H∞ | F •H∞ is Ms-invariant,

dim F pPl,λ = dim F p
0 Pl,λ, (H∞, H∞

R
, N, S, F •, Ms) is a PMHS of weight w

}5



is an open submanifold of ĎPMHS and a real homogeneous spae with transitive ation by aertain real group lying in between GC and GR = Aut(H∞
R

, N, S, Ms). It is a lassifying spaefor the Ms-invariant PMHS with the same disrete data as the referene PMHS de�ned by F •
0 .Consider for l ≥ w the pairing Sl−w := S(−, N l−) on GrW

l , the primitive subspaes Pl :=
Ker(N l−w+1) ⊂ GrW

l . They deompose as Pl = ⊕λPl,λ into eigenspaes of Ms. Then we de�nefor any l ≥ w:
Ďl(H

∞, H∞
R

, N, S, F •
0 , Ms, w) :=

{�ltrations F •Pl |F pPl is Ms-invariant,
dim F pPl,λ = dim F p

0 Pl,λ, Sl−w(F pPl, F
l−p+1Pl) = 0

}
,

Dl(H
∞, H∞

R
, N, S, F •

0 , Ms, w) :=
{
F •Pl ∈ Ďl |F •Pl gives a PHS of weight l on Pl

}
,

ĎPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) :=

∏
l≥w

Ďl(H
∞, H∞

R
, N, S, F •

0 , Ms, w),

DPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) :=

∏
l≥w

Dl(H
∞, H∞

R
, N, S, F •

0 , Ms, w).

ĎPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) is a projetive manifold and a omplex homogenous spae,

DPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) is an open submanifold and a real homogenous spae. Theprojetion

πPMHS : ĎPMHS (H∞, H∞
R

, N, S, F •
0 , Ms, w) −→ ĎPHS (H∞, H∞

R
, N, S, F •

0 , Ms, w)

F • 7−→ ∏
l≥w F •Plis an a�ne �ber bundle with �bre isomorphi to CNPMHS for some NPMHS ∈ N ∪ {0}. Thelassifying spae DPMHS is the restrition of the total spae of this bundle to DPHS , in otherwords, we have the following diagram of projetions and inlusions

ĎPMHS(H∞, H∞
R

, N, S, F •
0 , Ms, w)

πPMHS−→ ĎPHS(H∞, H∞
R

, N, S, F •
0 , Ms, w)

∪ ∪
DPMHS(H∞, H∞

R
, N, S, F •

0 , Ms, w) −→ DPHS (H∞, H∞
R

, N, S, F •
0 , Ms, w).

(2.2)The next de�nition introdues the main objets of this paper, namely, the lassifying spaes ofregular singular TERP-strutures. The most diret way to �x the data needed to de�ne thesespaes is to onsider a referene TERP-struture (H (0), H ′
R
,∇, P, w), whih is supposed to bemixed. This de�nes the set of disrete data needed, among them are the topologial data of

(H(0), H ′
R
,∇, P, w) as well as its spetral numbers.De�nition 2.7. Let (H(0), H ′

R
,∇, P, w) be a regular singular mixed TERP-struture. Considerits topologial data (H∞, H∞

R
, M, S, w) as de�ned in de�nition 2.2. We also have the �ltration

F̃ •
0 := F̃ •

H(0) and the spetral numbers of H(0) as in de�nition 2.3. Then, using proposition 2.6we de�ne
ĎPMHS := ĎPMHS (H∞

1 , (H∞
R

)1,−N, S, F̃ •
0 , id, w)

× ĎPMHS(H∞
6=1, (H

∞
R

) 6=1,−N, S, F̃ •
0 , Ms, w − 1)

(2.3)6



and similarly DPMHS , ĎPHS , DPHS .Write, as before, H ′ := H
(0)
|C∗. Then we are interested in all possible extensions of H ′ to a vetorbundle H on C making (H, H ′

R
,∇, P, w) into a TERP-struture and suh that the assoiated�ltration is an element in the spae ĎPMHS just de�ned. This leads to the following de�nition.

ĎBL :=
{free OC,0-submodules H0 of V >−∞

0 | (z2∇z)H0 ⊂ H0, (2.4)
P (H0,H0) = zwOC, F̃ •

H ∈ ĎPMHS

}

DBL :=
{
H0 ∈ ĎBL | F̃ •

H ∈ DPMHS

} (2.5)Notie �rst that as any element H0 in ĎBL de�nes an extension of the �xed (�at) bundle H ′on C∗, one may rephrase the de�nition of ĎBL by saying that its elements are the bundles Hon C extending H ′ suh that (H, H ′
R
,∇, P, w) is a regular singular TERP-struture and suhthat the assoiated �ltration F̃ •

H lies in the same lassifying spae as F •
H(0) . Similarly, DBLonsists of bundles H suh that (H, H ′

R
,∇, P, w) is a regular singular mixed TERP-struturewith F̃ •

H(0) ∈ DPMHS .We already remarked that ĎPMHS ,DPMHS , ĎPHS ,DPHS are omplex manifolds and omplex resp.real homogenous spaes. A priori, the above de�nition desribes ĎBL resp. DBL only as a setwith no obvious topologial or analytial struture. However, one of the main results of [Her99℄(see also [Her02, proof of theorem 12.8℄) is that ĎBL has a natural struture of a omplexmanifold and that the projetion πBL : ĎBL → ĎPMHS , H 7→ F̃ •
H is a a�ne �bre bundle over

ĎPMHS with �bres isomorphi to CNBL for some NBL ∈ N∪{0}. Moreover DBL is the restritionof the map πBL to DPMHS . Notie that ontrary to ĎPMHS , DPMHS , ĎPHS and DPHS , the spaes
ĎBL and DBL are not homogenous. However, there is a good C∗-ation on the �bers of πBL, theorresponding zero setion ĎPMHS →֒ ĎBL onsists of the regular singular TERP-strutures in
ĎBL whih are generated by elementary setions, see [Her99, theorem 5.6℄.Notie also that it follows from the de�nition of the spae ĎBL that all elements H ∈ ĎBL havethe same spetral numbers, namely those of H(0). The reason for this is that the spetrum isdetermined by the topologial data (more preisely, by the eigenvalues of M) and the �ltration
F̃ •
H (namely, by its Hodge numbers, i.e., the dimensions dim Gr

⌊w−α⌋
F H∞

e−2πiα , see formula (2.1)).Moreover, the de�nition of the spae ĎPMHS (ondition 1. in lemma 2.5) shows that thesenumbers are onstant for all F • ∈ ĎPMHS , namely they are equal to those of F̃ •
H(0) . We willdenote all along this artile these spetral numbers by α1, . . . , αµ, where µ := dimC(H∞).The following diagram ompletes diagram (2.2) and visualizes how all of the above de�nedmanifolds are interrelated.

ĎBL
πBL−→ ĎPMHS

πPMHS−→ ĎPHS

∪ ∪ ∪
DBL −→ DPMHS −→ DPHS .

