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A B S T R A C T

We present spherical analysis of electron backscatter diffraction (EBSD) patterns with two new algorithms: (1)
band localisation and band profile analysis using the spherical Radon transform; (2) orientation determination
using spherical cross correlation. These new approaches are formally introduced and their accuracies are de-
termined using dynamically simulated patterns. We demonstrate their utility with an experimental dataset ob-
tained from ferritic iron. Our results indicate that the analysis of EBSD patterns on the sphere provides an elegant
method of revealing information from these rich sources of crystallographic data.

1. Introduction

Electron backscatter diffraction (EBSD) is a popular microscopy tech-
nique used to reveal crystallographic information about materials. Auto-
mated, quantitative, robust, and precise interpretation of each electron
backscatter pattern (EBSP) (aka Kikuchi pattern) has long been a ma-
jor advantage of the technique [1], especially when compared to other
methods, such as transmission electron microscopy (TEM) imaging and
until recently [2] S(canning)TEM based mapping. To advance the EBSD
technique further, it is advantageous to improve the quality of the in-
formation captured and simultaneously improve how we interpret each
pattern. The latter motivates our present work, where we consider the
patterns as images on the sphere and analyse them using the spherical
Radon transform and spherical cross correlation. In particular, both al-
gorithms may be utilized for automatic orientation determination and
band shape analysis.

The majority of existing algorithms for the analysis of EBSP con-
sider them in the gnomonic projection, i.e., as they are measured at
a flat 2D capturing screen [3]. In this manuscript, we exploit the fact
that the EBSP is generated from a point source and is therefore more
properly rendered onto the sphere [4]. For band localisation this is ad-
vantageous as Kikuchi bands have parallel edges on the sphere, but hy-
perbolic edges when considered in the plane. For the cross correlation
method, the advantage of the spherical representation originates from
the fact that different orientations differ just by a rotation of the spher

ical Kikuchi pattern, while their correspondence at a flat detector is
more involved.

The EBSP is generated as electrons enter the sample, scatter, and
dynamically diffract. For an introduction to conventional EBSD analy-
sis, see the review article by Wilkinson and Britton [1]. In practice, dif-
fracting electrons are captured using a flat screen inserted within the
electron microscope chamber. The result of this dynamical diffraction
process is the generation of an EBSP that contains bands of raised in-
tensity which are called the “Kikuchi bands”. The centre line of each
band corresponds to a plane that contains the electron source point
and is parallel to the diffracting crystal plane. The edges of the bands
are two Kossel conic sections separated by 2θ. The dynamical diffrac-
tion process is explained in greater detail in the work of Winkelmann
et al. [5]. The corresponding software provides us with high quality sim-
ulations that contain significant crystallographic information, such as
the intensity profile near a zone axes. These simulated patterns more ac-
curately reproduce the intensity distributions found within experimen-
tally captured patterns, as compared to simple kinematic models. This
development has spurred an interest in using these patterns for direct
orientation determination by pattern matching techniques [6].

The Hough transform has been used to render the bands within the
EBSP as points within a transformed space for easy localisation using a
computer [7]. In these conventional algorithms, it is assumed that the
bands within the EBSP are near parallel. This renders localisation of
the bands into the computationally simpler challenge of finding peaks
of high intensity within a sparsely populated space. Unfortunately,
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within the gnomonic projection the edges of the bands are not parallel.
Additionally, the Hough transform of the bands produces butterfly arte-
facts which makes precise and robust localisation of the bands challeng-
ing. However, if the bands are presented as rings on the sphere [4] there
is potential to integrate intensity profiles more precisely. This is advan-
tageous for geometries where there may be divergence of the bands (e.g.
low voltage or where the pattern centre is less central).

To advance our analysis further, peak localisation and indexing may
not be needed if we can efficiently directly compare and match the
intensity distributions found within a high quality simulation against
our experimental pattern. This can be performed with cross correlation
(i.e. finding a peak in the associated cross correlation function), which
underpins template matching based EBSD analysis, including the “dic-
tionary indexing” method [6] and template matching approaches [8,9].

Existing cross correlation methods [6,8–10] are performed within
the gnomonic projection of the detector. Hereby, each measured Kikuchi
pattern is compared with a reference pattern
according to a test orientation O. The fit between both images is com-
monly measured by their correlation

(1.1)

where the sum is over all pixels in the pattern.
For template matching, reference patterns are tested according to

multiple orientations. Sampling of the orientations is performed with a
desired angular resolution (sufficient to find a peak and related to the
ultimate angular sensitivity). This is computationally very expensive as
the above sum has to be computed for a sufficiently large number of ref-
erence patterns S(O⁠m), m = 1,…,M to have a good estimate of the true
orientation of the measured Kikuchi pattern P. Recently, Foden et al. [8]
have presented an alternative approach where a FFT-based cross cor-
relation is combined with a subsequent orientation refinement step to
interpolate between library patterns to provide a more computationally
efficient method of template matching. However, that method still in-
volves an expensive gnomonic based library search.

