Exercises Algebraic Geometry

Sheet 3

1. Check whether some of the following complex algebraic sets are isomorphic.
 (a) $V(y) \subset \mathbb{C}^2$
 (b) $V(xy) \subset \mathbb{C}^2$
 (c) $V(xy - 1) \subset \mathbb{C}^2$
 (d) $V(xy(x - y)) \subset \mathbb{C}^2$
 (e) $V(x^2 + y^2) \subset \mathbb{C}^2$
 (f) $V(y^3 - x) \subset \mathbb{C}^2$
 (g) $V(xy, yz, xz) \subset \mathbb{C}^3$
 (h) $V(y - x^2, z - x^3) \subset \mathbb{C}^3$

2. Consider a regular map $\varphi : k^n \to k^m$. Are the following statements true or false? Give a short proof (or counterexample).
 (a) For any algebraic set $X \subset k^n$, the image $f(X)$ is algebraic in k^m.
 (b) For any algebraic set $Y \subset k^m$, the inverse image $f^{-1}(Y)$ is algebraic in k^n.
 (c) For any algebraic set $X \subset k^n$, the graph $\Gamma_{X, f} := \{(x, \varphi(x)) \mid x \in X\}$ is algebraic in k^{n+m}.

3. (a) Show that the polynomial ring $k[x_1, \ldots, x_n]$ can be equipped with a different grading by fixing $\alpha := (a_1, \ldots, a_n) \in \mathbb{Z}^n$ and putting
 $$k[x_1, \ldots, x_n]_d := \bigoplus_{i_1, \ldots, i_n} k x_1^{i_1} \cdots x_n^{i_n}$$
 with $\sum_{i, j} j a_j = d$.
 Is the usual grading a particular case of this (i.e., for some specific $\alpha \in \mathbb{Z}^n$)? We call a polynomial in $k[x]_d$ (for fixed $\alpha \in \mathbb{Z}$) quasi-homogenous (or weighted homogenous) of degree d.
 (b) Let $\text{char}(k) = 0$. Show that f is quasi-homogenous of degree d if and only if $\sum_{i=1}^n a_i x_i \partial x_i f = d \cdot f$.

4. Let $R = \bigoplus_{i \geq 0} R_i$ be a graded ring. Show the equivalence of the following statements.
 (a) R is noetherian.
 (b) R_i is noetherian and $R_+ = \bigoplus_{i \geq 0} R_i$ is a finitely generated ideal in R.
 (c) R_0 is noetherian and R is a finitely generated R_0-algebra.

5. Show that the projective morphism (this means: a regular map between projective varieties) given by
 $$\varphi : \mathbb{P}^1 \rightarrow \mathbb{P}^2$$
 $$(s : t) \mapsto (s^2 : st : t^2)$$
 is an isomorphism (i.e., a biregular map) between \mathbb{P}^1 and its image (in particular, show that the image is a projective subvariety of \mathbb{P}^2).