(2.6)3 The tangent bundle and horizontal diretionsThis setion gives a onrete desription of the tangent bundle of the manifold ĎBL using aKodaira-Spener map. This desription is used in an essential way in the urvature alulationin the next setion. 7



Consider the �at bundle H ′ ∈ VBC∗ (with real struture) and the pairing P : H′⊗ j∗H′ → OC∗whih orrespond to (H∞, H∞
R

, S, M, w) by [HS07, lemma 5.1℄. By abuse of notation, we willdenote by H ′ (resp. H′ for its sheaf of setions) the pullbak of this bundle by the projetion
π′ : C∗ × ĎBL → C∗. This bundle omes equipped with an integrable onnetion, whih isthe pullbak of the original onnetion of H ′ ∈ VBC∗ . Similarly, P pulls bak to a pairing
(π′)∗P : H′ ⊗ j∗H′ → O

C∗×ĎBL
, whih we denote, by abuse of notation, again by P . We alsoonsider the pullbaks of the Deligne latties V α and V >α and of the meromorphi bundle V >−∞under the projetion π : C × ĎBL → ĎBL. We write Vα, V>α and V>−∞ for the pull-baks

π∗V α, π∗V>α and π∗V>−∞, respetively. All of them are extensions of H′ to C× ĎBL, i.e., wehave Vα,V>α,V>−∞ ⊂ i∗H′, where i : C∗ × ĎBL →֒ C × ĎBL is the inlusion. Notie howeverthat Vα and V>α are O
C×ĎBL

-loally free, whereas V>−∞ is only O
C×ĎBL

[z−1]-loally free. Byde�nition, we have a onnetion operator
∇ : Vα −→ Vα ⊗ Ω1

C×ĎBL
(log {0} × ĎBL),and similarly for V>α.From the very de�nition of the spae ĎBL, we see that there is another naturally de�nedextension of H′ to C × ĎBL, whih we all L. It is the universal family of Brieskorn latties,i.e., L|C×{t} = H(t) for any t ∈ ĎBL. It an equally be desribed by gluing the loally de�nedbundles over C×U , U ⊂ ĎBL, given by the bases onstruted in [Her99, lemma 5.2 to theorem5.6℄. The pairing P has the property that P (L,L) ⊂ zwOC×ĎBL

and that z−wP de�nes anon-degenerate symmetri pairing on L/zL. In partiular, the original P on H′ takes values in
OC×ĎBL

[z−1] when restrited to V>−∞.By de�nition, L omes equipped with a onnetion
∇ : L → L⊗

(
z−2Ω1

C×ĎBL/ĎBL
⊕ Ω1

C×ĎBL/C(∗{0} × ĎBL)
)

.Using the Deligne extensions Vα, we an give a preise statement on the pole order of ∇ on L.De�ne n := [αµ − α1], note that if n = 0 then the lassifying spae ĎBL onsists of a singleelement only, namely, the lattie V α1 .Lemma 3.1. Suppose that n > 0. Then L is stable under zn∇X for any X ∈ p−1TĎBL
, i.e.,we have a onnetion operator

∇ : L −→ L⊗
(
z−2Ω1

C×ĎBL/ĎBL
⊕ z−nΩ1

C×ĎBL/C

)Proof. As explained before, any H ∈ ĎBL has the spetral numbers α1, . . . , αµ. It follows inpartiular hat V α1 ⊃ H ⊃ V >αµ−1. The �rst inlusion is obvious, for the seond, if we hadany s ∈ V >αµ−1 whih is not a setion of H, then there would be a k ∈ N>0 with zks ∈ Hwhih implies (if we take a minimal suh k) that the prinipal part of zks does not vanishin GrV
• (H/zH). In other words, we would get a spetral number larger then αµ, whih isimpossible. As these inlusions of latties hold true at any point of ĎBL, we have

Vα1 ⊃ L ⊃ V>αµ−1.Now let s be any loal setion of L, then s ∈ Vα1 , so that
∇X(s) ⊂ Vα1 ⊂ V>−n+αµ−1 = z−nV>αµ−1 ⊂ z−nL.8



The following lemma will be useful for the proof of lemma 3.5, but it will also be used in theomputations in the next setion.Lemma 3.2. Consider a module H ∈ ĎBL and a loal OC-basis v(0) := (v
(0)
1 , . . . , v

(0)
µ ) of H.1. There exists a small neighborhood U1 × U2 of (0,H) ∈ C × ĎBL and a unique basis

v := (v1, . . . , vµ) of L|U1×U2 whih is an extension of v(0) and whih satis�es
v = v(0) ·

(
1µ +

n∑

k=1

z−kCk

) (3.1)where Ck ∈ M(µ×µ,OĎBL
(U2)). Here v(0) is extended to a setion in π−1V >−∞ ⊂ V>−∞,and this equation holds in V>−∞, i.e., meromorphially along z = 0.2. If z−wP ((v(0))tr, v(0)) is a onstant µ × µ-matrix then so is z−wP ((v)tr, v).3. If v(0) is a good basis for H in the sense of [Sai89℄ (i.e., if it projets to a basis of thevetor spae GrV

• (H/zH)) then v is a good basis for L|U1×U2. Here being a good basis for
L|U1×U2

an be expressed in two equivalent ways: Either we require that for any t ∈ U2,the restrition of v to U1 × {t} is a good basis of the restrition L|U1×{t} or we ask that
v projets to a OU2-basis of GrV• (L/zL). These requirements are equivalent as the lattermodule is loally free due to the fat that the spetral numbers of L|C×{t} are the same foreah t ∈ U2.Proof. 1. Consider a holomorphi extension v′ = (v′

1, ..., v
′
µ) of v(0) in a suitable neighborhood

∆ε × U ′
2 of (0,H). The matrix Ψ with v′ = v(0) · Ψ is holomorphi and invertible on

∆∗
ε × U ′

2 and de�nes a oyle in H1(P1 × U ′
2,GL(µ,O∗

P1×U ′
2
)) and thus a vetor bundleon P1 × U ′

2. Beause the restrition to P1 × {H} is trivial, the restrition to P1 × U2for some U2 ⊂ U ′
2 is a family of trivial vetor bundles on P1. The Birkho� fatorization(see, e.g., [Mal83, proposition 4.1℄) yields unique matries Ψ0 ∈ Γ(∆ε × U2,O∗

∆ε×U2
) and

Ψ∞ ∈ Γ((P1\{0})×U2,O∗
(P1−{0})×U2

) with Ψ∞|{∞}×U2
= 1µ and Ψ = Ψ∞ ·Ψ−1

0 . Consider
v := v(0) · Ψ∞ = v′ · Ψ0.As in the proof of lemma 3.1, we onlude from

L ⊂ Vα1 ⊂ V>αµ−1−n = z−nV>αµ−1 ⊂ z−nOC×ĎBL
⊗OC

Hthat L ⊂ z−nOC×ĎBL
⊗OC

H. It follows that the matrix Ψ∞ satis�es Ψ∞ = 1µ +∑n
k=1 z−kCk. Uniqueness is now also lear.2. This follows from z−wP (L,L) = R and z−wP (vi, vj) − z−wP (v

(0)
i , v

(0)
j ) ∈ z−1OU2[z

−1].3. First we introdue two notations: within V>−∞ and Vα we onsider the π−1OĎBL
-module

Cα onsisting of elementary setions of order α on C∗ × ĎBL. Then any vi ∈ L|U1×U2 anbe written as a sum vi =
∑

