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Abstract 

A versatile generic framework for parent grain reconstruction from fully or partially 
transformed child microstructures was integrated into the open-source crystallographic 
toolbox MTEX. The framework extends traditional parent grain reconstruction, phase 
transformation and variant analysis to all parent-child crystal symmetry combinations. The 
inherent versatility of the universally applicable parent grain reconstruction methods, and 
the ability to conduct in-depth variant analysis are showcased via example workflows that 
can be programmatically modified by users to suit their specific applications. This is 
highlighted by three applications namely, α -to-γ reconstruction in a lath martensitic steel, 
α-to-β reconstruction in a Ti alloy, and a two-step reconstruction from α -to-ε-to-γ in a 
twinning and transformation -induced plasticity steel. Advanced orientation relationship 
discovery and analysis options, including variant analysis, is demonstrated via the add-on 
function library, ORTools.  

Keywords: electron backscattering diffraction (EBSD); phase transformation; orientation 
relationship (OR); martensite; parent phase reconstruction  
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 Introduction 

Depending on its chemistry and thermo-mechanical processing history, the free energy 
difference of a material system may lead to the phase transformation of a pre-existing parent 
phase with a given crystal symmetry to a new child phase with a similar or different crystal 
symmetry [1]. In many instances, this phase transformation occurs via the operation of an 
orientation relationship (OR).  An OR refers to the coherent geometric parallelism between 
specific planes and directions of parent-child crystal symmetries on either side of their 
common boundary segment [2]. In all parent-child crystal symmetry combinations, one or 
more favored ORs exist that provide the best fit at their boundary segment interfaces and 
enables crystallographic phase transformation between them.  

In the late 1800s, Adolf Martens discovered the now well-known martensitic transformation 
in steel. It involves a phase transformation from face-centered cubic (fcc) parent austenite 
(γ) to body-centered tetragonal (bct) child martensite (α ) via the operation of six or more 
ORs. Of these, the Bain, Kurdjumov–Sachs (K-S) [3], Nishiyama–Wassermann [4], Greninger–
Troiano, Headley–Brooks and Pitsch ORs are the most frequently reported. To serve as an 
example, the K-S OR between austenite and martensite is expressed as:  {111} || {110} , 
〈110〉  || 〈111〉 . In this case, the 〈110〉  and 〈111〉  directions lie in the {111}  and {110}  

planes, respectively. The crystal symmetries of austenite and martensite are such that when 
the K-S OR is operative, a parent γ grain with a given orientation may transform to any of 24 
uniquely oriented child α  grains. The latter are referred to as child orientation variants, or 
more simply, as variants. Depending on the mechanism of phase transformation, variant 
selection may occur when only a few of the theoretically predicted child orientation variants 
dominate the partially or fully transformed microstructure.  

The martensitic phase transformation has been subsequently harnessed to increase the 
mechanical strength of a wide range of commercial alloys [5,6]. The increase in mechanical 
strength is obtained by a Hall-Petch type hardening effect where the hierarchical subdivision 
of parent grains into child martensitic domains results in a decrease in the effective grain 
size of the alloy [7,8]. Depending on the alloy type, further strengthening may be achieved 
by interstitial solid solution strengthening [9,10] and/or increasing the dislocation density 
in the retained parent and child phases by plastic strain to accommodate the volume 
mismatch between them [11]. 

The above example of martensitic transformation is representative of a diffusionless 
displacive mechanism and signifies that: (i) the chemical composition of parent and child 
phases are similar, (ii) the atoms in parent and child unit cells maintain their sequence and 
atomic correspondence, and (iii) a shape change consistent with the parent-child crystal 
symmetry combination requires accommodation [2]. On the other hand, phase 
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transformations that operate by diffusion and growth -based mechanisms occurring at 
relatively higher temperatures may also involve an OR. Such mechanisms involve elemental 
diffusion based on their preferential solubility in parent or child phases, which in turn, leads 
to differences in chemical composition and the loss of atomic correspondence between them. 
An often-cited example of such a mechanism is the parent β -to- child α phase transformation 
during the cooling of Ti and Zr alloys. Regardless of their displacive or diffusional origins, 
phase transformation mechanisms tend to involve ORs and variants.  

For most of the twentieth century, uncovering ORs and analyzing local groupings of child 
orientation variants was only possible by laborious manual X-ray diffraction [3,4] and 
transmission electron microscopy [12] work. The continuous development of electron 
backscattering diffraction (EBSD) [13] from the 1980s onwards has enabled the mapping of 
entire microstructures and the characterization of a statistically significant number of parent 
and child orientations and morphologies [14].   

With the widespread adoption of EBSD as a routine materials characterization technique, the 
first algorithms to reconstruct the parent phase from child orientation variants were 
concurrently developed to enable: (i) the analysis of parent phase microstructures prior to 
transformation, and (ii) variant analysis in the case of fully transformed microstructures. In 
1994, Humbert et al. focused on child α -to- parent β reconstruction in Ti and Zr alloys [15] 
and in 2006, Cayron et al. [16] was the first to reconstruct parent austenite from child 
martensite in steel. Since then, various reconstruction algorithms were developed (the 
examples include but are not limited to Refs. [17–26]), with each new or modified iteration 
claiming superior performance in reconstruction accuracy and/or computational efficiency 
compared to previous implementations. 