In this work we address this efficiency problem and perform the
matching directly on the sphere. Therefore, we require only one spheri-
cal master pattern. In this paradigm different orientations results in dif-
ferent rotations of the spherical master pattern. The central idea of this
paper is to represent the correlation function between the experimental
Kikuchi pattern and all rotated versions of the spherical master pattern
as a spherical convolution which can be computed using fast Fourier
techniques.

In the case of plane images P and S it is well known [11] that the
correlation image

with respect to all shifts k, ℓ can be computed simultaneously using the
fast Fourier transform . More precisely, we have

where ⊙ denotes the pointwise product. Such Fourier based algorithms
have approximately square root the number of operations compared
with direct algorithms.

The match between two spherical diffraction patterns can be mea-
sured through spherical cross correlation resulting in a function on ori-
entation space. The position of the maximum peak of this function di-
rectly gives the desired misorientation of the experimental pattern with
respect to the master pattern. In order to speed up the computation
of the spherical cross correlation function we apply the same Fourier
trick as explained above. In short, we compute spherical Fourier coef-
ficients of the experimental and the master pattern, multiply them and
obtain a series representation of the cross correlation function with re-
spect to generalised spherical harmonics. Computation of the spherical
Fourier coefficients and evaluation of the generalised spherical harmon-
ics is done using the nonequispaced fast Fourier transform (NFFT) which
is at the heart of the MTEX toolbox used for crystallographic texture
analysis. The NFFT builds upon significant research generalising the FFT
to non Euclidean domains, e.g. to the sphere, cf. [12,13], or the orienta-
tion space cf. [14] and to apply them to problems in quantitative texture
analysis, cf. [15–18]. Although our algorithms are theoretically fast the
running times of our implementations are behind those of well estab-
lished methods. The main reason for this is that our implementations are
not yet optimised to take advantage of crystal symmetries, computing
on the graphics card or any other kind of parallelisation. On the other
hand, this keeps our proof of concept code very simple and allows for
easy customisation.

2. Spherical diffraction patterns

The advantages of considering Kikuchi patterns as spherical func-
tions have been explained very nicely by Day [4]. As an illustrative ex-
ample of a Kikuchi pattern we consider a high quality dynamical simu-
lation of α-Iron (BCC) generated within DynamicS (Bruker Nano GmbH)
and project it onto the sphere (Fig. 1a). The commercial program uses
dynamical theory presented by Winkelmann et al. [5] to calculate the
intensity of electrons in the resultant diffraction pattern.

In the case of experimental patterns, the diffraction sphere is not
completely described as the detector does not subtend all diffraction
angles (Fig. 2). The amount of the sphere covered is described by the
shape, size, and detector distance. For our algorithms the incomplete
coverage causes two issues: (1) edge effects, which can be resolved by
appropriate use of windowing functions; (2) incomplete Kikuchi bands
which leads to different peak intensities in the spherical Radon trans-
form. We will address these in more detail within Section 4.

Fig. 1. Stereographic projection of the dynamically simulated Kikuchi pattern for iron (a) and its approximation by spherical harmonics with different harmonic degrees N.
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Fig. 2. Spherical approximations of a simulated Kikuchi pattern at a detector corrupted by noise.

3. Harmonic approximation on the sphere

Simulated as well as experimental Kikuchi patterns can be inter-
preted as diffraction intensities f⁠j with respect to discrete diffraction di-
rections ξ⁠j that can be computed from the position within the pattern
by the inverse gnonomic projection. For our algorithms, we are inter-
ested in approximating these intensities f⁠j by a smooth spherical func-
tion represented by a series expansion of the form

(3.1)

such that f(ξ⁠j)≈ f⁠j. Hereby, denotes the spherical harmonics which re-
place the exponential functions in the classical Fourier transform. Ele-
gant introductions into harmonic analysis on the sphere can be found in
[19,20]. Similarly to the classical case many properties of the function
f can be directly derived from its Fourier coefficients . If we con-
sider f as an image on the sphere (see Fig. 1a), many image operations,
like convolution, rotation, or differentiation, can be efficiently described
in terms of the Fourier coefficients.

There exist several methods for determining the coefficients
in (3.1) from discrete diffraction intensities f(ξ⁠j). Three of those will be
introduced shortly: quadrature, interpolation, and approximation.

