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Abstract
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the spectrum of bounded linear operators as well as for more particular
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1 Introduction
Given an infinite matrix A which defines a bounded linear operator on l2 we are
interested in computing its spectrum from the matrix entries. More precisely,
we ask if there is a family of algorithms Γn1,...,ni (n1, . . . , ni ∈ N) which on the
one hand provide approximations to sp(A), i.e. which generate compact sets
Γn1,...,ni(A) ⊂ C such that

lim
n1→∞

lim
n2→∞

· · · lim
ni→∞

dH(Γn1,...,ni(A), sp(A)) = 0, (1)

where dH denotes the Hausdorff distance. On the other hand, each of these
algorithms shall be implementable on a computer, i.e. only uses finitely many
arithmetic operations and radicals of a finite number of matrix entries of A.

Since there is an affirmative answer to that, the next question at hand asks:
what is the smallest number i of required limits in (1) for certain classes of
operators. In a sense this number then reflects the computational complexity of
the problem. It was introduced by A. Hansen some years ago, and it is usually
called the Solvability Complexity Index (see [5, 6]).

More generally, it could be introduced in the following abstract way: Let
Ω be a set, (M,d) be a metric space and Σ : Ω → M be a function. The
Solvability Complexity Index SCI(Σ) of Σ is the smallest integer i for which a
family {Γn1,...,ni : n1, . . . , ni ∈ N} of functions (algorithms) Γn1,...,ni : Ω → M
exist with

• lim
n1→∞

lim
n2→∞

· · · lim
ni→∞

d(Γn1,...,ni(ω),Σ(ω)) = 0 for every ω ∈ Ω

• Γn1,...,ni are “finite” algorithms.

(Of course this is not a precise definition as long as it is not determined what
“finite” means.)

For the above mentioned spectral problem we particularly have Ω = L(l2),
M being the set of all compact subsets of the complex plane, equipped with
the Hausdorff metric, and Σ = sp the spectral mapping. Here the algorithms Γ
shall only take into account a finite number of evaluations 〈Aei, ej〉 (where {ei}
stands for the canonical basis in l2), i.e. finitely many matrix entries of A, and
perform a finite number of arithmetic operations and radicals.

In this note we give upper and lower bounds on SCI(sp) for the above spec-
tral problem of general bounded linear operators as well as for several more
particular classes of operators (i.e. subsets Ω′ ⊂ Ω), such as self-adjoint ones or
those which have a controllable off-diagonal decay. This is done in Section 2,
where we also pick up analogous questions for the essential spectrum. In Section
3 We study a family of fairly simple but fundamental decision problems which
shall give a deeper understanding of the concept of SCIs and reveal the open
problems in that field. Section 4 is devoted to the Complexity Indices of solving
linear systems, of computing the norm of the inverse of a bounded linear oper-
ator as well as of some problems around the convergence of sequences. Finally
we return to the spectrum and ask how difficult (or complex) it is to determine
whether λ ∈ sp(A) for given A and λ ∈ C.
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2 The SCI of spectral problems of bounded linear
operators

2.1 On lower bounds
Proposition 1. The spectrum of bounded linear operators cannot be computed
in one limit.

Proof. Consider the Hilbert space l2(N). For n ∈ N let

Bn :=


1 1

0
. . .

0
1 1

 ∈ Cn×n.

Then sp(Bn) = {0, 2} and, for every sequence (ln) ⊂ N, the operator A with
matrix representation (w.r.t. the standard basis) A := diag{Bl1 , Bl2 , Bl3 , . . .} is
bounded, self-adjoint, and sp(A) = {0, 2}.

Let {Γk} be some spectrum-approximating algorithm that on the kth step
Γk only reads information contained in the first N(k)×N(k) entries of A.

In order to find a counterexample we simply construct an appropriate se-
quence (ln) ⊂ N by induction: For C := diag{1, 0, 0, 0, . . .} one obviously has
sp(C) = {0, 1}. Choose k0 := 1 and l1 > N(k0) = N(1).

Assume that l1, . . . , ln are already chosen. Then the operator given by the
matrix diag{Bl1 , . . . , Bln , C} has {0, 1, 2} as its spectrum, hence there exists a
kn such that Γk(diag{Bl1 , . . . , Bln , C}) ∩ B 1

n
(1) 6= ∅ for every k ≥ kn. Now,

choose ln+1 > N(kn)− l1 − l2 − . . .− ln.
Since

Γkn(A) ∩B 1
n

(1) = Γkn(diag{Bl1 , . . . , Bln , C}) ∩B 1
n

(1) ∀ n ∈ N

we see that 1 is contained in the partial limiting set of the sequence (Γk(A))∞k=1

which approximates sp(A) = {0, 2}, a contradiction.

Here is another proof:

Proof. Consider the Hilbert space l2(Z).1 Let a = (ai) ∈ l∞(Z) be of the form

a = (ai) =

(
. . . , 1, 1, 1, . . . , 1,

1

2
, 1, . . . , 1,

1

3
, 1, . . . , 1,

1

4
, 1, . . .

)
with 1

j at the ljth position, and let aI : (xi) 7→ (aixi) denote the respective
operator of multiplication by a. Further let V denote the shift operator defined
by (xi) 7→ (xi+1), and set A := aV . In analogy to the above, given a family
{Γk}, we construct an appropriate sequence (lj) of positions in order to arrive
at a counterexample.