Of the many strategies for parent grain reconstruction that have been presented in the 
scientific literature to-date, several have tended to be proprietary software solutions for a 
limited number of ORs and/or parent-child crystal symmetry combinations. Consequently, 
the motivating factors for the present work were: (i) the implementation of a generic 
framework for parent grain reconstruction in the open-source crystallographic toolbox 
MTEX [27] and, (ii) the extension of parent grain reconstruction, phase transformation and 
variant analysis to all parent-child crystal symmetry combinations. The implementation 
features different parent reconstruction methods that may be called on and combined by 
users to create individual workflows to obtain a confident reconstruction of parent phase 
microstructures.  

Following a brief overview of the common approaches to parent grain reconstruction, this 
work introduces the new parent grain reconstruction features in MTEX and the add-on 
software suite ORTools [28]. The latter comprises tools for OR discovery and analysis as well 
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as variant analysis, and plots publication-ready figures of microstructures undergone partial 
or full transformation. 

The parent grain reconstruction and analytical capabilities are demonstrated for three 
example alloys namely, (i) α -to- γ reconstruction in a lath martensitic steel [20], (ii) α -to- β 
reconstruction in a Ti alloy, and (iii) a two-step reconstruction from α -to- hexagonal close-
packed (hcp) ε-martensite -to- γ in a twinning and transformation -induced plasticity steel 
[33]. 

 Theory of parent grain reconstruction 

In the following section, a parent orientation, 𝐑  , is a rotation matrix, 𝐑, that describes the 
coordinate transformation from the parent crystal basis, P, into the specimen coordinate 
basis, S. The formation of a child orientation, 𝐑  , via phase transformation of the parent 
orientation is then characterized by a misorientation, 𝐑  , that transforms the child 
coordinates into parent coordinates: 

  𝐑  = 𝐑  𝐑       (1) 

As an example, a body-centered cubic (bcc) parent β grain with a cube orientation in a Ti or 
Zr alloy is defined by the following syntax in MTEX: 

 
1 csP = crystalSymmetry('432',[3.3 3.3 3.3],'mineral','Beta'); 

2 oriP = orientation.cube(csP) Code 1  

The Burgers OR, 𝐑  , towards the hcp child phase α  is defined as: 

 
1 csC = crystalSymmetry('622',[3 3 4.7],'mineral','Alpha'); 

2 CRP = orientation.Burgers(csP,csC) Code 2  

With 𝐑  = 𝐑   , the resulting child orientation is computed as: 

 1 oriC = oriP*inv(CRP) Code 3  

If 𝓀 = 1,..,K symmetry operators, 𝐒𝓀, for the parent phase and ℓ = 1,..,L symmetry operators, 
𝐒ℓ , for the child phase are applied on the OR, it results in K × L symmetrically equivalent 

ORs, 𝐒ℓ 𝐑  
 𝐒𝓀

 
 .  For a particular parent orientation, 𝐑  , these produce a maximum K 

number of symmetrically non-equivalent child orientation variants: 

  𝐑𝓀  = 𝐑   𝐒𝓀 𝐑   (2) 
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In cases when the OR transforms certain parent symmetries, 𝐒𝓀, into child symmetries, 𝐒ℓ =

𝐑   𝐒𝓀 𝐑  , a degenerated number of child variants occur, i.e., the number of variants 
reduces to K divided by the number of 𝓀 that fulfill this condition. Note that for 𝓀 = 1, the 
matching symmetry condition is always fulfilled as it describes the identical symmetry 
operation. In MTEX, unique orientation variants are computed by either of the following two 
equivalent lines: 

 
1 oriC_all = unique(oriP*csP*inv(CRP)) 

2 oriC_all = variants(CRP,oriP) Code 4  

In the specific example of the Burgers OR, the number of unique child variants is reduced 
from K = 24 to 12 as the two-fold [110]  cubic axis is transformed into the six-fold [0001]  

hexagonal axis. 

The problem may now be reversed. Given an OR, 𝐑  , and a child orientation, 𝐑  , the 
possible parent orientation variants, 𝐑 , are obtained as: 

  𝐑ℓ = 𝐑   𝐒ℓ  𝐑   (3) 

In combination with the OR, when the crystal symmetries of parent-child phases match, the 
number of unique variants reduces by the same factor as above. In MTEX, the unique variants 
of the parent phase are computed by either of the following two expressions: 

 
1 oriP_all = unique(oriC*csC*CRP) 

2 oriP_all = variants(CRP,oriC) Code 5  

Thus, for the Burgers OR, the number of unique parent orientation variants reduces from 12 
to 6. Here it should be noted that any slight deviation from the Burgers OR breaks the 
matching symmetry condition and results in 12 parent variants: 

 
1 CRP_new = CRP .* orientation.rand(csP,csP,'maxAngle',2*degree); 

2 oriP_all = variants(CRP_new,oriC) Code 6  

In summary, the true parent orientation of an OR-based phase transformation cannot readily 
be determined from a single child orientation because of crystal symmetry. A parent grain 
orientation is determined with a high degree of confidence only when multiple unique and 
adjacent child grains that originated from the same parent grain via different symmetry 
operations are identified. This is the primary objective of all parent grain reconstruction 
algorithms. It follows that if the number of possible orientation variants of the parent 
orientation increases, higher numbers of unique and adjacent child variants require 
identification. This is one of the reasons why α -to-γ parent grain reconstruction in 
martensitic steels is more challenging than say, α-to-β parent grain reconstruction in Ti or 
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Zr alloys†. In this specific comparison, the former involves a transformation of point groups 
432-to-432 whereas the latter requires a transformation of point groups 432-to-632. 