3.1. Quadrature

The quadrature based approach exploits the fact that the spherical
harmonics form an orthonormal basis with respect to the inner prod-
uct

As a consequence, the expansion coefficients satisfy

Computing this integral numerically is called quadrature and leads to
sums of the form

(3.2)

with the quadrature nodes and quadrature weights ωj∈ℝ,
. The challenge is to find those nodes and weights such that

the approximation is as good as possible. Good choices are discussed in
[21,22] and the references therein.

Evaluating the sum (3.2) for and directly
would require N⁠2 ·J numerical operations. Fortunately, this sum can be
computed much faster using the nonequispaced fast Fourier transform
[23] requiring only numerical operations.

The key parameter when approximating a spherical function by its
harmonic series expansion is the cut-off frequency N. Fig. 1 illustrates
the effect of this cut-off frequency N when approximating a Kikuchi pat-
tern. Our numerical experiments will show that a cut-off frequency of

provides enough detail to enable band detection and orienta-
tion determination by cross correlation with reasonable precision for a
typical pattern.

The advantage of the quadrature based approach is its simplicity.
This comes at the cost that the function values of f have to be known
at the specific quadrature nodes ξ⁠j, which can be true for simulated pat-
terns but will not be true for experimental patterns.

3.2. Interpolation and approximation

If the function f to be approximated is given at discrete points ξ⁠j,
i.e., for which no quadrature rule is known we

3
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may compute the expansion coefficients by solving the system of
linear equations

(3.3)

It should be noted that this system of linear equations may become
ill-conditioned, especially in the case that the number of interpolation
nodes J equals the number (N + 1)2 of coefficients . It is there-
fore recommended to consider the underdetermined or overdetermined
problem and solve it using the normal equation of first or second kind,
respectively.

Interpolation corresponds to the underdetermined case where the
system of equations (3.3) has no unique solution. To restore uniqueness
we search for coefficients solving (3.3) and simultaneously minimising
some functional which characterises the smoothness of f. Common
choices are Sobolev norms of order s>0,

The solution of this constrained minimisation problem can be found by
solving the corresponding normal equation of second kind. See also [24]
for more details on the stability of spherical interpolation.

In the case of experimentally measured data it can be easier and
more stable to solve an approximation problem instead of an interpola-
tion problem, i.e. we are in the overdetermined case and the system of
equations (3.3) must not have any solution. We therefore look for the
coefficients which achieve the smallest error

while decaying to zero quickly. Here the first summand measures the
fitting of the approximation in the points ξ⁠j and the second summand
is the regularisation term that measures the smoothness of the function
and punishes noise. The weighting between these two terms is accom-
plished via the parameter λ which is often called regularisation parame-
ter and has to be chosen such that there is balance between these two
contradicting terms.

As an example, Fig. 2 depicts an “experimental” Kikuchi pattern 2(a)
together with a quadrature based 2(b) and approximation based 2(c)
representation with respect to spherical harmonics. We observe that the
approximation based approach leads to severe artefacts close to the de-
tector boundaries. The reason is that harmonic functions are very bad
in representing functions with hard jumps. This problem can be signif-
icantly relaxed by multiplying the data with a filter that generates a
smooth decay from the values inside the detector to zero outside the de-
tector. The resulting harmonic approximation is displayed in 2(d).

4. Spherical Radon transform based band detection

In conventional orientation determination from EBSD data the
Kikuchi pattern is represented in the flat, gnomonic frame and summed
up along all straight lines resulting in the Radon (or Hough) transform.
Since in the Radon transform diffraction bands appear as local extrema
they can be found by a peak detection algorithm. A severe problem
of this approach is that due to the gnomonic projection bands, in the
Kikuchi pattern, do not appear as straight features but have hyperbolic
shape. As a consequence the local extrema are less sharp which nega-
tively affects the accuracy and robustness of this approach. An alterna-
tive band analysis method which correctly uses the fact that the paral

lel bands on the sphere are well represented as hyperbolic sections in
the gnomonic frame is incorporated in the 3D Hough transform [25].

In this section we will make use of the fact that Kikuchi bands on the
sphere are centered around great circles with edges formed by small cir-
cles that can be efficiently detected by a spherical Radon transform and
its generalisations. Once sufficiently many bands are located the orien-
tation can be determined by conventional indexing algorithms, e.g. with
AstroEBSD [26].

4.1. The spherical Radon transform

The spherical Radon transform integrates a function on the sphere
along all great circles, which is similar to how the ordinary Radon trans-
form integrates an image along all lines. Such a great circle on the
sphere can be described as the set of all points that are orthogo-
nal to a given normal vector i.e., . Ac-
cordingly the spherical Radon transform

(4.1)

of a spherical function is again a spherical function
.