β≥α1
s(vi, β) where s(vi, β) ∈ Cβ(C× U2).9



That v(0) is a good basis means that v
(0)
i =

∑
β≥αi

s(v
(0)
i , β) and that

GrV
α H =

⊕

i,k:k≥0,αi+k=α

OC · zk · s(v(0)
i , αi).Then for any β all setions zk ·s(v(0)

i , αi) where k ∈ Z, αi+k = β are linearly independent.In a small neighborhood U3 ⊂ U2 of H the setions (zk · s(vi, αi))k∈Z,αi+k=β inherit thisproperty of being linearly independent.For any vj , de�ne βj to be the unique omplex number suh that s(vj , βj) 6= 0 and
s(vj, β) = 0 for β < βj . We have βj ≤ αj. Formula (3.1) and the linear independene ofthe zk · s(v(0)

i , αi) show
s(vj , βj) = δβj ,αj

· s(v(0)
j , αj) +

∑

k,i,j:αi−k=βj

(Ck)ij · z−k · s(v(0)
i , αi) (3.2)(remember that this is an equation in V>−∞, where the setions vj of H ⊂ V >−∞ hasbeen extended to setions in π−1V >−∞ ⊂ V>−∞).The main point is to show

(Ck)ij = 0 for αi − k < αj . (3.3)Then βj = αj and s(vj, αj) ∈ GrV
αj
L(U2). From this and the linear independene of the

zk · s(vi, αi) it follows that v is a good basis, �rst on a small U3 ⊂ U2, then on all of U2.In order to show (3.3) we argue indiretly. Suppose (Ck)ij 6= 0 for some αi − k < αj andsuppose that αi−k is minimal with this property. Then βj = αi−k for this j, and βl = αlfor all l with αl ≤ αi − k. Then in a neighborhood U4 ⊂ U2 of H for any γ ≤ βj = αi − k
⊕

l,m:m≥0,αl+m=γ

OC×U4 · zm · s(vl, αl)is a submodule of GrV
γ L|U4

of the same rank and thus oinides with GrV
γ L|U4

. But in thease γ = βj = αi − k we have additionally s(vj, βj) ∈ GrV
γ L|U4

, and by (3.2) and by thelinear independene, it is not a linear ombination of the setions above. Thus (Ck)ij = 0if αi − k < αj .Next we give a onrete desription of the tangent bundle of ĎBL using the universal bundle
L. For this purpose, we will introdue some auxiliary holomorphi bundles on ĎBL. Wewill desribe loal bases of these bundles, these will be written as row vetors. We use theonvention that given a (sheaf of) A-module(s) N , one an multiply matries with entries of Nwith matries with entries in A by salar multipliation. Moreover, we make use of the tensorprodut of matries, and in partiular of the following rules, where the matries involved aresupposed to have the appropriate size.

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D), (3.4)
(A ⊗ B)−1 = A−1 ⊗ B−1, (3.5)

(A ⊗ B)tr = Atr ⊗ Btr, (3.6)
(X ⊗ Y ) · Avec = (Y · A · X tr)vec. (3.7)10



In the last formula, we denote for any matrix A ∈ M(m × n,A) by Avec ∈ M(nm × 1,A) theolumn vetor obtained by staking the olumns of A in a single one. Finally, we denote thesheaf of rings O
C×ĎBL

by R and its loalization along {0} × ĎBL by R[z−1].De�ne M := EndR[z−1](V>−∞), then M is a meromorphi bundle with onnetion induedfrom V>−∞. This onnetion is obviously regular singular so that M arries its own V -�ltration, haraterized by V0M = {φ ∈ M|φ(Vα) ⊂ Vα ; ∀α}. Consider the R-submodule
G̃I := HomR(L, z−nL) of M, and the quotient

GI :=
G̃I

EndR(L)

GI is a z-torsion sheaf and an be identi�ed with HomR(L, z−nL/L). As an OĎBL
-module, itis loally free of rank nµ2. Any setion v of the projetion L ։ k∗(L/zL) (here k : ĎBL →֒

C× ĎBL, t 7→ (0, t)) yields an isomorphism
GI ∼=

[
EndOĎBL

(Lsp,v)
]nwhere Lsp,v := Im(v). Any loal basis v = (v1, . . . , vµ) of L in a neighborhood of a point

(0, t) ∈ C × ĎBL (in partiular, this gives a setion v : k∗(L/zL) → L loally) yields a loalbasis of GI , namely (z ⊗ v∗ ⊗ v) ∈ M(1 × nµ2,GI ), where the symbol z denotes the vetor
(z−1, . . . , z−n). A loal setion φ ∈ GI is written in this basis as

φ =
∑

k=1,...,n

i,j=1,...,µ

(∆k)jiz
−k ⊗ v∗

i ⊗ vj = (z ⊗ v∗ ⊗ v)(

n∑

k=1

ek ⊗ ∆vec
k ) (3.8)where ∆k ∈ M(µ × µ,OĎBL

) and ek ∈ M(n × 1,C) is the k-th unit vetor.We will de�ne a hain GIV ⊂ GIII ⊂ GII ⊂ GI of subbundles of GI , and an injetive morphism
TĎBL

→֒ GI with image equal to GIV . This will give the desription of the tangent bundlealluded to above.De�nition 3.3. Put
G̃II :=

{
φ ∈ G̃I |P (φ(a), b) + P (a, φ(b)) ∈ zwR ∀ a, b ∈ L

}
,

G̃III := G̃II ∩V0M,

G̃IV :=
{
φ ∈ G̃III | ad(z2∇z)(φ) = [z2∇z, φ] ∈ EndR(L)

}
,and de�ne GII ,GIII resp. GIV to be the images of G̃II , G̃III resp. G̃IV in GI .From the de�nition it is lear that GII ,GIII and GIV are OĎBL

-oherent. The following resultyields loal bases for GII and GIII showing that they are in fat loally free. The same is truefor GIV , but it is more ompliated to give an expliit loal base for that bundle. Instead, wegive a haraterization of the elements of GIV . Its loal freeness will be shown in lemma 3.5.11



Lemma 3.4. Let v be a loal basis of L as above and suppose moreover that P mat := (P (vi, vj)) =
(δi+j,µ+1). Then we have

GII ∼=
⊕

(k,i,j)∈N

OĎBL
z−k ⊗

(
v∗

i ⊗ vj + (−1)k+1v∗
µ+1−j ⊗ vµ+1−i

)
,where

N :=
{
(k, i, j) ∈ {1, . . . , n} × {1, . . . , µ}2 | i + j < µ + 1 if k is even, i + j ≤ µ + 1 if k is odd } .Suppose moreover that v is a good basis in the sense of [Sai89℄, i.e., that v indues a basis of

Gr•V(L/zL). Order the elements of v in suh a way that vi ∈ Grαi

V (L/zL). Then
GIII ∼=

⊕

(k,i,j)∈N

αi−k≥αj

OĎBL
z−k

(
v∗

i ⊗ vj + (−1)k+1v∗
µ+1−j ⊗ vµ+1−i

)
.Although there is no simple hoie for a basis of GIV , its elements an be haraterized asfollows: An endomorphism φ ∈ G̃III lies in G̃IV i� the R[ǫ]/(ǫ2)-module

L̃ :=

µ⊕

i=1

R[ε]/(ε2) (vi + εφ(vi)) ,is stable under z2∇z.Proof. The �rst point follows from the simple omputation
P (φ(v)tr, v) + P (vtr, φ(v)) = v ·

n∑

k=1

z−k
(
∆tr

k · P mat + (−1)kP mat · ∆k

)
= 0 mod LFrom the ondition ∆tr

k · P mat + (−1)kP mat · ∆k = 0 one easily dedues the above bases of
GII and GIII . For the desription of GIV , note that L̃ is stable under z2∇z i� there is B′ ∈
M(µ × µ,OĎBL

) suh that
(z2∇z)(v + εφ(v)) = v · (B + εB′),where (z2∇z)(v) = v · B. In the ring R[ε]/(ε2), this is equivalent to