 Computational approaches to parent grain reconstruction 

Computational approaches to parent grain reconstruction presented in the scientific 
literature to-date are roughly divided into two groups using either, pixel [17,25,26], or grain 
[16,18–24] -level EBSD map data. The first group of methods claim to be more accurate to 
local changes in the parent orientation and are apparently superior in identifying annealing 
twins in austenite and in reconstructing ausformed alloys whereas the second group of 
methods are said to be computationally more efficient. Considering rapidly increasing EBSD 
map sizes, the most recently developed parent grain reconstruction algorithms in Refs. 
[20,22–24] tend to favor the grain-level approach. Consequently, the following paragraphs 
describe how grain-level parent grain reconstruction methods are implemented in MTEX.  

A class in MTEX, parentGrainReconstructor, was designed to contain the methods and 
properties needed for parent grain reconstruction. The methods enable the selection of 
different parent grain reconstruction strategies. The properties track the progress of 
reconstruction and include the OR, the orientation variants, the grain graph and applied 
weights, the cluster definitions, the reconstructed parent grains, and lists of grain 
identification numbers that link parent grains with their child grains.  

Since all reconstruction algorithms in MTEX are grain-level, the parameters chosen during 
the initial grain reconstruction step are important. Grain reconstruction in MTEX is realized 
by a Voronoi decomposition [29]  that is robust against zero solutions (non-indexed or 
missing pixels) in EBSD maps. In the context of parent grain reconstruction, a threshold angle 
of say, 3°, is recommended as such a value is: (i) small, (ii) above the orientation noise floor 
to separate grains, and (iii) avoids large orientation gradients within child grains. Following 
parent grain reconstruction, neighboring parent grains separated by low-angle boundaries 
will be merged in any case.  

 Growth algorithms in partially transformed microstructures 

In instances when a significant area fraction of evenly distributed parent phase is retained 
in partially transformed microstructures or obtained from other reconstruction algorithms, 
parent grain reconstruction is undertaken by a growth algorithm. The retained parent phase 
grains represent nuclei that are made to grow into the surrounding child phase. The 

                                                        
† Another reason is that the experimentally determined OR between parent β and child α phases in Ti alloys 
tends to be closer to a rational OR (in this case, the ideal Burgers OR), which in turn leads to the degeneracy of 
variants as described above. However, this is not usually the case for α -to-γ transformation in martensitic 
steels. 
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misorientations at parent-child grain boundaries are compared with the theoretical OR (Eq. 
(2)) and neighboring parent grains return a vote for the preferred parent orientation of a 
child grain based on the best fit. Based on the collection of votes from all neighboring parent 
grains, the best fitting parent orientation is determined via the application of voting metrics. 
This approach was applied in Refs. [16,18,24,25] to grow the parent phase from previously 
calculated nuclei. 

In MTEX, the two steps of: (i) computing the votes for a parent orientation using neighboring 
grains, and (ii) determining the best fitting parent orientation are implemented in the 
methods calcGBVotes(‘P2C’) and calcParentFromVote, respectively. Here the option ‘P2C’ 
indicates that only neighboring parent grains to a child grain take part in the vote. The 
application of these methods is demonstrated in Section 4 via examples. It is re-emphasized 
that the most crucial parameter for computing the vote is the definition of the threshold 
angle to identify potential parent-child boundaries. 

 Nucleation algorithms in fully transformed microstructures 

In instances when the parent phase is absent, meaning in fully transformed microstructures, 
methods that generate nuclei from neighboring child grains may be employed. In their 
simplest form, nucleation algorithms identify child grains sharing a boundary or triple 
junction and calculate their disorientation to the OR. The best fitting parent orientation 
between neighboring child grains is registered as a vote. After collecting the votes from all 
neighboring child grains, the best fitting parent orientation is determined via the application 
of additional criteria.  

In MTEX, the syntax for these two steps is similar to that used for growth algorithms. The 
methods calcGBVotes and calcTPVotes compute the votes based on grain boundaries or triple 
junctions, respectively. The determination of the parent orientations from the votes is done 
by the method calcParentFromVote. 

The criterion for parent reconstruction in the initial algorithms by Humbert et al. [15] on Ti 
and Zr alloys and Cayron et al. [16] on steel required the identification of three child variants 
belonging to a common parent grain. The latter subsequently applied a growth algorithm to 
finalize the parent reconstruction. The criterion applied by Germain et al. [18] comprised an 
iterative procedure that graphically searched neighboring child grains with low 
disorientation to a given OR and computed the best fitting common parent orientation for 
these grains. Following the nucleation stage, a growth algorithm was applied to reconstruct 
the parent orientation for the remaining child grains. Most grain-level algorithms described 
in Refs. [21–24] are based on this approach and apply various adjustments to improve 
specific parent grain reconstruction scenarios. 
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 Graph clustering algorithms 

While nucleation and growth algorithms begin reconstruction locally and evolve iteratively 
to the full map, graph clustering algorithms work on a global map scale right from the start. 
These algorithms assign an OR probability value as a weight to the edges of grain graphs. The 
OR probability is a parameter derived from the disorientation between grain 
misorientations and the OR. Subsequently, a graph clustering algorithm is applied to the 
grain graph by clustering together all child grains that are likely to belong to the same parent 
grain. The third step fits parent orientations to each of these clusters. Graph clustering 
reconstruction algorithms were previously proposed by Gomes et al. [19] and Nyyssönen et 
al. [20]. 