Set C1 := V , for which sp(C1) = T := {z ∈ C : |z| = 1} holds, and choose
k0 := 1 and l1 > N(k0) = N(1).

1Of course, this construction could be transformed into the isomorphic l2(N) case, but this
would damage its beauty and simplicity. Therefore we perform this proof over l2(Z).
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Assume that the positions l1, . . . , ln are already chosen. By as = (asi ) we
denote the sequence having the entries 1

j at the positions lj , j = 1, . . . , s, and
1s elsewhere. We will show that the operator Cn := anV has the spectrum
sp(Cn) = T, hence there exists a kn such that Γk(Cn) ∩ B 1

2
(0) = ∅ whenever

k ≥ kn. Now choose ln+1 > max{ln, N(kn)}. By this, A is determined.
Since Γkn(A) = Γkn(Cn) for every n we see that limn Γkn(A) cannot contain

the origin. On the other hand, 0 ∈ sp(A) easily follows from the observation
that ‖Aeln+1‖ = 1

n → 0 as n→∞, where ek stands for the kth canonical basis
element. Thus we arrive at a contradiction.

So, it remains to prove sp(Cn) = T. For this we note that

∞∑
j=0

zj((anV )−1)j+1 = (I − z(anV )−1)−1(anV )−1 = (anV − zI)−1

converges for every |z| < 1 since the ‖((anV )−1)j+1‖ are uniformly bounded by
n!

Remark 2. Notice that the first proof even shows the assertion for self-adjoint,
block-diagonal operators, whereas the second one works with banded operators.

We also point out that these proofs are based on completely different phe-
nomena that can occur when looking at spectra of perturbed operators, although
the constructions are very similar: The first one makes use of what is known as
spectral pollution, the fact that spectral sets of restricted operators can have
additional components in comparison to the unresticted one. The second proof
applies the fact that parts of the spectrum can disappear under (arbitrarily
small) perturbations, that is the discontinuity of the spectrum.

A similar outcome can be observed for pseudospectra:

Definition 3. For N ∈ Z+ and ε > 0 the (N, ε)-pseudospectrum of a bounded
linear operator A ∈ L(l2) is defined as the set

spN,ε(A) := {z ∈ C : ‖(A− zI)−2
N

‖2
−N
≥ 1/ε}.2

For N = 0 this is the (classical) ε-pseudospectrum

spε(A) := {z ∈ C : ‖(A− zI)−1‖ ≥ 1/ε}.

For more information on pseudospectra we refer to [11, 1, 2, 6]. Also recall
that these sets spN,ε(A) are continuous w.r.t. the parameter ε > 0, and converge
to sp(A) as ε→ 0 for every A.

Proposition 4. The pseudospectra of bounded self-adjoint operators cannot be
computed in one limit.

Proof. The (N, ε)-pseudospectrum of the operators A from the first of the above
proofs is a neighborhood of {0, 2}, for ε sufficiently small its intersection with
B 1

2
(1) is empty, independently from the choice of (ln).
Assume that there were a family of algorithm {Γk}. By exactly the same

procedure as in that proof one obtains again that 1 belongs to the partial limiting
set of {Γk(A)}, a contradiction.

2Here we use the convention ‖B−1‖ = ∞ if B is not invertible.
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2.2 On upper bounds
First, we recall the groundbreaking observations of Hansen [6]:

Theorem 5. The Solvability Complexity Index SCI(sp) for the spectrum of
bounded linear operators on l2 is not greater than three, and the Solvability
Complexity Index SCI(spN,ε) for the pseudospectrum is not greater than two.

The basic steps in the proof and, actually, the construction of a (two-limit-)
three-limit-algorithm for the (pseudo-) spectrum are as follows: Let (Pn) be the
sequence of the canonical projections on l2(N) which send the sequence (xi) to
its finite section Pn(xi) := (x1, . . . , xn, 0, . . .), respectively. For A ∈ L(l2) and
z ∈ C one introduces the following continuous functions

γN (z) :=
(

min{σ1((A− zI)2
N

), σ1((A∗ − z̄I)2
N

)}
)2−N

γNm(z) :=
(

min{σ1((A− zI)2
N

Pm), σ1((A∗ − z̄I)2
N

Pm)}
)2−N

γNm,n(z) :=
(

min{σ1((Pn(A− zI)Pn)2
N

Pm), σ1((Pn(A∗ − z̄I)Pn)2
N

Pm)}
)2−N

where σ1(B) denotes the smallest singular value of B, and in the terms like
σ1(PnBPm) the operator PnBPm is regarded as element of L(imPm, imPn).
Then one checks that γNm(z) ↓m γN (z) for every z ∈ C, and γNm,n(z) ↑n γNm(z)
for every z ∈ C and every m.3 For the level sets

spN,ε(A) = {z ∈ C : γN (z) ≤ ε}
∆N
ε,m,n(A) := {z ∈ C : γNm,n(z) ≤ ε}

one derives the convergence

lim
m→∞

lim
n→∞

dH(spN,ε(A),∆N
ε,m,n(A)) = 0,

hence
lim
ε→0

lim
m→∞

lim
n→∞

dH(sp(A),∆N
ε,m,n(A)) = 0.