[z2∇z, φ](v) = v · B′,i.e., to φ ∈ GIV .We are now in the position to ompare the bundle GI with the tangent bundle of ĎBL. De�nethe following morphism:
KS : TĎBL

−→ GI

X 7−→ [v ∈ L 7→ ∇Xv]where the brakets on the right-hand side denote the lass in the quotient GI .12



Lemma 3.5. GIV is a bundle, and KS is a bundle isomorphism from TĎBL
to GIV .Proof. First we will prove that given X ∈ TĎBL

, the ovariant derivative ∇X really de�nes anelement in GI . It was already shown that for any v ∈ L, ∇Xv lies in z−nL. On the other hand,if f ∈ OĎBL
, then ∇X(f · v) = f∇X(v)+X(f) · v, but X(f) · v ∈ L, so modulo End(L) we have

∇X(f · v) = f∇X(v). Moreover, the �atness of P implies that P (∇X(−),−) + P (−,∇X(−)) =
XP (−,−), so Im(KS) ⊂ GII and it is lear that the V-�ltration is respeted, i.e., that we getan element in V0M, as we derive only in parameter diretion. This proves Im(KS ) ⊂ GIII .From [z2∇z,∇X ] = 0 it follows immediately that Im(KS) ⊂ GIV .The last step of the proof is to show that KS maps TĎBL

isomorphially onto GIV . Then itfollows that GIV is loally free. We will use the onstrution of oordinates on the �bers resp.on the base of the projetion ĎBL → ĎPMHS in [Her99, Ch. 5℄ resp. in [Her02, proof of theorem12.8℄. We will rephrase the outome of these onstrutions, without going into details. Fromthat it will follow that KS is a bundle isomorphism onto GIV .Having �xed a referene TERP-struture, we �rst onsider the larger spaes
DSp = {H ⊂ V α1 | H is a free OC −modulewith spetral numbers α1, ..., αµ},
DF l = {F̃ •

H| H ∈ DSp},where F̃ •
H denotes the �ltration de�ned by H on the spae H∞ (see de�nition 2.3). We havean obvious projetion DSp → DF l. Here DF l is a �ag manifold, and DSp is also a manifold,with �bers isomorphi to some NSp ∈ N. Loal oordinates on DSp and DF l an be hosen asfollows: For some H ∈ DSp one �xes a good basis v0. The analogue of lemma 3.2 holds andprovides a unique good basis v in a neighborhood U of H ∈ DSp where

v = v0 ·
(
1µ +

n∑

k=1

z−kCk

)with (Ck)ij = 0 if αi − k < αj. Now the (Ck)ij with αi − k ≥ αj are loal oordinates on DSpand those with αi − k = αj are loal oordinates on DF l.The onstrution of oordinates on ĎBL in [Her99℄[Her02℄ amounts to the following: For H ∈
ĎBL ⊂ DSp a very speial good basis was hosen. It gives loal oordinates (Ck)ij with αi−k ≥
αj on DSp. The onditions from the pairing P and the pole of order 2, whih determine ĎBLin DSp loally, were shown to give a set of equations in (Ck)ij whose linear parts are linearlyindependent. This proved the smoothness of ĎBL.Now the de�nition of GIV uses exatly these linear parts. This shows the injetivity of KS andthat Im(KS ) = GIV .By abuse of notation, we all KS the Kodaira-Spener morphism, although this is the orretname only if we onsider KS as an isomorphism between TĎBL

and GIV .It will be useful to have a loal haraterization of GIV in the basis of GIII given above. Let
φ = (z⊗v∗⊗v)(

∑n
k=1 ek⊗∆vec

k ) be a loal setion of GIII , i.e., (∆k)ij+(−1)k(∆k)µ+1−j,µ+1−i = 0and (∆)ij = 0 for all αi − k < αj . Then ∆ ∈ GIV i� there is B′ ∈ M(µ × µ,R) suh that
(z2∇z)(v + εφ(v)) = v · (B + εB′)13



where B ∈ M(µ × µ,R) is de�ned by (z2∇z)(v) = v · B. This is equivalent to
B′ = [B,

n∑

k=1

z−k · ∆k] +
n∑

k=1

(−k)z−k+1 · ∆k.

B′ is required to be holomorphi, so that the oe�ients of all stritly negative powers of z inthis equation must vanish. Writing B =
∑∞

k=0 zk · Bk−1, there are a priori onditions for any
l = 1, ..., n (with ∆n+1 := 0):

0 = (oe�ient of z−l) = (−1 − l)∆l+1 +

n∑

k=l

[Bk−1−l, ∆k]. (3.9)However, as we are working with a good basis v of L, it follows that vi ∈ Vαi and (z∇z)vi ∈ Vαi .This gives (Bk)ij = 0 for all αi + k < αj . Remember also that (∆k)ij = 0 for αi − k < αj. Theequation [∆n, B−1] = 0 is thus trivially satis�ed, so that the onditions (3.9) are non-emptyonly for l ∈ {1, . . . , n − 1}.We will now de�ne the analogue of the subbundle of horizontal tangent diretions on thelassifying spaes ĎPHS in the sense of [Sh73℄ for the spae ĎBL.De�nition-Lemma 3.6. De�ne the following subsheaf of GI :
GI ,hor := Image of HomR(L, z−1L) in GI ,and put GII ,hor := GI ,hor ∩GII , GIII ,hor := GI ,hor ∩GIII and GIV ,hor := GI ,hor ∩GIV . Then

GI ,hor,GII ,hor and GIII ,hor are OĎBL
-loally free. GIV ,hor is an OĎBL

-oherent subsheaf of GIV . Itis equal to GIV and thus loally free if n = ⌊αµ − α1⌋ = 1. We all T hor
ĎBL

:= KS
−1(GIV ,hor) thesubsheaf of horizontal tangent diretions or horizontal tangent sheaf for short.Proof. The OĎBL

-oherene of all of the sheaves in question is obvious from their de�nition,and one obtains loal bases of GI ,hor, GII ,hor resp. GIII ,hor by restriting the bases of GI , GIIresp. GIII to k = 1. A setion φ = (z ⊗ v∗ ⊗ v)(
∑n

k=1 ek ⊗ ∆vec
k ) is ontained in one of thesesubbundles i� ∆k = 0 for k > 1. The equality GIV ,hor = GIV for n = 1 is obvious from thede�nition as we have GI ,hor = GI in this ase.In the remainder of this setion, we show that GIV ,hor is not loally free in general. For thatpurpose, onsider the loal basis of GIII ,hor given above. In this basis, the onditions for a setion

φ ∈ GIII ,hor to be an element in GIV ,hor are simply obtained from formula (3.9) by putting all
∆k = 0 if k > 1. This yields the unique equation

[B−1, ∆1] = 0. (3.10)Note that B−1 is the matrix of the pole part of ∇z with respet to v, i.e., of the endomorphism
U := [z2∇z] ∈ EndOĎBL