The crucial point is now, that the Fourier representation of g can be
computed straight forward from the Fourier coefficients of f, i.e.,
we have

(4.2)

where P⁠n(0) are the Legendre polynomials evaluated in the point 0. The
practical use of this formula is that for computing the Radon transform
of a spherical image, we do not need to average the pixel values along
all great circles but, instead, compute the Fourier coefficients of the
spherical image, multiply them with

and apply the spherical Fourier transform which gives us the spherical
image of the Radon transform. For an image of m×m pixels the later
algorithm using the nonequispaced fast spherical Fourier transform [13]
is about m times faster.

Fig. 3 a shows the spherical Radon transform of the dynamically sim-
ulated master pattern from Fig. 1. The circular features correspond to
the bands in the Kikuchi pattern.

4.2. Spherical convolution and band localisation

The brightness and sharpness of the Radon peaks is not uniform in
Fig. 3a due to the different shape of the bands corresponding to the dif-
ferent lattice planes. To visualise and analyse the profile of the band,
corresponding to a plane with normal vector in more detail we
integrate the spherical diffraction pattern f⁠sim in Fig. 1c with respect to
all rotations R⁠η(ω) about the plane normal η, i.e.,

The resulting band profiles Φ⁠η for the major bands are depicted in Fig.
3b.

Let us give a small site note on how those integrals can be computed
efficiently from the Fourier coefficients of the master pattern.
In case the plane normal η coincides with the z-axis the profile Φ⁠z is
given by the Legendre series

4
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Fig. 3. (a) Spherical Radon transform of the master pattern (b) band profiles corresponding to different lattice planes.

(4.3)

In the general case of an arbitrary plane normal η, it is sufficient to ro-
tate f⁠sim such that the plane normal aligns with the z-axis and to proceed
as above.

We may use our knowledge of these band profiles to identify specific
bands within the experimental pattern using a spherical convolution

(4.4)

of the pattern f with a specific band profile Φ. The spherical convolu-
tion with a band profile can be seen as a generalisation of the spher-
ical Radon transform. Indeed, choosing as the band profile the
delta distribution the spherical convolution coincides with
the spherical Radon transform. On the other hand, it may also be inter-
preted as a generalisation of the butterfly mask [7] and the top hat filter
[27] used in conventional Radon/Hough based EBSD.

In Fig. 4(a) and (b) the spherical convolutions of the master pat-
tern with band profiles corresponding to planes (211) and (310) have
been plotted. We observe extremely bright and sharp peaks at the cor-
responding band positions. The other bands are not as pronounced, as
they match the convolution template less well.

In order find a template Ψ that reasonably fits all major bands we
start with a Gaussian profile in Fig. 4(c) and modify it to

(4.5)

in 4(d) which we will rely on in our subsequent analysis.
Lets close this section by the remark that the convolution f⋆Φ can be

computed as fast as the spherical Radon transform in Fourier space by
the formula

(4.6)

where denotes the Legendre coefficients of the band profile Ψ.

4.3. Peak detection

In the conventional Radon/Hough transform approach for band de-
tection in Kikuchi patterns, the number of pixels in the Radon trans-
form is approximately the same as in the input (resized) Kikuchi pat

tern. This limits the possible resolution of the orientations determined⁠1

In contrast, when computing the spherical Radon transform according
to (4.2) or the spherical convolution by (4.6) such a restriction to a grid
of pixels does not exist. Instead, we can evaluate those sums for any
normal vector η. Since it would be way too time consuming to evalu-
ate (4.2) or (4.6) at an arbitrarily fine grid, we propose a simultaneous
steepest descent approach to find all local maxima.

The algorithm to find all peaks of a spherical function g is as follows:
we start with a set of approximately equispaced points η⁠m, m = 1,…,M
on the sphere. Then we compute all the gradients ∇g(η⁠m), m = 1,…,M
of g according to the formulae

(4.7)

using the fast spherical Fourier transform and maximize g locally along
the lines

This procedure is iterated and nodes are found which converge for
k→∞ to the local maxima of the function g. During the convergence,
several of the nodes will converge to the same maxima and, hence,
can be merged into one node.

To illustrate this procedure we apply it to the simulated, noisy
Kikuchi pattern in Fig. 5(a) from which we computed the convolution
with the modified Gaussian profile (Fig. 4d) as depicted in Fig. 5(b). The
diamond shaped artifact in the center corresponds to the normal vectors
of those bands that are completely outside the detector region. The four
vertices of the diamond correspond to the edges of the detector region.
Since, the detector region is known we could adapt our peak finding al-
gorithm to ignore all peaks inside the diamond as well as its vertices.
Due to the noise in the Kikuchi pattern the convolution with the modi-
fied Gaussian profile contains many minor peaks not associated to any
lattice plane. Nevertheless, selecting simply the 16 brightest peaks (blue
squares) found by our peak detection algorithm gave a very good co-
incidence with the theoretic positions of the major band normals (red
circles). Obviously, the five red circles close to the diamond shaped ar-
tifact could not detected at all.