In MTEX, these three steps are applied in the methods calcGraph, clusterGraph and 
calcParentFromGraph, respectively. 

 Example applications of MTEX to parent grain reconstruction 

In the following section, the syntax and functionality of parent grain reconstruction in MTEX 
is demonstrated for three example alloys that undergo well-known phase transformations 
namely, 𝛂 -to-𝛄 in a lath martensitic steel, 𝛂-to-𝛃 in a Ti alloy, and a two-step transformation, 
𝛂 -to-𝛆-to-𝛄, in a twinning and transformation -induced plasticity steel. Some of the more 
advanced plots are created using ORTools [28]. 

 𝛂 -to-𝛄 reconstruction in a lath martensitic steel 

The EBSD map data is courtesy of Nyyssönen et al. [20]. The microstructure, shown in Figure 
1, consists of lath martensite (α′) and 27% unindexed points. The script used to reconstruct 
the parent γ grains from a child α  microstructure is available via Ref. [30]. 
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 Irrational OR determination from EBSD map data 

Before parent grain reconstruction can begin, the irrational OR from EBSD map data, which 
usually lies somewhere in-between the rational K-S and Nishiyama-Wassermann ORs in lath 
martensite, needs to be determined. In this example, the accurate determination of the 
irrational OR from EBSD map data is necessary to increase the success rate of parent variant 
indexing, which in turn may also enable the detection of twinned parent grains, if any [17]. 

In MTEX, parent grain reconstruction begins by constructing an object, job, from the 
parentGrainReconstructor class by supplying the ebsd data and the computed grains (Code 
7.1). An initial guess for the OR is provided by assigning the K-S OR as a misorientation to 
the property, p2c (Code 7.2). The method, calcParent2Child (Code 7.3), then determines the 
irrational OR from EBSD map data via iterative refinement: 

 
1 job = parentGrainReconstructor(ebsd, grains)  

2 job.p2c = orientation.KurdjumovSachs(csAlpha,csGamma)              

3 job.calcParent2Child 

Code 7  

Figure 1: Inverse pole figure map of lath martensite. The martensite grains are identified by a misorientation 
threshold of 3°. Grain boundaries are in black and zero solutions are in white. 
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Accurate irrational OR determination from EBSD map data is a necessary requirement for 
successful parent grain reconstruction. This is especially the case when an OR contains many 
orientation variants and/or deviates significantly from the closest rational OR, as shown in 
this example [17].  

The method calcParent2Child is an improvement of the iterative OR refinement procedure 
presented in Ref. [31]. The refinement method iteratively identifies boundary 
misorientations that reasonably agree with the current best guess of the OR and refines the 
best guess in each iteration by taking the mean of the identified boundary misorientations. 
Once the refinement procedure has converged, the property p2c is updated with the OR that 
gives the best fit to the misorientations in the microstructure. 

In Figure 2a, the disorientations between martensitic grain misorientations and the 
misorientations of the initial K-S and refined ORs are shown. It is evident that the 
disorientation was minimized by iterative OR refinement. It is also clear that no OR exists 
that reduces the disorientation for all grains to zero in the present microstructure. Adapting 
the OR to reduce the disorientation for some grains would inevitably lead to larger 
disorientations for other grains. The (001) pole figure of the 24 martensitic variants of the 
refined OR is given in Figure 2b. 

 

 Building and clustering the weighted grain graph 

The disorientation between martensitic grain misorientations and the refined OR (Figure 
2b) are plotted by color-coding the martensitic boundaries in Figure 3 with a threshold of 5°. 
It is obvious that the network of boundaries with disorientations >5° corresponds to prior 

Figure 2: (a) Disorientation histogram between martensitic grain misorientations and the misorientations of the 
K-S and refined ORs. (b) {001} pole figure showing the 24 martensitic variants of the refined OR. 
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austenite grain boundaries. Although short segments along such boundaries have 
disorientations <5°, the latter are, on balance, likely to be prior austenite grain boundaries 
based on their connectivity to similar boundaries with overall disorientations >5°. Keeping 
the above in mind and considering the many orientation variants in this example, the low 
disorientation across the short boundary segments of prior austenite grain boundaries is 
ascribed to coincidence. 

 

Using the methods described in Section 3.3, a graph of martensitic grains is subsequently 
built. Neighboring grains are connected by edges that are weighted by the probabilities of 
them belonging to the same parent grain. The probability is derived from the disorientation 
shown in Figure 3 and is expressed by a cumulative Gaussian distribution with a given mean 
and standard deviation. In MTEX, this functionality is integrated into the method, calcGraph 
(Code 8.1).  