(L/zL). Similarly, ∆1 is by de�nition the matrix of the lass [zφ] ∈
EndOĎBL

(L/zL). This shows that we have the following simple haraterization
GIV ,hor =

{
φ ∈ GIII ,hor | [U , [zφ]] = 0

}
.14



We have U , [zφ] : V•(L/zL) ⊂ V•+1(L/zL), so that [U , [zφ]] = 0 if n = 1. This implies
GIV ,hor = GIII ,hor, in partiular, GIV = GIII ,hor in this ase.If n ≥ 2 then in general GIV ,hor will not be loally free. The reason is that in general the rankof the ondition [U , [zφ]] = 0 varies within ĎBL. Note however that the base ĎPMHS arries ahorizontal subbundle, as it is a homogeneous spae, so that the obstrution for GIV ,hor to beloally free lies in the �bers of ĎBL → ĎPMHS . We will desribe a situation where this atuallyours.For simpliity we restrit to a situation in whih dim Cα = 1 for all α. Then N = 0 and
DPHS = ĎPHS = DPMHS = ĎPMHS = {pt}, so that DBL = ĎBL = CNBL for some NBL. Wehoose v0

i ∈ Cαi with P (v0
i , v

0
µ+1−j) = δij. By [Her99, Ch. 5℄ formula (3.1) holds on all of ĎBL,with

(Ck)ij = 0 for αi − k ≤ αj ,

(αi − k − αj) · (Ck)ij =
∑

l

(αl − 1 − αj) · (Ck−1)il(C1)lj ,

(C1)ij = (C1)µ+1−j,µ+1−i,

U([v]) = [v] · ((αi − 1 − αj) · (C1)ij),and global oordinates on ĎBL are given by those (C1)ij where i + j ≤ µ + 1. The zero pointof these oordinates is the TERP-struture H0 =
⊕OC · v0

i .In the basis of GIII ,hor in de�nition-lemma 3.6
[zφ]([v]) = [v] · ∆1with (∆1)ij = 0 if αi − 1 ≤ αj (equality is impossible due to dim Cα = 1) and (∆1)ij =

(∆1)µ+1−j,µ+1−i. We have rankGIII ,hor = NBL and
T hor
|0 ĎBL

∼= GIV ,h
|0 = GIII ,h

|0
∼= T|0ĎBLas U and [zφ] ommute at the point 0. To prove that GIV ,hor is not loally free it is su�ientto show that the ondition [U , [zφ]] = 0 is non-empty at some point t ∈ ĎBL .If there are αi, αl, αm with αi − 2 > αl − 1 > αm and m 6= µ + 1− i then the (i, m) entry of theommutator of the matries orresponding to U and [zφ] is

∑

j

((αi − 1 − αj)(C1)ij · (∆1)jm − (∆1)ij · (αj − 1 − αm)(C1)jm) .This sum is non-empty beause j = l gives a term, and all present (∆1)-oe�ients are di�erent.So if (C1)il(t) 6= 0 this gives a non-empty ondition, and rank T hor
|t ĎBL < rank T hor

|0 ĎBL.An example of this type an be onstruted starting with a suitable semiquasihomogeneousdeformation of a Brieskorn-Pham singularity f = xa0
0 +xa1

1 +xa2
2 where gd(ai, aj) = 1 for i 6= jand suh that 1

a0
+ 1

a1
+ 1

a2
is su�iently small.4 Holomorphi setional urvatureOne of the most interesting features of a TERP-struture is the onstrution of a anonialextension to a twistor, i.e., a P1-bundle. Starting with a family of TERP-strutures, this yields15



a C∞-family (whih is atually real analyti) of twistors. Let us brie�y reall how this is done(see [Her03℄ and [HS07℄ for more details).Given a TERP-struture (H, H ′
R
,∇, P, w), de�ne for any z ∈ C∗ the anti-linear involution

τ : Hz −→ H1/z

s 7−→ ∇-parallel transport of z−wsThe image τ(H0) of the germ of setions of H at zero is ontained in the germ (̃i(H′))∞, where
ĩ : C∗ → P1\{0}. This de�nes an extension of H to in�nity, whih is a holomorphi P1-bundle,i.e., a twistor. We will denote it by Ĥ . If Ĥ is trivial, then we all the original TERP-struturepure. Moreover, in this ase we an de�ne a hermitian pairing h on H0(P1, Ĥ) by the formula
h(a, b) := z−wP (a, τb). If this form is positive de�nite, then (H, H ′

R
,∇, P, w) is alled purepolarized. We only remark (this is disussed in detail in [Her03℄ and [HS07℄) that if we startwith a family of TERP-strutures, then this extension proedure yields a real analyti familyof twistors. De�ne

Ďpp
BL :=

{
H ∈ ĎBL | Ĥ is pure polarized } .One of the main results in [HS07℄, namely, theorem 6.6 says that a regular singular TERP-struture is an element of DBL i� it indues a nilpotent orbit, i.e. i� the pullbak

π∗
r(H, H ′

R,∇, P ),where πr : C → C, z 7→ r · z, is a pure polarized TERP-struture for any r ∈ C∗ with |r|su�iently small.Suh a pullbak is then also an element of DBL. Therefore the set Ďpp
BL of all pure polarizedTERP-strutures in ĎBL is non-empty, and it intersets DBL nontrivially. The ondition to bepure and polarized is open, so Ďpp

BL is an open submanifold of ĎBL.There is no reason to expet Ďpp
BL ⊂ DBL, but the intersetion Ďpp

BL ∩ DBL seems to be mostinteresting for appliations. If N = 0 then DPHS = DPMHS and moreover Ďpp
BL ∩DBL ontains aneighborhood of the zero setion DPMHS →֒ DBL. The reason is that if N = 0, then the ationby pullbak π∗

r oinides with the good C∗-ation onsidered in [Her99, Theorem 5.6℄.Performing the above onstrution on the whole lassifying spae ĎBL yields an extension ofthe universal bundle L to a real analyti family of twistors L̂, that is, a loally free OP1Can
ĎBL

-module. Moreover, on the subspae Ďpp
BL the sheaf of �brewise global setions p∗L̂|Ďpp

BL
is byde�nition loally free over Can

Ďpp
BL

and omes equipped with a positive de�nite hermitian metri h.We will show that this indues positive de�nite hermitian metris on the bundles GI , . . . ,GIV ,restrited to Ďpp
BL.Denote by K the sheaf Can

Ď
pp

BL

⊗L|Ďpp
BL

and put Ksp := p∗L̂|Ďpp
BL
, then we have a hermitian metri

h := z−wP (−, τ−) on the Can

Ď
pp

BL

-module Ksp . We obtain a splitting
k−1K = Ksp ⊕ k−1(zK)where k : Ďpp

BL →֒ C× Ďpp
BL, t 7→ (0, t). This yields

Can
Ď

pp

BL

⊗k−1 GI = Homk−1OC Can

Ď
pp
BL

(
Ksp ⊕ k−1(zK), k−1

(
z−nK
K

))
∼=

HomCan

Ď
pp
BL

(
Ksp ,⊕n

k=1z
−k Ksp

)
= ⊕n

k=1HomCan

Ď
pp
BL

(
Ksp , z−k Ksp

) ∼=
[
EndCan

Ď
pp
BL

(Ksp)

]n16



We obtain a hermitian metri on EndCan

Ď
pp
BL

(Ksp) (and its powers) by h(φ, φ′) = Tr(φ · (φ′)∗),where (−)∗ denotes the hermitian adjoint. This indues a metri on GI and by restrition onthe subbundles GII , GIII and GIV . We denote these metris by hI , . . . , hIV . We remark thathoosing any loal basis u ∈ M(1× n,K) of K in a neighborhood of a point (0, t) ∈ {0}× Ďpp
BLyields a similar splitting

k−1K = Ksp,u ⊕ k−1(zK) and Can

Ď
pp

BL

⊗GI ∼=
[
EndCan

Ď
pp
BL

(Ksp,u)