Finally, one introduces the set Θm := {s/m+ it/m : s, t = −m2, . . . ,m2}. Then

ΓNε,m,n(A) := ∆N
ε,m,n(A) ∩Θm = {z ∈ Θm : γNm,n(z) ≤ ε}

can be computed with finitely many arithmetic operations and radicals of finitely
many entries of A, using Choleskys decomposition, and it still holds

lim
m→∞

lim
n→∞

dH(spN,ε(A),ΓNε,m,n(A)) = 0.

2.3 Controllable off-diagonal decay
Definition 6. We say that the dispersion of the bounded linear operator A is
bounded by the function f : N→ N if

Df,m(A) := max{‖(I − Pf(m))APm‖, ‖PmA(I − Pf(m))‖} → 0 as m→∞.
3Here ↑n denotes monotone convergence as n tends to infinity.
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Remark 7. Note that for every operator A there is always a function f which is a
bound for its dispersion since APm, PmA are compact and Pn converges strongly
to the identity. But there is no function f which acts as a uniform bound for all
operators. Nevertheless, there are important (sub)classes of operators having
well known uniform bounds, which should be mentioned:

• band operators with bandwidth less than d: f(k) = k + d.

• band-dominated and weakly band-dominated operators: f(k) = 2k. For
definitions and properties of band and band-dominated operators see [10,
8]. Weakly band-dominated operators can be found in [9].

• Laurent/Toeplitz operators with piecewise continuous generating function:
f(k) = k2 (cf. [3] and [7, Proposition 5.4]).

• LetM be a family of bounded operators with a common bound f . Then
g, given by g(k) = f(k) + k, is a common bound for all operators in the
Banach algebra which is generated byM.

Proposition 8. Let f : N → N. The pseudospectra of operators whose disper-
sion is bounded by f can be computed in one limit.

Proof. We give the proof only for the case N = 0 and omit the super- and
subscripts N . For N > 0 one proceeds analogously.

Let A be such that f is a bound for its dispersion, and ε > 0. In order to
simplify the notation we choose a sequence (δm) which converges antitonically
to zero such that δm ≥ Df,m(A) for every m. Define functions αm : C→ C

αm(z) := min{σ1(Pf(m)(A− zI)Pm), σ1(Pf(m)(A
∗ − z̄I)Pm)}.

Since |σ1(B + C)− σ1(B)| ≤ ‖C‖ holds for arbitrary bounded operators B,C,
we further conclude that

γm(z) ≥ αm(z) ≥ γm(z)− δm ≥ γm(z)− δk

for every z ∈ C and m ≥ k, and moreover, for all y, z ∈ C and m ∈ N,

|αm(y)− αm(z)| ≤ |y − z|. (2)

With ∆ε,m(A) := {z ∈ C : γm(z) ≤ ε} and Ψε,m(A) := {z ∈ C : αm(z) ≤ ε}
we conclude for all m ≥ k that

∆ε+δk,m(A) ⊃ ∆ε+δm,m(A) ⊃ Ψε,m(A) ⊃ ∆ε,m(A),

where the sets on the left and on the right are known to converge to spε+δk(A)
and spε(A), resp., as m→∞. Since spε+δk(A)→ spε(A) as k →∞, this yields
limm→∞Ψε,m(A) = spε(A).

Finally, we introduce the desired approximations Γm(A) for spε(A). Recall
that by the Cholesky decomposition, for given z ∈ C and m ∈ N, only finitely
many arithmetic operations and radicals of entries of A, i.e. of elements in
{〈Aei, ej〉 : i, j = 1, . . . ,max{m, f(m)}}, are required in order to determine
whether αm(z) ≤ ε or not. Set

Γm(A) := {z ∈ Θm : αm(z) ≤ ε}.
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Then it is clear that on the one hand Ψε,m(A) ⊃ Γm(A). On the other hand,
for sufficiently large m it holds true that for every point x ∈ Ψε−1/m,m(A) there
is a point yx ∈ Θm ∩ U1/m(x) 4 and from (2) we get |αm(yx) − αm(x)| < 1/m
that is yx even belongs to Γm(A). Thus Γm(A) + B1/m(0) ⊃ Ψε−1/m,m(A) for
sufficiently large m. Combining this, we arrive at

Ψε,m(A) +B1/m(0) ⊃ Γm(A) +B1/m(0) ⊃ Ψε−1/m,m(A) ⊃ Ψε−1/k,m(A),

for m ≥ k large. By the above, the sets on the left tend to spε(A) as m → ∞,
and the sets on the right converge to spε−1/k(A) for every k. Since the latter
converge to spε(A) as k →∞ this provides limm→∞ Γm(A) = spε(A).

Corollary 9. Let f : N → N. The spectrum of operators whose dispersion is
bounded by f can be computed in two limits.

Proof. Take the above one-limit-algorithm for the pseudospectrum and the ad-
ditional limit ε → 0. This is the best possible outcome for every family of
operators which includes all band operators, as the 2nd proof of Proposition 1
reveals.

2.4 The self-adjoint case
Let A be bounded and self-adjoint. Then the spectrum of A is a compact subset
of R, hence its complement in R is a finite or countable union of disjoint open
intervals Ui. One of them, let’s say U0, is of the form (−∞, a), another one, let’s
say U1, is (b,∞). All other Ui are bounded. Moreover, γ(x) = σ1(A − xI) =
‖(A − xI)−1‖−1 coincides with dist(x, sp(A)) in every point x ∈ R and is a
continuous piecewise linear function which is zero on the spectrum of A, equals
γ(x) = −x + a on U0, γ(x) = x − b on U1, and is a “hat function” on each of
the other intervals Ui: zero at the end points, li/2 at the center point of Ui,
where li denotes the length of Ui and (affine) linear on both subintervals laying
left/right of the center.