After building the graph, a clustering algorithm is applied to identify clusters of strongly 
connected grains according to the above calculated probability by the method, clusterGraph 
(Code 8.2). By default, this method features a Markov clustering (MCL) algorithm, which 
simulates a random walk across nodes that connect neighboring grains. MCL is an attractive 

Figure 3: Distribution of the disorientation histogram in Figure 2b visualized by color-coding the martensitic 
boundaries with a threshold of 5°. 
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choice for the current application as it is: (i) an unsupervised algorithm, (ii) computationally 
efficient, and (iii) resistant to noise [19]. The OR probability assigned to the nodes is 
equivalent to the probability with which the MCL algorithm walks along the different nodes.‡ 
With each iteration of random walk, nodes that connect grains belonging to the same parent 
orientation are gradually strengthened whereas nodes connecting the grains that do not 
belong to the same parent orientation are gradually cut off. The resulting clusters are 
depicted by black boundaries overlaid on a semi-transparent inverse pole figure martensite 
map in Figure 4. Most of the prior austenite grains (depicted by the predominantly red 
outlines in Figure 3) are divided into several clusters, and most clusters contain different 
martensitic variants. 

 
1 job.calcGraph 

2 job.clusterGraph Code 8  

 

 

                                                        
‡ It could be equivalently stated that the MCL algorithm walks are random along the nodes by a fixed distance 
per iteration and that the path lengths of the nodes are the inverse of the probabilities assigned to the nodes. 

Figure 4: Clusters of martensite grains outlined in black and overlaid on the inverse pole figure map from Figure 
1. 
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 Reconstructing parent grain microstructures from grain clusters 

After identifying the clusters of martensitic grains that are likely to belong to the same 
austenite grain with the method, clusterGraph, they are transformed to parent orientations 
by applying the method, calcParentFromGraph. The calculation consists of two steps as 
follows: 

i. All possible parent orientations are calculated by applying the inverse OR to each 
child grain orientation in the cluster as per Eq. (3). A common parent orientation is 
computed by minimizing the overall disorientation to a possible parent grain 
orientation that is common or close to all child grain orientations in the cluster. The 
area of the child grains is used as the weight in this fitting procedure. 

ii. The parent orientation of each child grain in a cluster is determined by calculating the 
parent orientation with the least disorientation to the common parent orientation of 
the cluster by applying the OR.  

The procedure produces the reconstructed clusters in Figure 5. The regions previously 
identified with <5° disorientation to the OR in Figure 3 are regions with a common parent 
austenite orientation. 

 
Figure 5: Reconstructed parent microstructure from child grain clusters shown in Figure 4 with the method,
calcParentFromGraph. 
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 Evaluation and local reversion of the reconstruction 

After calculating the common parent orientation of each cluster and the parent orientation 
of each child grain in the cluster, the disorientation between them may be evaluated. This 
disorientation is plotted by applying a 5° threshold in Figure 6. 

Martensite grains with a high disorientation are likely to have been assigned to the wrong 
cluster in the above procedure. Very small clusters are also likely to yield an uncertain parent 
orientation. Consequently, the disorientation and cluster size criteria (and any others if 
defined by a user) are applied to revert such poorly reconstructed martensite grains by the 
method, revert: 

 
1 job.revert(job.grains.fit > 5*degree) 

2 job.revert(job.grains.clusterSize < 15*degree) Code 9   

 It follows that after reversion, the orientations of the remaining reconstructed martensite 
grains have a higher likelihood of being actual parent grains (see Figure 7).  

 
Figure 6: Disorientation between the common parent orientation of each cluster and the parent orientation of each 
child grain in the cluster with a threshold of 5°. 
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 Reconstructing the parent grain microstructure by a growth algorithm 

Since the reconstruction of a significant fraction of martensite grains was unsuccessful 
within the given confidence criteria (Figure 7), the remaining reconstructed parent phase 
serves as nuclei in a growth algorithm (see Section 3.1)  within the reverted regions:  

 
1 job.calcGBVotes('p2c', ’threshold’, 2.5*degree); 

2 job.calcParentFromVote      Code 10   

Figure 8a is an example of this algorithm at work in a local region defined by the dotted white 
rectangle in Figure 7. In this example, the white area corresponds to martensite grains that 
have two neighboring parent grains and have not yet been reconstructed. In the method, 
calcGBVotes, the boundary misorientations of all possible parent orientations of a child grain 
with neighboring parent grains are computed and voting probabilities are assigned. The 
threshold angle, 2.5°, marks the misorientation angle between a neighboring parent 
orientation and the reconstructed parent orientation of the child grain at which the 
probability is 50 %. After three iterations of Code 10, the reconstructed parent grain 
microstructure in Figure 8b is obtained.  

Figure 7: Remaining reconstructed parent microstructure after reverting certain grains with Code 9. The reverted 
regions are in white. 
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Although the microstructure is not fully reconstructed, the reconstructed areas have a high 
confidence. Depending on the microstructure, parent grain reconstruction may be continued 
with lower confidence criteria. It is apparent that regions located at or near the vertical and 
horizontal edges of the EBSD map were not reconstructed. This could be ascribed to the lack 
of neighboring grains and unique child orientation variants in these regions.  

 

 Cleaning the parent grain microstructure and reconstructing the EBSD data 

In Figure 8 the martensite grains are reconstructed to largely similar parent orientations 
within any prior austenite grain. The misorientation between these fragmented grains is 
used to merge them to prior austenite grains by calling the method, mergeSimilar, with a 
threshold for the maximum allowed misorientation angle between neighbouring grains 
(Code 11.1). Subsequently, the method, mergeInclusions, merges small grains within a 
specified maximum area (Code 11.2). 