]n

,where Ksp,u := ⊕µ
i=1 Can

Ď
pp

BL

ui. If u is a global basis of L̂|Ďpp
BL
, then Ksp,u = Ksp . If u happensto be holomorphi, i.e., u ∈ M(1 × µ,L), then GI ∼=

[
EndO

Ď
pp
BL

(Lsp,u)
]n, this isomorphism wasalready onsidered in setion 3. Similarly to the holomorphi basis from formula (3.8), weobtain a basis of Can

Ď
pp

BL

⊗GI ∼=
[
EndCan

Ď
pp
BL

(Ksp,u)

]n, namely, z ⊗ u∗ ⊗ u ∈ M(1 × nµ2, Can

Ď
pp

BL

⊗GI )and any setion φ of Can
Ď

pp
BL

⊗GI is written in the basis z ⊗ u∗ ⊗ u as
φ =

∑

k=1,...,n

i,j=1,...,µ

(Γk)jiz
−k ⊗ u∗

i ⊗ uj = (z ⊗ u∗ ⊗ u)(
n∑

k=1

ek ⊗ Γvec
k )

(remember that z := (z−1, . . . , z−n), that ek ∈ M(n × 1,C) is the k-th unit vetor and that
Avec denotes the olumn vetor of a matrix A as explained after formula (3.7)).Reall the Kodaira-Spener map from lemma 3.5

KS : TĎpp
BL

→֒ GI

X 7−→ [v 7→ ∇Xv]),whih endows TĎpp
BL

with a positive de�nite hermitian metri whih we simply denote by h.Reall also that we denoted by T hor
Ďpp

BL

the oherent subsheaf of TĎpp
BL

de�ned by T hor
Ďpp

BL

:=

KS
−1(HomO

C×Ď
pp
BL

(H, z−1H
H

)), and that it is not loally free in general. However, it ontainsthe zero setion of TĎpp
BL

→ Ďpp
BL, and we may onsider the holomorphi setional urvature ofthe metri h on vetors of T hor

Ďpp
BL

\{zero setion}. Let us brie�y reall its the de�nition: Givenany holomorphi bundle E on a omplex manifold M and a positive de�nite hermitian metri hon E, there is a unique onnetion D : E → E⊗A1
M suh that D(h) = 0 and suh that the (0, 1)-part of D oinides with the operator de�ning the holomorphi struture of E . D is alled theChern onnetion of (E, h). Its urvature is by de�nition the setion R of EndCan

M
(Can

M ⊗E)⊗A1,1
Mgiven by e

R7→ D(2)(D(e)), here D(2) : E ⊗ A1
M → E ⊗A2

M , D(2)(e ⊗ α) = D(e) ∧ α + s ⊗ dα. If
E is the holomorphi tangent bundle of M , then the funtion

κ : TM\{zero setion} −→ R

ξ 7−→ h(R(ξ, ξ)ξ, ξ)/h(ξ, ξ)217



is alled the holomorphi setional urvature of M .We are now able to state the main result of this setion.Theorem 4.1. The restrition of the holomorphi setional urvature κ : TĎpp
BL
\{zero-setion} →

R to the (linear spae assoiated to the) oherent subsheaf T hor
Ďpp

BL

is bounded from above by a neg-ative real number.Proof. First reall a formula for the urvature tensor of the Chern onnetion on an arbitrarybundle. Let, as before, E be a holomorphi vetor bundle of rank µ on a omplex manifold
M and h : E ⊗ E → Can

M a positive de�nite hermitian metri. For a loal holomorphi basis
e ∈ M(1 × µ, E), put H := (h(etr, e))

tr ∈ M(µ × µ, Can
M ). The urvature R is linear, thus

R(e) = eMR, where MR ∈ M(µ × µ,A1,1
M ). It is well known (see, e.g., [CMSP03, lemma 11.4℄)that

MR = H−1∂∂H − H−1∂(H) ∧ H−1∂H.In partiular, for any holomorphi vetor �eld X ∈ TM , we have
MR(X, X) = −H−1(XX)(H) + H−1X(H)H−1X(H) ∈ M(µ × µ, Can

M ).If at a point x ∈ M , H(x) = Id, then MR(X, X)(x) = X(H)(x)X(H)(x)− (XX)(H)(x), or, ifwe write ξ := X(x), then
MR(X, X)(x) = ξ(H)ξ(H)− (XX)(H)(x). (4.1)This formula will allow a very signi�ant simpli�ation of the alulations. Let t ∈ Ďpp

BL,and let ξ ∈ T hor
t (Ďpp

BL) be any vetor with ξ 6= 0. Choose loal holomorphi oordinates
(t1, . . . , tdim(Ďpp

BL
)) entered at t suh that (∂t1)|t = ξ. Although we are interested in the urvaturetensor RIV of the bundle GIV

|Ďpp
BL

(whih is isomorphi to TĎpp
BL
), our �rst aim is to give anexpression for the matrix MR(∂t1 , ∂t1)(t) whih represents RI(∂t1 , ∂t1)(x) ∈ EndC(GI

|t) withrespet to a holomorphi basis in a neighborhood of t. This basis is indued from a holomorphibasis of L near (0, t), whih is obtained as follows: hoose a basis v0 ∈ M(1 × µ,L|C×{t}) of
L|C×{t} suh that P ((v0)tr, v0) = 1µ and τ(v0) = v0. Then de�ne

v := v0

(
1µ +

n∑

k=1

z−kCk

)
∈ M(1 × µ,L)to be the extension provided by lemma 3.2. It still satis�es P (vtr, v) = 1µ, but not neessarily

τ(v) = v. Write KS (ξ) =
∑

k,i,j(∆k)ji (z
−k ⊗ (v

(0)
i )∗ ⊗ v

(0)
j ) (i.e. ∆k ∈ M(µ × µ,C)), thenit follows from ξ ∈ T hor

t (Ďpp
BL) that (∆k) = 0 for all k > 1. Moreover, as κ(∂t1) = (v 7→

v(
∑n

k=1 z−k∂t1Ck)), we onlude that ξ(C1) = ∆1 and ξ(Ck) = ∆k = 0 for k > 1. The matries
H := [hI((z⊗v∗⊗v)tr, z⊗v∗⊗v)]tr and M(∂t1 , ∂t1) are elements of M(µ×µ, Can

Ď
pp
BL

), so that weonlude from formula (4.1) that M(∂t1 , ∂t1)(x) an obtained from the image of H under theredution map M(µ × µ, Can

Ď
pp

BL

) ։ M(µ × µ,Q), where Q := Can

Ď
pp

BL

/(t21, t
2
1, tj , tj)j>1. In order tokeep the notation simple, we still all this redution H . Moreover, it is lear that this reduedmatrix H may be alulated from the image of the basis v under the map K ։ K ⊗ Q̃, where18



Q̃ := OC Can

Ď
pp

BL

/(t21, t
2
1, tj , tj)j>1. Again we denote this image by v. All subsequent alulationstake plae in either Q̃ or Q. In partiular, we have C1 = t1∆1 and Ck = 0 for k > 1 in Q. Thisimplies v = v(0)(1µ + z−1C1) and 1µ = P (vtr, v) = (1µ + z−1C1)

trP ((v0)tr, v0)(1µ − z−1C1) =
(1µ + z−1(Ctr

1 − C1)) so that Ctr
1 = C1.Consider the base hange given by w := v(1µ + 1

2
[C1, C1]+zC1). It follows from P (vtr, v) = 1µ,

C
tr

1 = C1 and [C1, C1]
tr = −[C1, C1] that P (wtr, w) = 1µ. Moreover, as
w = v(0)