Let K ⊂ R be a compact set and δ > 0. We introduce a δ-grid for K by
Gδ(K) := (K +Bδ(0)) ∩ (δZ). Obviously, this set is finite.

For a given function f : R → [0,∞) we define sets ∆δ
K(f) as follows: For

x ∈ Gδ(K) consider the points x1 := x− f(x)/2, x2 := x+ f(x)/2 and

• If f(x) ≥ 1 let Mx := ∅, otherwise

• If f(x1) ≤ f(x2) then Mx := {x− f(x)}, otherwise

• If f(x2) ≤ f(x1) then Mx := {x+ f(x)}.

Now define ∆δ
K(f) :=

⋃
x∈Gδ(K)Mx. Notice that for the computation of ∆δ

K(f)
only finitely many evaluations of f are required.

Proposition 10. Let K be a compact set containing the spectrum of A and
0 < δ < ε < 1/2. Further assume that f is a function with ‖f − γ‖∞,K̂ < ε on
K̂ := (K +B2ε+diam(K)(0)). Then dH(∆δ

K(f), sp(A)) < 7ε.

4Here Ur(x) and Br(x) denote the open/closed ball with radius r centered at x
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Proof. We firstly show that every point of ∆δ
K(f) is closer to sp(A) than 7ε.

Let x ∈ Gδ(K), and notice that x1, x2 ∈ K̂. First, assume that γ(x) ≤ 3ε.
Then f(x) < 4ε, henceMx is empty or contains one of the points x±f(x) which
are closer to sp(A) than 7ε, since dist(x, sp(A)) ≤ 3ε and dist(x± f(x), x) < 4ε.

Now assume that γ(x) > 3ε, hence f(x) > 2ε. If x ∈ U0 then it follows that
f(x1) > f(x2) and the resulting set Mx is empty, or contains x + f(x) which
is closer to sp(A) than ε. The same arguments work in the case x ∈ U1. So,
assume that x belongs to a bounded Ui and let y denote the center of Ui. If the
distance between x and y is less than ε then both x−f(x) and x+f(x) are closer
to sp(A) than 3ε. Otherwise, x ≤ y − ε (x ≥ y + ε) yields γ(x1) ≤ γ(x2) − 2ε
(γ(x1) ≥ γ(x2) + 2ε), thus f(x1) < f(x2) (f(x1) > f(x2), resp.), and the
resulting Mx is empty or closer to sp(A) than ε.

Secondly, we show that for every point in sp(A) the distance to ∆δ
K(f) is

smaller than 3ε. Let x ∈ sp(A) ⊂ K. Then there is a point y ∈ Gδ(K) with
|x − y| < δ < ε, hence f(y) < γ(y) + ε < 2ε < 1. Thus, My is not empty and
contains a point which is closer to x than 3ε.

Our next goal is the definition of suitable approximating functions for γ.
Here we have to take into account the following aspects:

• The functions shall approximate γ locally uniformly.

• There shall be a compact set which contains sp(A) such that all of these
functions are greater than 1 outside that set.

• The evaluation of the functions shall require only finitely many arithmetic
operations and radicals.

The functions γm(x) := σ1((A−xI)Pm) are known to converge antitonically
to γ as m→∞, and with Dini’s Theorem the convergence is uniform on every
compact set, in particular on the ball/interval B2‖A‖+4(0) ⊂ R.

The functions γm,n(x) := σ1(Pn(A − xI)Pm) are known to converge iso-
tonically to γm as n → ∞ for every m, hence again uniformly on the interval
B2‖A‖+4(0).

Outside that interval we have, for n > m, by a Neumann argument

γm,n(x) = σ1(Pn(A− xI)PnPm) ≥ σ1(Pn(A− xI)Pn)

= ‖(Pn(A− xI)Pn)−1‖−1 = |x|‖(Pn − x−1PnAPn)−1‖−1

≥ 2.

Finally, applying the Cholesky decomposition, it is possible to compute the
closest value fm,n(x) ≥ γm,n(x) from the set {k/m : k ∈ N} using only a finite
number of operations, as desired: For k/m apply the Cholesky decomposition
to the matrix Pm(A− xI)Pn(A− xI)Pm − (k/m)2Pm in order to test whether
k/m is smaller than σ1(Pn(A− xI)Pm) or not. Take fm,n(x) as the smallest of
the values k/m for which the test fails.

The algorithm Let A be a bounded self-adjoint operator. The (m,n)th
step Γm,n(A) of the algorithm is now as follows: For givenm,n consider the com-
pact set Km := Bm(0), the (finite) grid G1/m(Km), the (finitely computable)
function fm,n on the grid, and compute the set Γm,n(A) := ∆

1/m
Bm(0)(fm,n).
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Theorem 11. The spectrum of bounded self-adjoint operators can be computed
in two limits.

Proof. Let m0 > 2‖A‖ + 4. For all n > m ≥ m0, the points in the finite set
G1/m(Km) \ Bm0

(0) lead to function values of fm,n being larger than 1, hence
Γm,n(A) = ∆

1/m
Bm0

(0)(fm,n). Fix ε ∈ (0, 1/2). Then there is an m1 > m0 with

m1 > 3/ε such that ‖γ − γm‖∞,K̂ < ε/3 on K̂ := B1+3m0
(0) for all m > m1.