 
1 job.mergeSimilar('threshold',7.5*degree); 

2 job.mergeInclusions('maxSize',50); Code 11   

In this way, child grain clusters containing common parent orientations (Figure 8) are 
transformed into parent grains (Figure 9). A distinguishing feature of these methods is that 
the merging process is tracked by the property, mergeId. This property enables users to list  
the child grains belonging to a particular parent grain and is crucial for subsequent variant 
analysis. 

Figure 8: (a) A local example of the growth algorithm at work. (b) Reconstructed parent grains after three 
iterations of the growth algorithm. 
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In a final step, the EBSD data of the parent phase is reconstructed from the EBSD data of the 
child phase by the method, calcParentEBSD. Here the grain-level record of the particular 
parent orientation variant reconstructed for each child grain is applied to the child EBSD 
data (Figure 1) and the OR. . The resulting parent EBSD data is shown in Figure 10 with the 
prior austenite grain boundaries overlaid in black. 

Figure 9: Reconstructed parent grain microstructure after applying the cleaning steps in Code 11.
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 𝛂-to-𝛃 reconstruction in a Ti alloy 

The EBSD map data is courtesy of Susanne Hemes, Access e.V. The initial microstructure 
consists of 94.5% α and 0.2% β phases and 5.3% unindexed points and is shown in Figure 
11a. The script used to reconstruct the parent β grains from a child α microstructure is 
available via Ref. [30]. 

Similar to Section 4.1, the object, job, is constructed from the parentGrainReconstructor class 
and the OR is initialized as the Burgers OR [32], as shown in Section 0 while summarizing 
the theory of parent grain reconstruction: 

 
1 job = parentGrainReconstructor(ebsd, grains)  

2 job.p2c = orientation.Burgers              Code 12  

The rotation axes of α − α boundary misorientation pairs are plotted in Figure 11b along 
with the six ideal Burgers OR variant pairs shown as white circles =. The misorientation axes 
of α − α boundary pairs are color-coded based on their disorientation to the Burgers OR. The 
α − α boundary pairs have low disorientation values and their misorientation axes are close 

Figure 10: Reconstructed parent EBSD data with the parent grain boundaries in black.
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to that of the ideal Burgers OR as well. The few data points with high disorientation and/or 
different misorientation axes likely conform to a different OR and/or belong to prior 𝛽 
boundaries. The conformity of the microstructure to the ideal Burgers OR indicates that OR 
refinement is not needed. Since the number of variants are few and distinctly defined, and 
the grain morphology contains a large density of triple points, a triple-point parent 
reconstruction strategy may be applied: 

 
1 job.calcTPVotes('minFit',2.5*degree,'maxFit',5*degree); 

2 job.calcParentFromVote('minProb',0.7); Code 13  

The nucleation method, calcTPVotes (see Section 3.2), is applied to identify triple points and 
determine the best fits for a parent orientation between three grains (Code 13.1). Here only 
triple junctions for which the best fit is below 2.5° and the second best fit is above 5° are 
considered. The above method is similar to the method, calcGBVotes, used in the growth 
algorithm of the previous example. Following this, the method, calcParentFromVote, is 

 
Figure 11: (a) IPF map of the child 𝛂 phase. (b) IPF of the misorientation axes between 𝛂 − 𝛂 boundary pairs color-
coded according to their disorientation to the ideal Burgers OR along with the six ideal Burgers OR variant pairs 
shown as white circles (c) Parent grain microstructure reconstructed from 𝛂 triple points. (d) Reconstructed 
parent EBSD data after applying 𝛂 triple point and growth algorithms. The black lines are the parent grain 
boundaries. 
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applied to reconstruct all grain clusters with a probability of at least 0.7. The method returns 
the reconstructed microstructure in Figure 11c. A single iteration of the growth algorithm 
(Code 10) and reconstructing the parent EBSD data yields the final parent grain 
microstructure shown in Figure 11d.  

 𝛂 -to-𝛆-to-𝛄 reconstruction in a twinning and transformation -induced 
plasticity steel 

The EBSD map data is courtesy of Pramanik et al. [33]. The script used to reconstruct the 
parent 𝜀 and γ grains is available via Ref. [30]. As shown in Figure 12a, the initial 
microstructure consists of 56% face-centered cubic parent γ, 26% hexagonal close-packed ε 
and body-centered cubic 18% α′.  ε and α  formed during quenching after prior hot-rolling 
as well as the partial transformation of γ-to-ε,  γ-to-α , and ε-to-α  via the Shoji-Nishiyama, 
K-S and Burgers ORs, respectively, during subsequent cold-rolling to 10% thickness 
reduction.  