(
1µ + zC1 + z−1C1 +

1

2
(C1C1 + C1C1)

)
,we also have τ(w) = w. It is a simple alulation to show that the inverse base hange is givenby

v := w · (1µ − 1

2
[C1, C1] − zC1)We obtain an indued base hange on GI , given by (1µ − 1

2
[C1, C1] − zC1)

tr
)−1⊗(1µ−1

2
[C1, C1]−

zC1), i.e.:
z ⊗ v∗ ⊗ v = (z ⊗ w∗ ⊗ w) ·

[
1n ⊗

(
(1µ − 1

2
[C1, C1] − zC1)

−1
)tr ⊗ (1µ − 1

2
[C1, C1] − zC1)

]
=

z ⊗ w∗ ⊗ w ·


1n ⊗ (1µ ⊗ 1µ − 1

2
(1µ ⊗ [C1, C1] + [C1, C1] ⊗ 1µ)) + Nz ⊗ (C1 ⊗ 1µ − 1µ ⊗ C1)

︸ ︷︷ ︸
=:X


 ,here

Nz =




0 1 . . . 0
0 0 1 . . . 0...
0 0 . . . 0 1
0 0 . . . 0




.

Now we have
H = [hI((z ⊗ v∗ ⊗ v)tr, z ⊗ v∗ ⊗ v)]tr = [X trhI((z ⊗ w∗ ⊗ w)tr, z ⊗ w∗ ⊗ w)X]tr

= X
tr
X = 1n ⊗ (1µ ⊗ 1µ − 1µ ⊗ [C1, C1] − [C1, C1] ⊗ 1µ) + (Nz)

tr ⊗ (C1 ⊗ 1µ − 1µ ⊗ C1)

+Nz ⊗ (C1 ⊗ 1µ − 1µ ⊗ C1) + 1n−1 ⊗ (C1C1 ⊗ 1µ + 1µ ⊗ C1C1 − C1 ⊗ C1 − C1 ⊗ C1)where 1n−1 = N tr
z · Nz = diag(0, 1, . . . , 1). The next step is to invoke formula (4.1) to obtain19



the matrix MR(∂t1 , ∂t1)(x). Using C1 = t∆1, we get
ξ(H) = Nz ⊗ (∆1 ⊗ 1µ − 1µ ⊗ ∆1),

ξ(H) = N tr
z ⊗ (∆1 ⊗ 1µ − 1µ ⊗ ∆1),

(∂t1∂t1(H))(x) = −1n ⊗ (1µ ⊗ [∆1, ∆1] + [∆1, ∆1] ⊗ 1µ)+

1n−1 ⊗ (∆1∆1 ⊗ 1µ + 1µ ⊗ ∆1∆1 − ∆1 ⊗ ∆1 − ∆1 ⊗ ∆1),

MR(ξ, ξ) = 1n ⊗ (1µ ⊗ [∆1, ∆1] + [∆1, ∆1] ⊗ 1µ︸ ︷︷ ︸
=:S

)

−1n−1 ⊗ (∆1∆1 ⊗ 1µ + 1µ ⊗ ∆1∆1 − ∆1 ⊗ ∆1 − ∆1 ⊗ ∆1)

+1′
n−1 ⊗ (∆1∆1 ⊗ 1µ + 1µ ⊗ ∆1∆1 − ∆1 ⊗ ∆1 − ∆1 ⊗ ∆1︸ ︷︷ ︸

=:R

),where 1′
n−1 = Nz · N tr

z = diag(1, . . . , 1, 0). What we are really interested in is to give a losedformula for the expression hI(R(ξ, ξ) KS(ξ),KS(ξ)). As KS (ξ) =
∑

i,j(∆1)j,i(z
−1⊗(v

(0)
i )∗⊗v

(0)
j )and hI((z ⊗ v∗ ⊗ v)tr, (z ⊗ v∗ ⊗ v)) = 1n ⊗ h((v∗)tr, v∗) ⊗ h(vtr, v), we obtain that

hI(R(ξ, ξ) KS(ξ),KS(ξ)) =

hI
(
((z−1 ⊗ (v(0))∗ ⊗ v(0))(R + S)(∆1)

vec)tr, (z−1 ⊗ (v(0))∗ ⊗ v(0))(∆1)
vec
)

=

(S · (∆1)
vec)tr (1µ ⊗ 1µ)(∆1)

vec =
(
([[∆1, ∆1], ∆1])

vec
)tr

(∆1)
vec = Tr([[∆1, ∆1], ∆1] · ∆tr

1 )

= −Tr([∆1, [∆1, ∆1]] · ∆tr

1 ) = −Tr([∆1, ∆1], [∆1, ∆1]
tr
)The last omputation uses formula (3.7) and the fat that R · (∆1)

vec = [[∆1, ∆1], ∆1] = 0.It is well known that the urvature dereases on subbundles, see, e.g., [Sh73, lemma (7.14)℄,thus we obtain the following estimate:
hIV (RIV (ξ, ξ) KS (ξ),KS(ξ)) ≤ hI(RI(ξ, ξ) KS(ξ),KS(ξ)).This implies that the holomorphi setional urvature hIV (RIV (ξ,ξ)ξ,ξ)

h2(ξ,ξ)
is smaller than or equal to

−Tr([∆1, ∆1], [∆1, ∆1]
tr
)Tr(∆1 · ∆tr

1 )2As ξ ∈ T hor
t (Ďpp

BL), i.e., KS (∂t1) ∈ GIV ⊂ GIII , the morphism KS(∂t1) : L → z−1L/L respetsthe V -�ltration, and [z KS (∂t1)] ∈ EndO
Ď

pp
BL

(L/zL) shifts the (indued) V -�ltration by one. Byde�nition, ∆1 is the matrix representing [z KS (ξ)] ∈ EndC((L/zL)|(0,t)) with respet to the basis20



v, whih shows that it is nilpotent. Lemma 4.2 then proves that the value of −Tr([∆1,∆1],[∆1,∆1]
tr

)Tr(∆1·∆
tr
1 )2and thus of the holomorphi setional urvature on T hor

Ďpp
BL

\{zero setion} is bounded from aboveby a negative real number.Lemma 4.2. Fix µ ∈ N.1. Consider a matrix A ∈ M(µ × µ,C) whih is symmetri and nilpotent. Then
[A, A] = 0 ⇐⇒ A = 0.2. The map

ϕ :
{
A ∈ M(µ × µ,C)\{0} | A is symmetri and nilpotent} −→ R,

A 7→
−Tr([A, A] · [A, A]

tr)Tr(A · Atr
)2is bounded from above by a negative number.Proof. 1. ℜ(A) and ℑ(A) are real symmetri matries and thus diagonalizable. [A, A] = 0is equivalent to [ℜ(A),ℑ(A)] = 0 and to the simultaneous diagonalizability of ℜ(A) and

ℑ(A). In that ase also A is diagonalizable. As A is nilpotent, it vanishes.2. The image of the map ϕ does not hange when we restrit ϕ to the subset
{A ∈ M(µ × µ,C) | A is symmetri and nilpotent and Tr (A · Atr

) = 1}.This set is ompat, its image is ontained in R−, ϕ is ontinuous so that the image isompat and therefore Im(ϕ) has a stritly negative upper bound.In the remaining part of this setion, we outline some rather diret onsequenes of the aboveurvature alulations. They are lose in spirit to the work of Gri�ths and Shmid on thelassifying spaes of Hodge strutures ([GS69, GS75℄). The key tool is the following result. Letus all a holomorphi map φ : M → Ďpp
BL horizontal if dφ(TM) ⊂ φ∗T hor

