1. **Exercise:** (The join of projective varieties) Let $X, Y \subset \mathbb{P}^n$ be disjoint projective varieties. Then let $J(X, Y) := \bigcup \{ l \subset \mathbb{P}^n \mid l \cap X \neq \emptyset, l \cap Y \neq \emptyset \} \subset \mathbb{P}^n$. Show that $J(X, Y)$ is a closed subset of \mathbb{P}^n.

(a) Let $(\mathbb{P}^n)^* \cong G(2, n+1)$ be the dual projective space. It can be defined either as $\mathbb{P}((k^{n+1})^*)$ or as the space (the Grassmanian) of two-dimensional subspaces of k^{n+1}. Then let

$$Inc := \{(l, p) \in (\mathbb{P}^n)^* \times \mathbb{P}^n \mid p \in l\}$$

be the *Incidence variety*. We will show that Inc is closed in $(\mathbb{P}^n)^* \times \mathbb{P}^n$: We have the canonical projection $\pi : (\mathbb{P}^n)^* \times \mathbb{P}^n \to (\mathbb{P}^n)^* \times \mathbb{P}^n$ and it is sufficient to show that $\pi^{-1}(Inc)$ (the affine cone) is a closed affine algebraic set in $(\mathbb{P}^n)^* \times \mathbb{P}^n$. But this is obvious, as we have

$$\pi^{-1}(Inc) = \{(\varphi, v) \in (\mathbb{P}^n)^* \times \mathbb{P}^n \mid \varphi(v) = 0 \}$$

(b) Consider the following diagram of projective morphisms

$$
\begin{array}{ccc}
(\mathbb{P}^n)^* \times \mathbb{P}^n & \xrightarrow{\pi_2} & (\mathbb{P}^n)^* \\
\downarrow & & \downarrow \\
Inc & \xrightarrow{\pi_1} & \mathbb{P}^n
\end{array}
$$

For any closed subset $Z \subset (\mathbb{P}^n)^*$, denote by L_Z the union $\bigcup l$ in \mathbb{P}^n of all lines l such that $l \in Z$. Obviously (check this!), we have $L_Z := \pi_1(\pi_2^{-1}(Z) \cap Inc)$. This shows (main theorem on projective varieties), that L_Z is a closed subset of \mathbb{P}^n.

(c) For any subvariety X of \mathbb{P}^n, consider $Z_X := \pi_2(\pi_1^{-1}(X) \cap Inc) \subset (\mathbb{P}^n)^*$. It is clear (check this!) that points of Z_X are the lines in \mathbb{P}^n passing through X. Again we see that Z_X is closed in $(\mathbb{P}^n)^*$. On the other hand, we have $J(X, Y) = L_{Z_X \cap Z_Y}$ so that $J(X, Y)$ is a closed subset of \mathbb{P}^n by part (b).

2. **Exercise:** Prove that for $X, Y \subset \mathbb{P}^n$ closed subvarieties, if $\dim(X) + \dim(Y) - n \geq 0$, then $X \cap Y$ is not empty.

(a) First note that we can chose closed embeddings

$$
\begin{align*}
\tilde{j}_1 : \mathbb{P}^n & \hookrightarrow \mathbb{P}^{2n+1} \\
(x_0 : \ldots : x_n) & \mapsto (x_0 : \ldots : x_n : 0 : \ldots : 0)
\end{align*}
$$

$$
\begin{align*}
\tilde{j}_2 : \mathbb{P}^n & \hookrightarrow \mathbb{P}^{2n+1} \\
y_0 : \ldots : y_n & \mapsto (0 : \ldots : 0 : y_0 : \ldots : y_n)
\end{align*}
$$