Moreover, for every m there is an n1(m) such that ‖γm − γm,n‖∞,K̂ < ε/3 for
all n > n1(m). This yields

‖γ − fm,n‖∞,K̂ ≤ ‖γ − γm‖∞,K̂ + ‖γm − γm,n‖∞,K̂ + ‖γm,n − fm,n‖∞,K̂
≤ ε/3 + ε/3 + 1/m < ε

wheneverm > m1 and n > n1(m). Hence, by Proposition 10 withK := Bm0
(0),

it holds that dh(Γm,n(A), sp(A)) < 7ε whenever m > m1 and n > n1(m). Thus,
it is proved that

lim
m→∞

lim sup
n→∞

dH(Γm,n(A), sp(A)) = 0.

To ensure that (Γm,n(A))n∈N already converges w.r.t. the Hausdorff distance for
every fixed m we just mention that the sequence of functions (γm,n)n is isotonic,
hence (fm,n)n is isotonic as well. Moreover these fm,n are effectively evaluated
only in finitely many points and can take only finitely many values, where the
bounds do not depend on n. Thus the sets Γm,n(A) change only finitely many
times as n grows. Consequently, there is an n2(m) such that all Γm,n(A) with
n ≥ n2(m) coincide.

Theorem 12. Let f : N → N. The spectrum of bounded self-adjoint operators
whose dispersion is bounded by f can be computed in one limit, using the above
algorithm with n = f(m).

Proof. Take the idea from the previous theorem with n = f(m). Then there is
an m2 > m1 such that ‖γm − γm,f(m)‖∞,K̂ < ε/3 for all m > m2, hence

‖γ − fm,f(m)‖∞,K̂
≤ ‖γ − γm‖∞,K̂ + ‖γm − γm,f(m)‖∞,K̂ + ‖γm,f(m) − fm,f(m)‖∞,K̂ < ε

and the assertion follows analogously.

Summarizing the above observations we get the following picture:

SCI(spε)
bound
known

bound
unknown

self-adjoint 1 2
general 1 2

SCI(sp)
bound
known

bound
unknown

self-adjoint 1 2
general 2 2 or 3
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2.5 On the essential spectrum and discrete Schrödinger
operators

Discrete Schrödinger operators with potential V = (Vi) = (V (i)) in l∞

(Ax)i = xi+1 + xi−1 + Vixi, x = (xi),

are band operators hence, by the previous sections, the pseudospectra can be
computed in one limit, the spectrum can be computed in two limits. In case of
a real potential the operator is self-adjoint and one can compute the spectrum
in one limit. Surprisingly, this is not true for the essential spectrum:

Proposition 13. The essential spectrum of self-adjoint discrete Schrödinger
operators cannot be computed in one limit.

Proof. From [4] and [10] it is known that the essential spectrum of a discrete
Schrödinger operator on l2(Z) with potential V is [−2, 2] if and only if Vi → 0
as |i| → ∞.

Moreover, if we consider now a potential V , with V (mn) = 1 for a certain
strictly increasing sequence (mn) ⊂ N and V (m) = 0 otherwise, then the es-
sential spectrum of the respective Schrödinger operator A is not contained in
[−2, 2].

Assume that we have a family of algorithms {Γk} which provides the ap-
proximation of the essential spectrum of such operators A in one limit, again
only reading information contained in the first N(k)×N(k) entries of A in the
kth step, resp. Set k1 := 1 and m1 := N(1)+1. We construct a counterexample
as usual: Given the numbers m1, . . . ,mn, we choose mn+1 as follows: Introduce
the operator An, which is the Schrödinger operator with the potential having
1s at the positions m1, . . . ,mn and 0s elsewhere. Then spessAn = [−2, 2], hence
there is a kn+1 such that Γk(An) ⊂ [−2− 1/n, 2 + 1/n] for every k ≥ kn+1. Set
mn+1 := N(kn+1) + 1.

This yields limn Γkn(A) = limn Γkn(An) ⊂ [−2, 2], a contradiction.

Remark 14. This particularly shows that for the larger classes of Jacobi opera-
tors, band operators, band-dominated operators, self-adjoint operators, and of
course bounded linear operators in general, there is no one-limit-algorithm for
the essential spectrum.

3 Decision problems

3.1 The model
Within this section we exclusively deal with problems (functions)

Σ : Ω→M := {Yes,No},

where M is equipped with the discrete metric. This means that for such prob-
lems we search for algorithms Γn1,...,nk : Ω→M which, for a given input ω ∈ Ω,
answer Yes or No. Clearly, a sequence (mi) ⊂ M of such “answers” converges
to m ∈M if and only if finitely many mi are different from m.
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3.2 A family of simple prototypic problems and their SCI
Sequences Let Ω denote the collection of all sequences (ai)i∈N with entries

ai ∈ {0, 1}. For (ai) ∈ Ω we want to answer the question

Q1 Does (ai) have a non-zero entry?

That is, we search for algorithms Γ : Ω → M := {Yes,No} that are allowed to
look at a finite number of entries of (ai) and give the output Yes or No. Of
course, there is no such algorithm which can do that for all such sequences. But,
defining a family of algorithms Γn by

Γn(ai) = Yes ⇔
n∑
i=1

ai > 0,

the limit limn→∞ Γn(ai) will give the correct answer for arbitrary (ai). Thus

SCI(Q1) = 1.

