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Abstract. The MATLAB™ toolbox MTEX provides a unique way to represent, analyse and interpret 
crystallographic preferred orientation, i.e. texture, based on integral (“pole figure”) or individual 
orientation (“EBSD”) measurements. In particular, MTEX comprises functions to import, analyse 
and visualize diffraction pole figure data as well as EBSD data, to estimate an orientation density 
function from either kind of data, to compute texture characteristics, to model orientation density 
functions in terms of model functions or Fourier coefficients, to simulate pole figure or EBSD data, 
to create publication ready plots, to write scripts for multiple use, and others. Thus MTEX is a 
versatile free and open-source software toolbox for texture analysis and modeling. 

Introduction 

The general concept of the toolbox as outlined in the abstract may be illustrated by Fig. 1. 
 

 
 

Figure 1. General concept of the MATLAB™ toolbox MTEX for texture analysis 
 
 
MTEX features a novel unique method for the estimation of an orientation density function from 
diffraction pole figure intensities or from EBSD data classified by phase. An orientation density 
function is approximated by a non-negative linear combination of non-negative kernels, which are 
sufficiently well localized in spatial and frequency domain, more specifically with functions which 
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are unimodal radially symmetric in spatial domain and with Fourier coefficients which vanish 
smoothly and sufficiently fast. 

For the resolution of the inverse problem to determine an orientation density function from given 
experimental pole figure data this approach is justified by the general solution of the Darboux 
differential equation [1] governing the pole density function corresponding to an orientation density 
function. The pole density function has been recognized as mean of the totally geodesic Radon 
transfom of the orientation density function [2, 3], experimental pole figure data may be seen as its 
discrete values. Since the Radon transform is a linear integral transformation, it is applied to each 
term in the linear combination individually. Thus, experimental pole figure data are fitted by a non-
negative linear combination of means of totally geodesic Radon transforms of the kernels. The best 
fit is determined as a solution of a constrained non-linear minimization problem and numerically 
found by a version of the conjugate gradient method. 

The corresponding algorithm applies discretisation with radially symmetric basis functions 
centered at a given grid which may be irregular. The kernel itself is approximated by a finite Fourier 
series expansion. The series is finite either by truncation or by the special choice of the de la Vallée 
Poussin kernel [4 5, 6, 7], which is the default kernel of MTEX because of its unique mathematical 
properties. Then fast Fourier techniques for the sphere and the rotation group are applied to 
guarantee satisfying performance. For a comprehensive exposition of the MTEX approach to 
determine an orientation density function from experimental pole figure data the reader is referred to 
[8]. The mathematics MTEX is based on is presented in [7, 9]. The MTEX approach is especially 
well suited for sharp textures and high spatial resolution pole figures measured with respect to 
arbitrarily scattered specimen directions, e.g., with an area detector. Moreover, it allows for multi-
scale representation of the orientation and the pole density function, respectively, cf. [10]. 

Given individual orientation measurements an orientation density function is determined by non-
parametric kernel density estimation where the measurements are the centres of the kernels to be 
superposed [11]. Here, fast Fourier transform provides the numerics for fast summation of functions 
defined on the sphere or the rotation group. 

Once an orientation density function has been determined with either kind of data, MTEX 
provides functions to compute various properties of the estimated orientation density function as 
Fourier C-coefficients, modal orientation, mean orientation, volume portions, texture index, 
entropy, etc., which are of interest. Choosing the Dirichlet kernel for this estimation, unbiased 
estimates of the Fourier C-coefficients up to any reasonably given finite order may be computed. 

MTEX also features function to model an orientation density function and its corresponding pole 
density functions in terms of model functions including uniform, unimodal and fibre distributions or 
in terms of Fourier C-coefficients. An overwiev of workflows is displayed in Fig. 2. 

 

     
 

Figure 2. Workflows in MTEX 
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Functions and Features of MTEX in Greater Detail 

Analysis and Visualization of Crystallographic Geometries. MTEX allows to define arbitrary 
crystal and specimen symmetries with arbitrary geometries using the class symmetry. Miller indices 
may be plotted in various spherical projections, the angle between two directions given in terms of 
Miller indices can be calculated or all crystallographically equivalent directions can be computed. 
MTEX applies embedding of rotations into the sphere of unit quaternions, a subset of the skew field 
of real quaternions. However, there are methods to convert them into Euler angles (Bunge’s or 
Matthies’ and Roe’s convention, respectively), Rodrigues parameters, matrices or angle-axis 
parametrization. Quaternions can be applied to Miller indices, orientation density functions, pole 
figure data, and EBSD data to perform rotations. 
Calculations with Model orientation density functionss. MTEX provides simple functions to 