4.4. Orientation determination.

Once a certain number of bands has been detected in the Kikuchi
pattern any of the well known indexing algorithms, e.g. [26,28], can be

1 The resolution of Radon/Hough based approaches is a combination of the resolution
of the Radon space, the quality of the diffraction patterns, and the number of bands
successfully localised and indexed.
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Fig. 4. Spherical convolution of the master pattern with different band profiles.

Fig. 5. (a) Simulated, noisy Kikuchi pattern (b) spherical convolution with the band profile from Fig. 4(d). The red circles mark the theoretical normals of the major lattice bands and the
blue square the detected peaks. The corresponding bands are marked by blue circles in left picture.

used for determining the corresponding orientation. In this section we
utilise AstroEBSD [26] and analyse the error distribution of the result-
ing orientation determination method.

To refresh, our spherical Radon transform based orientation deter-
mination method involves:

1. Project the experimental diffraction pattern onto the sphere.
2. Approximate the discrete pattern by a spherical Fourier series as per

equation (3.1).
3. Compute the spherical convolution (4.6) with a suitable band profile

in Fourier space.
4. Detect the most pronounced peaks in the spherical convolution and

search for their centres.
5. Use an indexing method (e.g. AstroEBSD) to index bands and ulti-

mately determine the crystal orientation.
6. If needed, this crystal orientation can be transformed into another

frame (e.g. from the detector frame to the sample frame).

This algorithms involves a couple of parameters which need to be
adjusted carefully. In step 1, the pattern centre must be known. In step
2, we have to choose the harmonic cut-off frequency N, in step 3, a
suitable band profile (which matches the bands expected in our lookup
table), and in step 4, the number of iterations, the resolution of the ini-
tial search grid as well as the number bands which will passed in step 5
into the indexing algorithm.

For our BCC-iron patterns we select the modified Gaussian band pro-
file (Fig. 4d), calibrated using our master pattern, and set the numbers
of bands to 10.

Putting everything together we first verify our method with simu-
lated noisy patterns. Therefore, we proceed as follows. First we select
a random orientation O. Then we dynamically simulate a correspond-
ing Kikuchi pattern with 400×300 pixel and add noise as displayed in
Fig. 5(a). We use this pattern to determine an orientation . Finally, we
compute the misorientation between initial orientation O and the com-
puted orientation . Histograms of these misorientation angles for dif-
ferent harmonic cut-off degrees N are depicted in Fig. 6. We determine
that a mean accuracy of 0.1⁠∘ can be obtained when the pattern centre is
known exactly a priori.

In Section 6 we will demonstrate this orientation determination
method with an experimental data set.

5. Spherical cross correlation based orientation determination

We have established that experimental and master pattern can be
well represented by their harmonic expansion on the sphere and that
this representation is useful for band detection. Now we present the use
of this representation when computing the cross correlation between an
experimental pattern with all possible rotations of a master pattern.

Template matching of EBSD patterns usually employs the following
steps:

6
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Fig. 6. Histograms of the misorientation between the original orientation and the orientation determined by spherical band detection. Left histogram fixes the number of bands and
varies the harmonic cut-off degrees N and right histogram fixes the harmonic cut-off degrees N = 64 and varies the number of bands b.

1. Simulate a dynamical master pattern of all orientation vectors.
2. Select a dense set of orientations O⁠m, m = 1,…,M.
3. Create a library of Kikuchi patterns with respect to all orientations
O⁠m, m = 1,…,M by rotating and projecting the master to the detec-
tor plane.

4. For a measured experimental pattern P⁠ij compute the cross correla-
tions C(m), m = 1,…,M with respect to all patterns within the li-
brary.

5. Select the orientation with the largest cross correlation value
as the indexed orientation.

The main advantage of this template matching based approach for
orientation determination is that it takes into account all diffraction pat-
tern features and does not reduce the analysis to a simple “geometry”
based problem of localising and indexing the bands. This provides the
potential that this method is more robust to noise.

The main disadvantage of the template matching approach is that
reprojection of the master pattern for a dense population of orientation
space is memory intensive and that the repeated computation of the
cross correlation of each experimental pattern with all patterns of the
library is computationally expensive.

To overcome this shortcoming, we transfer the template matching
based approach to our spherical setting and make use of the fast Fourier
transform on the rotation group. This allows us to compute the spherical
cross correlations simultaneously for all orientations O⁠m, m = 1,…,M
which is much faster than by a pixel by pixel based formula.