Q2 Does (ai) have infinitely many non-zero entries?

Assume that there is a one-limit-algorithm which can answer this question.
Then there exist strictly increasing sequences (nk), (ik) ⊂ N such that the al-
gorithms Γnk only consider entries of (ai) with index i < ik, resp., and for the
sequence (ai) which has 1s exactly at the positions ik the algorithms answers
are Γnk(ai) = No. This is again proved by induction: Set (a1i ) := (0). Then
there is an n1 such that Γn(a1i ) = No for all n ≥ n1. Further, Γn1

only looks at
a finite number of entries, lets say entries with index less than i1.
Now assume that ik, nk are already chosen for k = 1, . . . ,m. Let (am+1

i ) denote
the sequence which has entry 1 exactly at the positions i1, . . . , im. Then there
is an nm+1 greater than nm such that Γn(am+1

i ) = No for all n ≥ nm+1 and an
im+1 > im such that Γnm+1

only looks at positions less than im+1.
Now consider the sequence (ai) which has entry 1 exactly at the positions

ik, k ∈ N. Then Γnk(ai) = Γnk(aki ) = No for every k, hence limk Γnk(ai) = No.
Thus, there is no one-limit family of algorithms for Q2, but with

Γm,n(ai) = Yes ⇔
n∑
i=1

ai > m,

the limit limm limn Γm,n(ai) always gives the correct answer. Thus

SCI(Q2) = 2.

One step higher: Matrices Now, let (ai,j)i,j∈N be an infinite matrix
with entries ai,j ∈ {0, 1}. (or: (ai,j) can be regarded as a sequence of sequences).
The following problems

Q3 Does (ai,j) have a non-zero entry?

Q4 Does (ai,j) have infinitely many non-zero entries?

are easy to translate into the previous problems: just take an enumeration of
the elements of N2, that is a bijection N→ N2, k 7→ (i(k, j(k)) in order to regard
(ai,j) as the sequence (ai(k),j(k))k, which yields that Q3 (Q4) is equivalent to
Q1 (Q2, resp.), hence

SCI(Q3) = 1, SCI(Q4) = 2.

11



The key questions The situation becomes less clear with the following
questions:

Q5 Does (ai,j) have a column containing infinitely many non-zero entries?

Q6 Does (ai,j) have infinitely many columns containing infinitely many non-
zero entries?

There is no one-limit solution to Q5, since this would provide a one-limit so-
lution for Q2: Just take a given a sequence as the first column of the matrix
whose other columns are zero. However, there is a three-limit solution given by
the algorithms

Γk,m,n(ai,j) = Yes ⇔
n∑
i=1

ai,j > m for one j ∈ {1, . . . , k}.

Moreover, it holds that SCI(Q5) ≤ SCI(Q6). To see this, given (ai,j), define a
new matrix by (bi,j) := max{ai,s : s = 1, . . . , j}. Then (ai,j) has a column with
infinitely many non-zero entries if and only if (bi,j) has infinitely many columns
with infinitely many non-zero entries. On the other hand, there is a four-limit
solution to Q6 given by

Γl,k,m,n(ai,j) = Yes ⇔
n∑
i=1

ai,j > m for more than l numbers j ∈ {1, . . . , k}.

Thus
2 ≤ SCI(Q5) ≤ 3, SCI(Q5) ≤ SCI(Q6) ≤ 4.

Conjecture We conjecture that that the latter indices are larger than 2.
When proving this one can maybe learn several things:

• On the one hand this could give an idea or a method or a procedure for the
treatment of other problems as well. The point is: How can we construct
counter-examples for a two-limit-algorithm? We already met the open
problem “Two or Three” for the general spectral problem, and we will see
further applications of that type below and in Section 4.

• On the other hand the above constructions probably could be continued
in order to obtain problems with SCI = k, k ∈ N. The idea is just to take
analogous questions for sequences of sequences of sequences of ...

Another simple but unsolved problem Let Ω now consist of matrices
of the following very special type: Each column shall either be zero or contain
exactly one nonzero entry.

Q7 Does (ai) have infinitely many columns being zero?

With the tools of the previous examples it is easy to check 2 ≤ SCI(Q7) ≤ 3,
but it is again open which equality holds.
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4 Further popular problems

4.1 Computing the norm of the inverse
Given an infinite matrix A which defines a bounded linear operator on l2 we
are now interested in computing the norm of its inverse from the matrix entries.
More precisely, we again ask for a family of algorithms Γn1,...,ni (n1, . . . , ni ∈ N)
which on the one hand provide approximations to ‖A−1‖, i.e.

lim
n1→∞

lim
n2→∞

· · · lim
ni→∞

|Γn1,...,ni(A)− ‖A−1‖| = 0, (3)

or converge to infinity in case of A being not invertible. On the other hand,
each of these algorithms shall take only finitely many entries of A into account
and perform finitely many operations.

Proposition 15. The norm of the inverse of a bounded linear operator cannot
be computed in one limit in general.

Proof. We proceed in a similar way as in the first proof of Proposition 1. For
n ∈ N let again

Bn :=


1 1

0
. . .