Ďpp
BL

, where dφ : TM →
φ∗TĎpp

BL
is the derivative of φ.Proposition 4.3. 1. Write ∆ for the open unit dis in C and let φ : ∆ → Ďpp

BL be ahorizontal map. Denote by
ω∆ :=

1

(1 − |r|2)2
dr ∧ drthe (metri) (1, 1)-form assoiated to the Poinaré metri on ∆ and similarly by ωh theform assoiated to the metri h on TĎpp

BL
de�ned above. Then the following inequalityholds

cφ∗ωh ≤ ω∆for some c ∈ R>0 meaning that ω∆ − cφ∗ωh is a positive semi-de�nite form.21



2. Let now M be any omplex manifold and φ : M → Ďpp
BL a horizontal map. Then φ isdistane-dereasing with respet to the (suitably normalized) distane dh on Ďpp

BL induedby h and the Kobayashi pseudo-distane on M .Proof. The proof of the �rst part is well-known and uses Ahlfors' lemma (see, e.g., [CMSP03,13.4℄). The seond part is an immediate onsequene.The following rather obvious lemma shows how to apply the above omputations to the studyof period mappings.Lemma 4.4. Let H underly a variation of pure polarized, regular singular TERP-strutureson M with onstant spetral numbers. Let π : M̃ → M be the universal over. We obtain aperiod mapping
φ : M̃ −→ Ďpp

BLby assoiating to x̃ ∈ M̃ the TERP-struture H|C×{π(x)} ∈ Ďpp
BL. Then we have dφ(TfM) ⊂

φ∗T hor
Ďpp

BL

, i.e., φ is horizontal.Proof. The pullbak of the universal bundle (L,∇) under the map id×φ : C×M̃ → C×ĎBL isisomorphi to (H,∇). By de�nition, for a variation of TERP-strutures, the sheaf H is stableunder z∇X for any X ∈ (p′)−1TfM (where p′ : C× M̃ → M̃), and not only under zn∇X as it isthe ase for L. Therefore,
(id × φ)∗(z∇dφ(X))L = (z∇X)(id × φ)∗L ⊂ (id × φ)∗L.This implies thatKS (dφ(TfM)) is ontained inHomR(L, z−1L/L), so that by de�nition Im(dφ) ⊂

φ∗T hor
Ďpp

BL

.As an example of possible appliations we give the following rigidity result similar to the onefor variations of Hodge strutures.Corollary 4.5. Let (H, H ′
R
,∇, P, w) be a variation of pure polarized regular singular TERP-strutures on Cm with onstant spetral numbers. Then the variation is trivial, i.e., the orre-sponding map φ : Cm → Ďpp

BL is onstant or, in other words, H is stable under ∇.Proof. The last lemma and the seond point of proposition 4.3 show that the period map
φ : Cm → Ďpp

BL satis�es dCm(x, y) ≥ dh(φ(x), φ(y)), where dCm is the Kobayashi pseudo-distaneon Cm and x, y ∈ Cm. It is known that dCm = 0, on the other hand, dh is a true distane, sothat φ is neessarily onstant.Let us �nish this paper by pointing out that the above onstrution has an a priori unpleasantfeature: the metri spae Ďpp
BL is not omplete in general. We will give a onrete exampleshowing this phenomenon. We will not arry out all details of the omputations whih arerather lengthy.Consider the following topologial data: Let H∞

R
be a three-dimensional real vetor spae,

H∞ := H∞
R

⊗ C its omplexi�ation and hoose a basis H∞ = ⊕3
i=1CAi suh that A1 = A3and A2 ∈ H∞

R
. Moreover, hoose a real number α1 ∈ (−3/2,−1), put α2 := 0, α3 := −α122



and let M ∈ Aut(H∞
C

) be given by M(A) = A · diag(λ1, λ2, λ3) where A := (A1, A2, A3) and
λi := e−2πiαi . Putting

{0} = F 2
0 ( F 1

0 := CA1 ( F 0
0 := CA1 ⊕ CA2 = F−1

0 ( F−2
0 := H∞de�nes a sum of pure Hodge strutures of weights 0 and −1 on H∞

1 and H∞
6=1. A polarizingform is de�ned by

S(Atr, A) :=




0 0 γ
0 1 0
−γ 0 0


 ,where γ := −1

2πi
Γ(α1 + 2)Γ(α3 − 1). In partiular, we have for p = 1

ip−(−1−p)S(A1, A3) = (−1)iS(A1, A3) =
Γ(α1 + 2)Γ(α3 − 1)

2π
> 0and for p = 0

ip−(−p)S(A2, A2) = S(A2, A2) > 0so that F •
0 indeed indues a pure polarized Hodge struture of weight −1 on H∞

6=1 = CA1 ⊕CA2and a pure polarized Hodge struture of weight 0 on H∞
1 = CA2. As M is semi-simple andits eigenspaes are one-dimensional, we have DPMHS = ĎPMHS = DPHS = ĎPHS = {F •

0 } and
F •

0 = F̃ •
0 .Let (H ′, H ′

R
,∇) be the �at holomorphi bundle on C∗×C with real �at subbundle orrespondingto (H∞, H∞

R
, M), and put si := zαiAi ∈ H′. Aording to [HS07, formula (5.3), (5.4)℄, thepairing P : H′ ⊗ j∗H′ → OC∗×C is determined by the above hosen S, namely, P (str, s) :=

(δi+j,4)i,j∈{1,...,3}.It follows from the onstrution in [Her99, setion 5℄ that the lassifying spae DBL = ĎBL asso-iated with the given topologial data and the spetrum α1, α2, α3 is ĎBL
∼= C2 = Spe C[r, t],with the universal family of Brieskorn latties given by H = ⊕3

i=1OC3vi, where
v1 := s1 + rz−1s2 + r2

2
z−2s3 + tz−1s3,

v2 := s2 + rz−1s3,
v3 := s3.

Ĥ is pure outside of the real-analyti hypersurfae (1− ρ)4 − θ = 0, where ρ = 1
2
rr and θ = tt.The omplement has three omponents. Ĥ is polarized on two of them, those whih ontain

{(r, 0) | |r| <
√

2} and {(r, 0) | |r| >
√

2}, respetively. On the third omponent the metri on
p∗Ĥ has signature (+,−,−). So in this example Ďpp

BL has two onneted omponents, one ofthem is bounded while the other is not.If we restrit the metri h on TĎpp
BL

to the tangent spae of {(r, 0) | |r| 6=
√

2}, then it is givenby
h(∂r, ∂r) = 2

1 + ρ2

(1 − ρ)4
.From this it is diretly evident that the distane de�ned by h on the unbounded omponent of

Ďpp
BL annot be omplete, as we have

h(∂r−1 , ∂r−1) = h(−r2∂r,−r2∂r) = 8ρ2 1 + ρ2

(1 − ρ)4

r→∞−→ 8 6= ∞.23



Comparing the situation to the one for lassifying spaes of Hodge struture (where the distaneindued by the Hodge metri on DPHS is known to be omplete due to the homogeneity of
DPHS ), it is lear that one needs to have a omplete metri spae as a possible target for periodmaps for variations of regular singular TERP-strutures. We are able to onstrut suh aspae, it is in fat a partial ompati�ation of Ďpp
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