such that $\tilde{X} = \tilde{j}_1(X) \cong X$ and $\tilde{Y} = \tilde{j}_2(Y) \cong Y$ are disjoint. It therefore makes sense to consider the join $J(\tilde{X}, \tilde{Y})$. Then it is obvious that $X \cap Y = J(\tilde{X}, \tilde{Y}) \cap V((x_i - y_i)_{i=0, \ldots, n})$. In order to conclude, it will be sufficient to show that $\dim(J(\tilde{X}, \tilde{Y})) \geq \dim(X) + \dim(Y) + 1$, as then we obtain $\dim(X \cap Y) \geq \dim(J(\tilde{X}, \tilde{Y})) - (n + 1) \geq 0$. To show this, we proceed by induction on $k = \dim(\tilde{X}) + \dim(\tilde{Y})$. For $k = 0$, the result is clear: A line which is the join of two points has dimension one. Otherwise, let $\dim(\tilde{X}) = l$ and $\emptyset \neq \tilde{X}_0 \subsetneq \tilde{X}_1 \subsetneq \ldots \subsetneq \tilde{X}_l = \tilde{X}$ be a chain of closed subvarieties of maximal length. Then $J(\tilde{X}_{i-1}, \tilde{Y})$ is a proper closed subset of $J(\tilde{X}, \tilde{Y})$ which by induction hypotheses implies that $\dim(J(\tilde{X}_i, \tilde{Y})) \geq \dim(J(\tilde{X}_{i-1}, \tilde{Y})) \geq l - 1 + \dim(Y) + 1 = \dim(X) + \dim(Y)$ so that $\dim(J(\tilde{X}, \tilde{Y})) \geq \dim(\tilde{X}) + \dim(\tilde{Y}) + 1$ as required.
3. Exercise: Let $f : X \to Y$ be a dominant morphism between varieties (i.e., the image $f(X)$ is dense in Y) which is closed (i.e., which sends closed sets to closed sets). Then there is a non-empty open subset $U \subset Y$ such that for any $y \in U$, we have that $\dim(X) = \dim(Y) + \dim(Z_y)$ for any component Z_y of $f^{-1}(y)$.

(a) We first discuss a special case, namely, let $X \subset k^{n+1}$ be an affine variety and suppose that f is the restriction to X of the projection $\pi_{n+1} : k^{n+1} \to k^n$ which sends (x_1, \ldots, x_{n+1}) to (x_1, \ldots, x_n). Let $k(X)$ resp. $k(Y)$ be the fields of rational functions on X resp. Y (note that $k(Y) = k(f(X))$). The induced map $f^* : k(Y) \to k(X)$ turns $k(X)$ into a field extension of $k(Y)$. It is clear that this extension is generated by x_{n+1} as this is already true for the coefficient rings (i.e., $k[X]$ is generated as $k[Y]$-algebra by x_{n+1}). There are two possibilities: Either x_{n+1} is algebraic over $k(Y)$ or it is transcendental. In the first case, there are elements $a_0, \ldots, a_d \in k(Y)$ such that

$$a_0 x_{n+1}^d + \ldots + a_d = 0 \quad \text{in } k(X)$$

(note that by multiplying with the least common multiple of the denominators of the a_i, we might assume that $a_i \in k[X]$). For fixed $y \in f(X)$, the fibre $f^{-1}(y)$ is precisely the vanishing locus of $a_0(y)x^d + \ldots + a_d(y) \in k[x_{n+1}]$ which is a finite number of points except if $a_i(y) = 0$ for all i. This means that for $k(Y)$ algebraic over $k(X)$, there is a non-empty open set (the a_i are not all constant) $U = f(X) \setminus \bigcup_i V(a_i) \subset Y$ with fibres of constant dimension (namely, of dimension zero).

Let us now suppose that x_{n+1} is transcendental over $k(Y)$. This means precisely that there is no polynomial $p(t)$ in $k(Y)[t]$ such that $p(x_{n+1}) = 0$ in $k(X)$. In other words, for any $f = a_0 x_{n+1}^d + \ldots + a_d \in I(X)$ (with $a_i \in k[x_1, \ldots, x_n]$), we must have $a_i \in I(Y)$ as otherwise we would get a relation (a polynomial $p(t) \in k(Y)[t]$ as above) in $k[X]$ (and thus also in $k(X)$). This means that for any fixed $y \in f(X)$, the whole fibre $f^{-1}(y)$ is contained in X so that $X = Y \times k$. Again we have an open subset (which is Y itself) with constant fibre dimension.