5.1. Spherical cross correlation

We start by representing both the simulated pattern as well as the
experimental pattern by expansions in spherical harmonics

(5.1)

(5.2)

as discussed in Section 3. Note, that the simulated pattern f⁠sim is usu-
ally represented with respect to crystal coordinates, while the exper-
imental pattern f⁠exp is represented with respect to detector coordi-
nates. Let O be the exact crystal orientation of the experimental pat-
tern, i.e., . Then the basic assumption of the pattern matching
approach is that the simulated pattern transformed into the specimen
reference frame gives a good approximation of the experimental pat

tern modulo a scaling factor α∈ℝ, i.e.

The similarity of two spherical functions modulo a rotation O can be
measured by the spherical cross correlation, which is defined as the in-
tegral of the product of both functions over the entire sphere

(5.3)

In order to evaluate these integrals numerically one could make use
of a spherical quadrature rule with nodes and weights ω⁠n >0,

cf. Section 3.1, which leads to the sum

(5.4)

This sum does not require to pre-compute and store a library of simu-
lated patterns. Instead it is sufficient to store the simulated master pat-
tern f⁠sim at the quadrature nodes h⁠n and transform each experimental
pattern to the sphere. Furthermore, it can be evaluated at arbitrary ori-
entations O, i.e, we are not restricted to any grid in the orientation
space.

5.2. Fast evaluation of the spherical cross correlation

A critical disadvantage of the template matching approach are its
high computational costs. Indeed, evaluating the cross correlation func-
tion (1.1) at a dense set of M orientations for patterns with N⁠2 points
requires M ·N⁠2 numerical operations. Evaluating the spherical cross cor-
relation function (5.4) directly would lead to the same amount of nu-
merical operations. In this section we show how fast Fourier techniques
on the orientation space can be exploited to speed up this computation
to only numerical operations.

The idea is to use the following important relationship between
spherical harmonics and Wigner-D functions cf. [15],

which allows us to rewrite the series expansion of the rotated simulated
pattern as

(5.5)

Inserting the series expansions (5.2) and (5.5) into the correlation in-
tegral (5.3) and making use of the orthogonality of the spherical har

7



UN
CO

RR
EC

TE
D

PR
OO

F

R. Hielscher et al. Ultramicroscopy xxx (xxxx) xxx-xxx

monic we end up with

(5.6)

(5.7)

where we have set . The latter sum (5.7)
is known as the Fourier transform on the rotation group and can be eval-
uated at M arbitrary orientations O⁠m using only numerical
operations by the algorithm described in [14].

In order to illustrate our approach we have chosen a random ori-
entation O and defined the function as a rotated
version of our master pattern. In a second step we approximated both
patterns by expansions into spherical harmonics up to cut-off degree

. Finally, we calculated the spherical cross correlation function
C(f⁠sim, f⁠exp) as a function of the misorientation from the initial orienta

tion O for different, smaller, cut-off degrees N. The results are depicted
in Fig. 7a. We observe that a cut-off degree N = 64 gives a good locali-
sation of the peak position close to the true orientation.

5.3. Correction

In the previous section we have assumed that the test pattern f⁠exp is
known at the entire sphere. In practice, however, only the projection of
the detector back to the sphere is known. This causes low frequency ar-
tifacts in the cross correlation function as depicted in Fig. 7c.

Luckily, these artefacts can be computed explicitly as the spherical
cross correlation C(f⁠sim, χ) between the simulated Kikuchi pattern f⁠sim on
the sphere and the cut-off function χ of the detector region projected to
the sphere. The final difference

(5.8)

is depicted in 7(b).

Fig. 7. Spherical cross correlation: (a) as a function of the misorientation angle from the exact orientation with respect to different harmonic cut-off parameters N; (b) as a section through
the Euler space showing the dominant peak (dark red) at the position of the exact match; (c) the same section but with an “experimental” pattern, showing the artifacts due to the in-
complete coverage of the sphere by the detector window; (d) the corrected cross correlation function C(O) according to (5.8). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

8



UN
CO

RR
EC

TE
D

PR
OO

F

R. Hielscher et al. Ultramicroscopy xxx (xxxx) xxx-xxx

5.4. Peak detection

Peak detection for functions of the form (5.7) can be implemented
in a similar manner as explained in Section 4.3 for spherical func-
tions since the gradient can again be written as a sum with respect to
Wigner-D functions. However, in the present case we are only inter-
ested in finding the global maximum (and not many local maxima).
This makes it efficient to evaluate the corrected cross correlation func-
tion (5.8) on a fixed and uniformly spaced grid of orientations O⁠m,
m = 1,…,M with resolution δ⁠(1)≈2⁠∘ and choose the orientation with
maximum function value . In a second step we choose a local grid
around the orientation with radius δ⁠(1) and resolution δ⁠(2)≈0.1⁠∘ and
repeat the calculation. The global resolution needs to be chosen such
that no peak falls between the grid points.