0
1 1

 ∈ Cn×n

and A := diag{Bl1 , Bl2 , Bl3 , . . .} − I. Clearly A is invertible and its inverse has
norm one. Assume that {Γk} is a one-limit algorithm which in its kth step only
reads information contained in the first N(k) ×N(k) entries of A. In order to
find a counterexample we again construct an appropriate sequence (ln) ⊂ N by
induction: For C := diag{1, 0, 0, 0, . . .} one obviously has ‖(C − I)−1‖ = ∞.
Choose k0 := 1 and l1 > N(k0) = N(1).

Assume that l1, . . . , ln are already chosen. Then the operator given by the
matrix diag{Bl1 , . . . , Bln , C} − I is not invertible, hence there exists a kn such
that Γk(diag{Bl1 , . . . , Bln , C} − I) > 2 for every k ≥ kn. Now finish the con-
struction by choosing ln+1 > N(kn)− l1 − l2 − . . .− ln.

So, we see that Γkn(A) = Γkn(diag{Bl1 , . . . , Bln , C}− I) do not converge to
‖A−1‖ = 1, a contradiction.

Notice that this even proves the lower bound two for the more particular case
of self-adjoint operators. Next, we show that the Complexity Index is equal to
two and, moreover, we will see that knowing a bound for the dispersion improves
the Complexity Index to one.

Theorem 16. The norm of the inverse of a bounded linear operator can be
computed in two limits.

Proof. Introduce the numbers

γ := ‖A−1‖−1 = min{σ1(A), σ1(A∗)}
γm := min{σ1(APm), σ1(A∗Pm)}

γm,n := min{σ1(PnAPm), σ1(PnA
∗Pm)}

δm,n := min{k/m : k ∈ N, k/m ≥ σ1(PnAPm) or k/m ≥ σ1(PnA
∗Pm)}
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and note that γm ↓m γ, and γm,n ↑n γm for every fixed m. Moreover, (δm,n)n
is bounded and monotone, and γm,n ≤ δm,n ≤ γm,n + 1/m. Thus, (δm,n)n
converges for every m, and for ε > 0 there is an m0, and for every m ≥ m0 there
is an n0 = n0(m) such that

|γ − δm,n| ≤ |γ − γm|+ |γm − γm,n|+ |γm,n − δm,n| ≤ ε/3 + ε/3 + 1/m ≤ ε

whenever m ≥ m0 and n ≥ n0(m). Since δm,n and hence Γm,n(A) := δ−1m,n can
again be computed with finitely many operations using the Cholesky decompo-
sition this completes the proof.

Corollary 17. If a bound f : N → N for the dispersion of the bounded linear
operator A is known then the norm of its inverse can be computed in one limit,
using the above algorithm with n = f(m).

4.2 Solving linear systems
Here we consider the following problem: Given an invertible bounded linear
operator A on l2 and b ∈ l2 we want to compute x ∈ l2 which solves Ax = b.
The algorithms we want to allow shall again read only finitely many entries of A
and b, and shall generate an approximation for x from these entries using finitely
many arithmetic operations. That is the algorithms Γ operate from L(l2) × l2
to l2, i.e. map the pair (A, b) to an approximation Γ(A, b) ∈ l2 for x.

Proposition 18. The solution of a linear problem with an invertible bounded
linear operator cannot be computed in one limit in general.

Proof. For n,m ∈ N \ {1} let

Bn,m :=


1/m 1

1
. . .

1
1 1/m

 ∈ Cn×n

and for (ln) ⊂ N \ {1} set A := diag{Bl1,2, Bl2,3, . . . , Bln,n+1, . . .}. Clearly, A
is invertible. Furthermore, we define b as the element of l2 having the entry
1/(n+ 1) at the lnth position and zeros elsewhere. Note that the inverse of the
operator Cm := diag{1/m, 1, 1, . . .} is diag{m, 1, 1, . . .}.

As usual, one now assumes that there is a one-limit-family of algorithms
Γn and one constructs sequences (ln), (kn) in such a way that Γkn(A, b) equals
Γkn(diag{Bl1,2, Bl2,3, . . . , Bln−1,n, Cn+1}, b), hence has entry close to one at its
(
∑n−1
i=1 li)th position, which leads to a contradiction.

Theorem 19. Linear systems (with an invertible bounded linear operator) can
be solved in two limits.

Proof. Let A be invertible and Ax = b with the unknown x. Since Pm are
compact projections converging strongly to the identity, we get that the ranks
rkPm = rk(APm) = rk(PnAPm) for every m and all n ≥ n0 with an n0 depend-
ing on m. Then, obviously, PmA∗PnAPm is invertible, and we can define

Γm,n(A, b) := (PmA
∗PnAPm)−1PmA

∗Pnb.
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Note that this can be computed by finitely many operations again using e.g.
Choleskys decomposition, and it converges to ym := (PmA

∗APm)−1PmA
∗b as

n → ∞. It is well known that ym is also a (least squares) solution of the
optimization problem ‖APmy − b‖ → min, that is

‖APmym − b‖ ≤ ‖APmx− b‖ ≤ ‖A‖‖Pmx−A−1b‖ = ‖A‖‖Pmx− x‖ → 0

as m→∞. Therefore ‖ym − x‖ = ‖Pmym − x‖ is not greater than

‖A−1‖‖A(Pmym − x)‖ = ‖A−1‖‖APmym − b‖ ≤ ‖A−1‖‖A‖‖Pmx− x‖ → 0,

which yields the convergence ym → x and finishes the proof.

Corollary 20. Linear systems with an invertible bounded linear operator for
which a bound f on the dispersion is known can be solved in one limit, using
the above algorithm with n = f(m).