The orientations of each phase and the computed grain boundaries are shown in Figure 12c-
12e. The modular setup of the MTEX parent grain reconstruction algorithm allows for the 
complete reconstruction of parent γ via a two-step process in a single workflow. Since 
sufficient parent-child boundaries are present for both martensite transformations, the 
ORTools function, peakFitORs, is used to determine the ORs between γ-ε and ε-α′ by fitting 
the parent-child boundary misorientation angle distribution (Figure 12b). The workflow is 
the same as the one described in Section 0  for the parent grain reconstruction of lath 
martensite and comprises the sequential application of clustering, reconstruction, reverting 
bad fits, growth, cleaning and calculation of EBSD data. The workflow is first applied to 
reconstruct all α′ grains to ε (Figure 12f) and subsequently, to reconstruct all ε grains to γ 
(Figure 12g). Throughout the entire workflow, the IDs of the child grains are stored in the 
object, parentGrainreconstructor. In this way, an advanced transformation graph over two 
orders of transformation is constructed by linking the grain identification numbers of all 
child grains to their parent grain(s). Thus, an α′ grain transformed from an intermediate ε  
grain is uniquely identified and linked together. Concurrently, both grains are also linked to 
the single reconstructed parent γ grain from which they transformed. Since the grain 
identification number links all parent grains to their child grains, it also enables second order 
variant analysis. 
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Figure 12: Parent grain reconstruction of the two-stage martensite transformation 𝛄-to-𝛆-to-𝛂′. The phase map (a) 
shows the initial phase distribution. The ORTools function, peakFitORs, is used in (b) to fit both ORs based on the 
parent-child misorientation angle distribution. The inverse pole figure maps of (c) 𝛄, (d) 𝛆 and (e) 𝛂′ show the 
initial grain orientations. The sequential reconstruction of (f) 𝛂′-to-𝛆 and (g) reconstructed + retained 𝛆 to 𝛄 is 
carried out in a single workflow. The colors in (c) and (e) are as per the inset stereogram in (g) whereas the colors 
in (d) are as per the stereogram in (f). 
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 Discussion 

 Highlights of the MTEX implementation 

The examples of parent grain reconstruction in Section 4 demonstrate the versatility of the 
newly integrated functionalities for parent grain reconstruction in MTEX. The main 
advantage of the present approach lies in the modularization of the reconstruction process 
as defined by the class, parentGrainReconstructor, which contains the essential methods and 
properties for parent grain reconstruction (see Section 3). This approach enables the 
creation of individual workflows and reconstruction strategies for different types of 
transformation microstructures. Additional ancillary methods such as the local reversion of 
reconstruction and the merging of similar grains round-off the core functionality. Therefore, 
the above approach is an ideal trade-off between automation and versatility. 

 Computational performance 

The code has been optimized for speed by using efficient vectorized expressions in MATLAB. 
The α -to-γ transformation in Section 0 was timed as follows. The EBSD data contains 486 × 
707 pixels and reconstructed 7002 martensitic grains. The example was calculated on a 
contemporary office laptop on a single Intel® Core™ i7-8650U processor core with a 1.9 GHz 
processor base frequency. The refinement of the OR by the method, calcParent2Child, took 
14 s. The execution of the methods, calcGraph, clusterGraph and calcParentFromGraph, for 
the first part of the parent reconstruction took 37 s. Three loops of the growth algorithm 
(Code 10) took a further 2 s. 

In the  α-to-β transformation in Section 4.2, the map comprised 384 × 512 pixels and 
reconstructed 49,666 grains. The triple-point based reconstruction (Code 13) took just 
under 5 s and a single iteration of the growth algorithm (Code 10) took an additional 1 s on 
the same computer setup. 

 Orientation variant analysis 

Reconstructing the parent grain microstructure and parent EBSD data is a prerequisite for 
in-depth orientation variant analysis. The tools to compute orientation variant and packet 
identities are implemented in the method, calcVariants. With a few more additional lines of 
MTEX code, plots associated with variant analysis can be produced. However, the add-on 
ORTools [28] already features several pre-written functions to create publication-ready plots 
associated with variant analysis.  

Figure 13 is an example of variant analysis using ORTools on the reconstructed parent γ 
microstructure in Section 0. By default, MTEX assigns the convention for packet and variant 
numbering established by Morito et al. [34] whenever a transformation between two cubic 
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symmetries is detected. In Figure 13a, the EBSD data of lath martensite is colored according 
to packet identification numbers that delineate martensitic variants formed from the same 
habit plane. In this example, the four habit planes are: (111) , (111) , (111) , or (111) . 

ORTools enables the investigation of individual reconstructed parent grains by an interactive 
function, grainClick. Some of the obtained plots are shown in Figure 13b to 13f. The variant 
map in Figure 13b shows the variant identification numbers of the EBSD data and the 
martensite grain boundaries. It is evident that most martensite grains, which represent 
martensitic blocks, contain pairs of two different variants. The pairing is according to the 
common Bain groups within a packet and is commonly observed in lath martensitic steel 
[34,35]. For instance, for packet 1, the pairing is of the type V1-V4, V2-V5 and V3-V6. 
Equivalent pairing may also be denoted for the three other packets. Figure 13c is the (001)  

pole figure of the theoretically predicted martensite variant orientations based on the parent 
γ mean grain orientation and the OR. Figure 13d shows excellent agreement between the 
predicted and observed variant orientations. Finally, the Figure 13e and Figure 13f show the 
distributions of the variant and packet identification numbers within the parent grain, 
respectively.  
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 Reconstruction of austenite annealing twins in martensitic steel 

While the present study highlights the versatility of the new framework for parent grain 
reconstruction in MTEX, it is also appropriate to discuss how the new methods approach the 
common problem of reconstructing annealing twins in parent austenite from child 
martensite grains in steel microstructures [17].     