5.5. Accuracy determination for spherical cross correlation

We perform a numerical experiment to test the accuracy of our
spherical cross correlation algorithm and optimise crucial parameters
such as the harmonic cut-off degree N as well as the resolutions δ⁠(1) and
δ⁠(2) of the global and local search grids:

1. Compute a spherical Fourier series approximation f⁠sim of a dynami-
cally simulated master pattern as described in Section 3.2.

2. Generate random crystal orientation O and simulate a corresponding
“experimental Kikuchi pattern” by projecting the master pattern to a
virtual detector and adding Poisson distributed noise.

3. Project the noisy “experimental pattern” back to the sphere, multiply
it by the mask φ and approximate the product by a spherical Fourier
series f⁠exp.

4. Evaluate the corrected spherical cross correlation function C(O⁠m) be-
tween f⁠sim and f⁠exp at the grid orientations O⁠m.

5. Determine the grid orientation with the largest cross correlation
value.

6. Compute the misorientation angle between the initial random orien-
tation O and the computed orientation .

This numerical experiment has been run 500 times for different
choices of the harmonic cut-off bandwidths N and different resolutions
of the search grid O⁠m. Table 1 summarises the parameters, the run times
and the achieved precision. Full histograms of the misorientation angles
are depicted in Fig. 8.

We observe that a global resolution is too coarse as it leads
to about 5 percent completely mis-indexed patterns. For all other para-
meter choices we obtain reasonable angular precision up to 0.05⁠∘ with
a speed of one pattern per second on an ordinary laptop without any
graphic card support.

6. Experimental demonstration

We test our two spherical algorithms using the demonstration α-Iron
data set as used in Britton et al. [26] for conventional indexing us-
ing a planar Radon transform and the AstroEBSD indexing algorithm.
This data can be found on Zenodo https://zenodo.org/record/1214829
and consists of a 9 130 point EBSD pattern map. The AstroEBSD back-
ground correction was used with operations: hot pixel correction; re-
size to 300 pixels wide; low frequency Gaussian background division
(sigma = 4), performed independently on each detector half, circular
radius cropping to 0.95 of the pattern width. All peak ID based index-
ing was performed using the iron phase file, with the top 10 bands
used in the analysis. The flat Radon transform based analysis was per-
formed with 1°⁠∘ theta resolution and up to 13 peaks were sought. The
pattern centre was optimised by searching for the minimum weighted
mean angular error using a 10×10 grid array. The spherical Radon
transform based orientation determination was performed using the ide-
alised profile given in (4.5) and the spherical cross correlation based ori-
entation determination was performed using the harmonic cut-off fre-
quency N = 64 and resolutions for the global, re-
spective, local search grid. Results are presented in Fig. 9. The orien

Fig. 8. Misorientation angle histograms between the “true” random orientation used for simulating the diffraction pattern and the orientation determined by spherical cross correlation.
Left histogram fixes harmonic cut-off bandwidth and right histogram N = 64. Only the resolution δ⁠(2) of the refined grid is given. The corresponding resolution of the global grid
can be found in Table 1.

Table 1
Indication of computational costs and associated precision for spherical cross correlation. Times are measured on an ordinary laptop.

Cut-off Global search grid Local search grid Speed Precision

N res. δ⁠(1) points M⁠1 radius res. δ⁠(2) points M⁠2 pattern/s median std

48 5⁠∘ 4 958 5⁠∘ 0.4⁠∘ 9 106 1.8 0.22 4.56
48 2.5⁠∘ 39 565 2.5⁠∘ 0.2⁠∘ 9 128 1.5 0.15 0.07
48 1.5⁠∘ 183 035 1.5⁠∘ 0.1⁠∘ 14 005 1.3 0.12 0.06
48 1.5⁠∘ 183 035 1.5⁠∘ 0.05⁠∘ 112 514 1.1 0.11 0.06
64 2.5⁠∘ 39 565 2.5⁠∘ 0.2⁠∘ 9 128 1.4 0.11 0.04
64 1.5⁠∘ 183 035 1.5⁠∘ 0.1⁠∘ 14 005 1.2 0.06 0.03
64 1.5⁠∘ 183 035 1.5⁠∘ 0.05⁠∘ 112 514 1.0 0.05 0.02
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Fig. 9. Demonstration α-iron data indexed using 2D based Radon transform band localisation and AstroEBSD indexing, spherical Radon transform band localisation and AstroEBSD index-
ing, and spherical cross correlation. The IPF colour key is with respect to the horizontal axis. The axis-angle colour key is taken with respect to the mean grain orientation and each key
has a radius of 5⁠∘. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tations are by all three method reasonably recovered. The smoothness
in the axis-angle plots are similar, where the spherical method performs
slightly better near grain boundaries and the spherical cross correlation
method is significantly more robust near grain boundaries.