define mathematical model orientation density functions, e.g., uniform orientation density function, 
unimodal orientation density function of several types, fibre orientation density functions of several 
types, or any superposition of them. In particular the MTEX toolbox already contains some popular 
standard orientation density functions as the “Santa Fe” and the “MIX 2” sample orientation density 
functions. 
Import, Analysis, and Visualization of Integral Diffraction Data. MTEX’s import wizzard 

supports a wide range of pole figure formats including, e.g., the XRDML format. However, it is also 
easy to use one of the generic methods to import data of an initially unsupported format. It is 
emphasized that the data may be arbitrarily scattered over the pole sphere. Fig. 3 dsiplays 
experimental pole figures with intensities measured at an irregular, adaptively locally refined grid. 
Once the data are imported, there are various methods to analyse, edit and plot them. 

 

 
 

Figure 3. X-ray diffraction data measured at an irregular adaptively locally refined grid 
 
 
Import, Analysis, and Visualization of Individual Orientation Data (EBSD). MTEX also 

provides an import wizzard for EBSD data. This interface allows to extract orientation and phase 
data from almost arbitrary ASCII files, cf. Fig. 4 and Fig. 5. EBSD data may be used for non-
parametric orientation density function estimation, Fourier coefficient estimation, etc. In fact, all 
methods available for orientation density functions may be applied to orientation density functions 
estimated from EBSD data. In particular it is possible to compare orientation density functions 
estimated from EBSD data with those estimated from pole figure data using the command 
calcerror. Another useful command in MTEX is simulateEBSD which allows to simulate EBSD 
data for a given orientation density function. 
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Figure 4. Pole density functions recalculated from Neutron diffraction data overlaid with two 
different EBSD data sets. 

 

 
 

 
 

Figure 5. Raw EBSD data, spatially indexed and RGB-colour coded (top), and grains according to 
MTEX’s explicit mathematical grain model (bottom) 

 
Recovering Orientation Density Functions. One of MTEX major functions is calcODF which 

recovers an estimate of the orientation density function from pole figure or EBSD data according to 
a novel method based on a discretization of the space of orientation density functions by uniodal 
radially symmetric functions and on their fast spherical Fourier transform. The kernel may be 
chosen from a set including the de la Vallée Poussin kernel (default), von Mises – Fisher, Gauss – 
Weierstrass, Abel – Poisson, Dirichlet kernel and others. The algorithm has proven to be stable and 
applies in particular to very sharp textures with low crystal symmetry. 
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Calculating Texture Characteristics. MTEX offers functions to compute a wide range of 
texture characteristics like the modal orientation, mean orientation, entropy, texture index, Fourier 
coefficients, and volume portion in the neighbourhood of a given orientation for any mathematical 
model orientation density function or any computed orientation density function. Furthermore, 
arbitrary orientation density functions can quantitatively be compared indepently of being model 
orientation density functions, orientation density functions estimated from pole figure data or 
estimated from EBSD data. 
Creating Publication Ready Plots. Based on state-of-the-art MATLAB™ plotting routines, 

MTEX allows to create professional plots of pole figure data, pole and inverse pole density 
functions, and orientation density function in several sections including plain φ1 – sections (Fig. 6), 
σ – sections, and others. There are also many plotting options to adjust the plots to the specific 
standards of the journal of your choice. Plots may be saved in any image format, e.g., as pdf, jpg, 
png, eps, tiff, bmp. 
 

 

 
 

Figure 6. Orientation density function plotted in conventionally plain φ1 - sections 
 
 
Writing Scripts for multiple Use. Using the MTEX toolbox it is easy to write scripts for special 

jobs as to import pole figure data, preprocess them, compute an orientation density function, 
postprocess it, store it to a given location and finally create several plots. Such scripts can then be 
applied to batch process many similar data sets. Examples of scripts are included in the help. 
Comprehensive Documentation. MTEX comes with over 500 pages of help explaining the 

mathematical concepts, the philosophy behind MTEX, and the syntax and use of all 300 functions 
available in MTEX. Furthermore, the documentation includes numerous examples and tutorials 
concerning major issues as orientation density function estimation, data import, calculation of 
texture characteristics, orientation density function and pole figure plotting, and many more. 
Availability. An implementation of the algorithm is available as free and open source MATLAB™ 

toolbox MTEX and may be downloaded from http://code.google.com/p/mtex/. 
Moreover, MTEX is not just a software toolbox but also a research project open to any party 

wishing to contribute to set out in a joint effort for a new standard of mathematical and numerical 
texture analysis. 

Summary 

The reader is invited to join the free and open source project MTEX. 
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