(b) The next step is to generalize the situation slightly: Let $X \subset k^{n+m}$ be an affine variety and $f : X \to k^n$ the restriction of the projection sending (x_1, \ldots, x_{n+m}) to (x_1, \ldots, x_m). Denote, as before, by $Y = f(X)$ and by $p_i : k^{n+m} \to k^{n+i}$ the intermediate projections. Let finally $X_i := p_i(X) \subset k^{n+i}$. We have a tower of maps

$$f : X = X_m \xrightarrow{\pi_{m-1}} X_{m-1} \xrightarrow{\pi_{m-2}} \ldots \xrightarrow{\pi_0} X_0 = Y \subset k^n$$

where at each step, π_i is the restriction of the projection $k^{n+i+1} \to k^{n+i}$ to X_{i+1}. For any $\pi_i : X_{i+1} \to X_i$, either $X_{i+1} \cong X_i \times k$ or there is an open set $U_i \subset X_i$ such that $\pi_i^{-1}(y)$ is of constant dimension zero for all $y \in U_i$, denote the set of indices i where the former hypothesis occurs by I. Then $U := f(\bigcap_{i \not\in I} p_i^{-1}(U_i)) \subset Y$ is open (here the closedness of f is needed) and f has constant fibre dimension over U, namely, $\# I = \dim(X) - \dim(Y)$.

(c) The next more general case is that of an arbitrary dominant and closed morphism of affine varieties $f : X \to Y$ with $X \subset k^n$ and $Y \subset k^m$. But this can easily be reduced to the case just treated by considering the graph $\Gamma_f \subset k^{n+m} \to Y \subset k^m$.

Now the general case is obtained by choosing an open affine cover $Y = \bigcup_i V_i$ and $X = \bigcup_i f^{-1}(V_i)$. We obtain open subsets U_i of V_i with constant fibre dimension equal to $\dim(X) - \dim(Y)$. These U_i can be patched together to give an open subset U of Y with the desired properties.

4. Exercise: Suppose that we are given a closed morphism of varieties $f : X \to Y$ and a closed subset $Z \subset X$ with $f|_Z$ dominant such that for all $y \in Y$, the sets $f^{-1}(y) \cap Z$ are irreducible and of constant dimension n. Then Z itself is irreducible.

(a) An argument similar to the last exercise (see, e.g., Shafarevich, volume 1, 6.3) shows that the sets

$$Y_r := \{ y \in Y \mid \dim(f^{-1}(y) \cap Z) \geq r \}$$

are closed in Y. Suppose now that $Z = \bigcup_i Z_i$ where Z_i are the irreducible components of Z. For any $y \in Y$, let $d_i(y)$ be the dimension of the fibre over y of $f|_Z$. Then by hypothesis we have that for all $y \in Y$, $\max_i d_i(y) = n$. This implies that $Y = \bigcup_i \{ y \in Y \mid d_i(y) \geq n \}$. As these sets are closed and Y is irreducible, there must be an index i such that $Y = \{ y \in Y \mid d_i(y) \geq n \}$. Therefore, for all $y \in Y$, $f^{-1}_Z(y) \subset f^{-1}(y) \cap Z$ is of dimension n, which implies that $f^{-1}_Z(y) = f^{-1}(y) \cap Z$ so that $Z = Z_i$.

(b) The following examples shows that the assumption of constant fibre dimension of $f|_Z : Z \to Y$ is essential: Let $Z = V(z) \cup V(x, y) \subset k^3 =: X$ be the union of a plane with a line, and let $f : X \to Y := k^2$ be the projection $f(x, y, z) = (x, y)$. Then for each $(x, y) \neq (0, 0)$, the fibre $f^{-1}_Z(x, y)$ is (x, y) itself, thus irreducible (and of dimension one), and for $(x, y) = (0, 0)$, the fibre $f^{-1}_Z(0, 0)$ is the whole line $V(x, y)$, which is also irreducible, but of dimension one. We see that in this case, all fibres are irreducible but Z itself is not.