Proof. The smallest singular values of the operators APm are uniformly bounded
below by ‖A−1‖−1 which, together with ‖Pf(m)APm − APm‖ → 0, yields that
the limes inferior of the smallest singular values of Pf(m)APm is positive, hence
the inverses of the operators Bm := PmA

∗APm and Cm := PmA
∗Pf(m)APm on

the range of Pm exist for sufficiently large m and have uniformly bounded norm.
Moreover, ‖B−1m − C−1m ‖ ≤ ‖B−1m ‖‖Cm −Bm‖‖C−1m ‖ tend to zero as m→∞.

This particularly implies that the norms ‖ym−(PmA
∗Pf(m)APm)−1PmA

∗b‖
with ym as above tend to zero asm→∞, and we easily conclude that the norms
‖ym−Γm,f(m)(A, b)‖ tends to zero as well. With the convergence ‖ym−x‖ → 0
from the previous proof, now also ‖x − Γm,f(m)(A, b)‖ → 0 holds as m → ∞,
the assertion.

4.3 Convergence of real sequences
We consider the function

lim sup : l∞(N,R)→ R, (ai) 7→ lim sup
i

ai.

Each of the algorithms Γm,n(ai) := max{ai : i ∈ {m, . . . , n} ∪ {m}} obviously
takes into account only finitely many entries of (ai). Moreover, we see that
Γm,n(ai) ↑n sup{ai : i ≥ m} ↓m lim sup(ai), hence SCI(lim sup) ≤ 2. On the
other hand a recursive construction as it was done several times in the above
sections even yields SCI(lim sup) = 2: More precisely, we consider sequences
(ai) whose entries ai are 0 or 1, and note that the lim sup ai is 1 if infinitely
many entries are 1 and is 0 otherwise. As in the second proof of Proposition 1
or the proof of Proposition 13 one then deduces that every one-limit-algorithm
is condemned to fail.

For the decision problem

C : l∞(N,R)→M := {Yes,No}, (ai) 7→ ((ai) converges)

we get a three-limit-algorithm by

Γk,m,n(ai) :=

(max{ai : i ∈ {m, . . . , n} ∪ {m}} −min{ai : i ∈ {m, . . . , n} ∪ {m}} < 1/k).
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The above idea for a construction easily yields that also this problem cannot be
solved in one limit in general. Thus, one obtains the lower bound two and ends
up with 2 ≤ SCI(C) ≤ 3. Unfortunately, it is again an open problem what this
Complexity Index precisely is.

4.4 Deciding whether 0 ∈ sp(A)

In our final example we return to the spectrum and ask: How difficult is it to
decide whether a given point λ ∈ C belongs to the spectrum of a given bounded
linear operator A or not? Obviously this question is equivalent to asking whether
0 ∈ sp(A− λI). Thus, it suffices to study the question for λ = 0. To make this
more precise, we consider the functions

sp0 : L(l2)→ {Yes,No}, A 7→ (0 ∈ sp(A))

and we recall from the proof of Theorem 16 the algorithms Γm,n(A) := δ−1m,n,
which approximate the norm of the inverse of A in case A is invertible, or tend
to infinity otherwise. If we define Γk,m,n(A) := (δ−1m,n < 1/k) we arrive at a
three-limit-algorithm

sp0(A) = lim
k→∞

lim
m→∞

lim
n→∞

Γk,m,n(A)

for our problem, hence SCI(sp0) ≤ 3. Due to Corollary 17 this upper bound
decreases by 1 if one considers operators for which a bound on their dispersion
is known.

On the other hand, if we assume that there is a one-limit-algorithm given by
a family {Γn} then we can again construct counterexamples very easily: For a
decreasing sequence (ai) of positive numbers we consider the diagonal operator
A := diag{ai}. Clearly, 0 belongs to the spectrum of A if and only if the ais
tend to zero. As a start, set (a1i ) := (1, 1, . . .), choose n1 such that Γn(a1i ) = No
for all n ≥ n1, and i1 such that Γn1

doesn’t see the diagonal entries ai with
indices i ≥ i1. Then set (a2i ) := (1, 1, . . . , 1, 1/2, 1/2, . . .) with 1/2s starting at
the i1th position. If n1, . . . , nk−1 and i1, . . . , ik−1 are already choosen then pick
nk such that Γn(aki ) = No for all n ≥ nk, and ik such that Γnk doesn’t see the
diagonal entries ai with indices i ≥ ik, and set (ak+1

i ) := (1, . . . , 2−k, 2−k, . . .)
with 2−ks starting at the ikth position. Now, the contradiction is as usual and
we see

Theorem 21. In order to decide whether λ ∈ C belongs to sp(A) one needs at
least two and at most three limits. If a bound on the dispersion of A is known
then the Solvability Complexity Index equals two.

Remark 22. Notice that the above counterexample actually provides self-adjoint
diagonal operators for which there don’t exist any one-limit-algorithms that
can decide sp0, although there is a one-limit algorithm which computes the
whole spectrum as is shown in Theorem 12. This seems to be a bit surprising
at a first glance. Actually, the present question is really stronger in a sense:
From Theorem 12 we only get approximations for the spectrum which converge
with respect to the Hausdorff distance, but which can still have even an empty
intersection with sp(A), whereas Theorem 21 addresses the inclusion λ ∈ sp(A).
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