7. Discussion

In this manuscript, we demonstrated that considering EBSD patterns
as spherical images allows for elegant algorithms for band detection,
band analysis and cross correlation. The reason behind this elegance is
the fact that in its spherical representation symmetry operations and
misorientations are simple rotations of the Kikuchi pattern.

Beside being elegant these algorithms can be implemented using fast
Fourier techniques which makes them at least theoretically fast. In prac-
tice, our algorithms do not yet meet the speed of highly optimized im-
plementations of standard Hough transform based indexing algorithms.
The reason for this is that our algorithms are not yet parallelized, do not
take advantage of symmetries and are mainly implemented with read-
ability in mind.

Based on spherical band detection and spherical cross correlation
we presented two new methods for orientation determination from
Kikuchi pattern. In numerical experiments with noisy, simulated as well
as experimental patterns we achieved an accuracy of up to 0.1 degree.
Clearly, this accuracy depends on the noise level and the resolution of
the provided EBSD pattern. A more precise relationship between noise
level and resolution on the one side and achievable accuracy on the
other side is subject of further research. Our examples on the iron data
set demonstrated that our algorithm is more robust then conventional
flat Radon transform based approaches.

Another advantage of the spherical analysis is that spherical convo-
lution can used to extract specific bands according to their profile. Fur-
thermore, those profiles can be efficiently computed from experimental
patterns using formula (4.3) and then be explored with respect to shape
and symmetry. This has the potential to better understand the asymme-
try created either by an improper pattern centre [29], a subtle changes
in the lattice [25], and band asymmetry [30,31].

An important assumption of the spherical method is that we know
the pattern centre a priori. The pattern centre is important for our

10
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analysis, as an incorrect pattern centre will introduce a distortion on the
rendering of patterns on the sphere and the band edges would no longer
be parallel. Computationally it can be expensive to optimise the pat-
tern centre based upon this constraint, but there have been suggestions
in the literature that centre on this idea (e.g. the 3D Hough [25] and
one of the methods of the BYU group [29] in attempting absolute strain
measurement with high resolution EBSD). If we assume that we know,
or can measure, the pattern centre with reasonable precision with stan-
dard methods (e.g. just using the 2D Radon based pattern centre mea-
surements available within commercial or open-source software such
as AstroEBSD [26]), then we can perform re-projection and gain rea-
sonable indexing success which is demonstrated with the example iron
data set shown with this work. Perhaps more excitingly, it is likely that
the spherical approach will prove useful when less conventional capture
geometries are used, as the divergence of the Kossel cones is naturally
encoded when the pattern is projected onto the sphere. For instance,
it is well known that this divergence has caused significant problems
when analysing transmission Kikuchi patterns when the pattern centre
no longer located within the detector screen.

8. Conclusion

We have outlined and demonstrated methods to perform analysis of
EBSD patterns in a spherical frame. We can summarise our conclusions
as:

• Simulated as well as experimental Kikuchi patterns can be well ap-
proximated by spherical functions. These approximations can be com-
puted efficiently using the fast spherical Fourier transform.

• The choice of a suitable harmonic cut-off frequency is crucial for the
approximation process.

• The spherical Radon transform and spherical convolution are efficient
methods for band detection in Kikuchi pattern.

• The spherical approximation allows for an efficient method for ex-
tracting band profiles.

• The spherical cross correlation is an efficient method for determining
the orientation of a Kikuchi pattern by comparing it with a rotated
versions of a master pattern.

• The spherical Radon transform, spherical convolutions, as well as
spherical cross correlation can be efficiently computed using fast
Fourier transforms on the sphere and the rotation group.

• Spherical approximation, the spherical Radon transform, spherical
convolution and spherical cross correlation can be adapted to work
well with patterns that do not cover the entire sphere as it is typical
for experimental pattern measured at a flat detector.

• In our numerical experiments with simulated, noisy Kikuchi patterns
the spherical Radon transform based methods as well as the spher-
ical cross correlation based methods for orientation determination
achieved a precision of <0.1⁠∘.

9. Data statement

The example iron data set can be found on Zenodo (https://doi.org/
10.5281/zenodo.1214828). Upon article acceptance the full code for
this manuscript will be released to Zenodo.
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