The problem is demonstrated in Figure 14 via a specific example of interest from Figure 4. 
Figure 14a shows martensite grains with their boundaries in black and the clusters for 
parent grain reconstruction using Code 8 circled in red. Figure 14b shows that parent grain 
reconstruction of these clusters results in a parent austenite grain containing an annealing 
twin. To investigate whether the annealing twin was reconstructed correctly, the fit of the γ 
variants of all α′ orientation pixels with either, the mean γ orientation and the mean twinned 
γ orientation was determined. The best fit was used to recalculate the correct γ variant for 

Figure 13: Example of variant analysis on the reconstructed lath martensite steel microstructure from Section 0
using the add-on function library, ORTools [28] (a) EBSD map showing the packet Ids of martensite and grain 
boundaries of the reconstructed parent grains. (b) EBSD map showing the variant Ids of martensite and boundaries 
of the martensite grains. (𝟎𝟎𝟏)𝛄 pole figures of the (c) predicted, and (d) observed martensite variants of the 
highlighted parent 𝛄 grain in (b). Area fractions of the (e) variants and (f) packets of the highlighted parent 𝛄 grain 
in (b).   
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each pixel and resulted in the orientation map in Figure 14c. The plot reveals that the 
annealing twin from Figure 14b extends even further and that a second large annealing twin 
was not detected during parent grain reconstruction at all.  

In Figure 14d and e, the (001)  pole figures of the two γ orientations and their α′ variants 

according to the K-S and refined ORs are used to reveal the origin of the incomplete 
reconstruction. The K-S OR dictates that the variants constituting a single martensite packet 
must satisfy the following conditions: 

i. The  {011}  planes of all variants in a packet must lie parallel to the same {111}  

planes. 
ii. The 〈111〉  directions on {011}  planes must be parallel to a 〈011〉  directions on 

{111}  planes. 

Since the misorientation describing the relationship between γ and twinned γ  is defined by 
a 60° rotation about a 〈111〉  axis, the two above conditions can also be satisfied by a single 

packet of the twinned γ. This packet is hereafter referred to as the “shared packet”. The α′ 
variants of the shared packet are shown by green markers in Figure 14d. Fortunately, as 
demonstrated in Section 4.1.1, the experimental OR in lath martensitic steels is irrational. 
The pole figure in Figure 14e shows that in this case, the variants of the shared packet have 
a misorientation angle of 2.8°. With sufficiently accurate data and a representative refined 
irrational OR determined from EBSD map data, it should be possible to separate twinned 
orientations during reconstruction. 

The reason for the inaccurate reconstruction of the annealing twins in this example can be 
found early-on in the procedure. Figure 14a shows that the initial reconstruction of α′ grains 
with a threshold value of 3° does not separate the variants of the shared packets. Instead, it 
merges the variants into groups that are known as blocks. It is evident that the unidentified 
annealing twin in Figure 14d intersects a large block of α′ variants. Therefore, there is no 
chance of reconstructing this γ annealing twin immediately following the grain 
reconstruction stage regardless of which grain-level parent grain reconstruction approach 
is chosen. This is a generic shortcoming of all parent grain reconstruction algorithms. The 
only available avenues for a more accurate reconstruction of γ annealing twins could be 
either, a more accurate reconstruction of the α′ variants, or a refinement step on the pixel 
orientation level as demonstrated in Figure 14c. These avenues will be explored in-depth in 
future work. 
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 Conclusion 

This study demonstrates: (i) the implementation of a versatile generic framework, involving 
a new class, parentGrainReconstructor, for parent grain reconstruction from fully or partially 
transformed child microstructures in the open-source crystallographic toolbox MTEX v.5.6 
or higher and, (ii) the extension of traditional parent grain reconstruction, phase 
transformation and variant analysis to all parent-child crystal symmetry combinations. 

Figure 14. Example of incomplete annealing twin indexing in reconstructed lath martensite (see Section 0). (a) 𝛂′
inverse pole figure map, showing grain boundaries in black and clusters formed with Code 8 in red. (b) 
Reconstructed 𝛄 grain containing annealing twin boundaries in pink. (c) Individually best fitting 𝛄 orientation for 
each orientation pixel. (d) (𝟎𝟎𝟏)𝛄 pole figures of the 𝛄 (blue square markers) and twinned 𝛄 orientations (grey 
square markers) from (b). The 𝛂′ variants according to the K-S OR are shown by round markers. Variants of packet 
1 of 𝛄 and packet 4 of twinned 𝛄 are shared and shown using green round markers. (e) The variants of the 
experimentally refined orientation relationship show a 2.8° misorientation between the shared variants. 
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Three examples of parent grain reconstruction in different transformation microstructures 
were provided namely, (i) α -to-γ in a lath martensitic steel, (ii) α-to-β in a Ti alloy, and (iii) 
a two-step parent grain reconstruction from α -to-ε-to-γ in a twinning and transformation -
induced plasticity steel. The examples showcase the inherent versatility of the universally 
applicable parent grain reconstruction methods, and the ability to conduct in-depth variant 
analysis via example workflows that can be programmatically modified by users to suit their 
specific applications. The latter is significantly simplified by the add-on function library, 
ORTools. 

Lastly, for the specific case of austenite annealing twins in martensitic steel, the method to 
extend the current grain-level parent grain reconstruction approach to pixel orientation 
level refinement is detailed. 
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