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This paper compares several well known sliding-window methods for denoising

crystal orientation data with variational methods adapted from mathematical

image analysis. The variational methods turn out to be much more powerful in

terms of preserving low-angle grain boundaries and filling holes of non-indexed

orientations. The effect of denoising on the determination of the kernel average

misorientation and the geometrically necessary dislocation density is also

discussed. Synthetic as well as experimental data are considered for this

comparison. The examples demonstrate that variational denoising techniques

are capable of significantly improving the accuracy of properties derived from

electron backscatter diffraction maps.

1. Introduction

Individual crystal orientations are commonly obtained from

light microscopy (Heilbronner & Barrett, 2014; Passchier &

Trouw, 2005), from electron backscatter diffraction (EBSD)

by indexing of Kikuchi patterns (Zaeerer, 2011), from auto-

mated crystal orientation mapping inside a transmission

electron microscope (ACOM-TEM) by indexing spot

diffraction patterns (Rauch et al., 2010) or from X-ray

diffraction (Poulsen & Fu, 2003). As with any other experi-

mental data these crystal orientations are usually corrupted by

errors.

In the case of orientation determined from EBSD, several

different sources of measurement error superpose (Kamaya,

2011). An imprecise alignment of the specimen or an impre-

cise pattern center usually results in a systematic error. Errors

arising during orientation indexing either by conventional

band detection or by pattern-matching methods are often

described as random errors (cf. Hielscher, Britton & Bartel,

2018). These random errors are caused either by a noisy

Kikuchi pattern in combination with a limited resolution in

Hough space, for the band-detection methods, or a limited

resolution in the orientation space, for pattern-matching

approaches. While small errors in orientation maps may

appear negligible for the analysis of the texture or the

microstructure, they do amplify significantly if the orientation

data are used for subsequent calculations of kernel averaged

misorientation (KAM), misorientation axes (Prior, 1999;

Wilkinson, 2001), orientation curvature tensors or geome-

trically necessary dislocation (GND) densities (Konijnenberg

et al., 2015).

In this paper we aim at reducing the random error in

orientation maps. The key requirement to be able to separate

the noise from the ‘true’ orientation map is the assumption

that the ‘true’ orientations are spatially dependent, while the

noise is spatially independent. This means that the error in one
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pixel is not correlated with the error in some adjacent pixel,

while at the same time the orientation map has been measured

at a sufficiently fine grid, i.e. such that there are no one-pixel

features.

Denoising of EBSD data has already been addressed in

several papers (Humphreys et al., 2001; Godfrey, 2004; Chen &

Kuo, 2010; Gupta & Agnew, 2010; Kamaya, 2010; Wright et al.,

2015). In the current paper we compare well established

methods like the mean filter, the Kuwahara filter (Humphreys

et al., 2001; Godfrey, 2004) and the median filter (Gupta &

Agnew, 2010) with variational denoising techniques (Wein-

mann et al., 2014; Bacak et al., 2015; Bergmann et al., 2016,

2018; Bergmann & Weinmann, 2016) adapted from mathe-

matical image analysis to the setting of orientation data.

The central idea of variational denoising methods is to

determine the ‘true’ orientations as a solution of a mini-

mization problem that couples the fit of the recovered orien-

tations to the noisy orientations with a measure for the

smoothness of the orientation map. This measure of smooth-

ness models our expectations about the ‘true’ orientation map

and should favor smooth changes of the crystal orientation

disrupted by a few grain and subgrain boundaries. Note that in

this context ‘smoothness’ is directly related to the spatial

resolution of the orientation map. If the spatial resolution is

too low, microstructural features of interest might have the

appearance of noise.

The paper is divided into two parts: In the first part, we

discuss the basic properties of the aforementioned denoising

techniques and illustrate them with synthetic data as well as

with an experimental EBSD orientation map. In the second

part, we discuss the impact of these denoising techniques on

various applications, i.e. the determination of the kernel

average misorientation, the orientation gradient and the

geometrically necessary dislocation density. All these exam-

ples demonstrate that variational denoising techniques are

capable of significantly improving the accuracy of properties

derived from noisy orientation maps.

All figures and numerical experiments have been done

using MTEX 5.1.1 (Hielscher, Bachmann, Mainprice &

Kilian, 2018) and the script files that are publicly available

at https://github.com/mtex-toolbox/mtex-paper/tree/master/

DenoisingCrystalOrientationMaps.

1.1. Crystal orientations and misorientations

Throughout this paper orientations are denoted by bold

capital letters, e.g. O, and refer to proper rotations that map

coordinates with respect to a crystal-fixed Euclidean reference

frame to coordinates with respect to a specimen-fixed Eucli-

dean reference frame. Accordingly, OS with S 2 S denotes the

class of all orientations symmetrically equivalent to O with

respect to the symmetry group S.

Given two orientations O1;O2, their misorientation is

defined by O�1
1 O2. The corresponding class of symmetrically

equivalent misorientations becomes S�1
1 O�1

1 O2S2 with

S1; S2 2 S. The misorientation M ¼ S�1
1 O�1

1 O2S2 with the

smallest rotational angle is called the disorientation. Accord-

ingly, the rotational angle � and the rotational axis gC of M are

called the disorientation angle and disorientation axis. It is

important to understand that, according to this definition, the

disorientation axis gC is with respect to the crystal reference

frame and hence only well defined up to multiplications with

crystal symmetries S 2 S. However, when translated into

specimen coordinates the disorientation axis g ¼ O1S1gC ¼
O2S2gC is uniquely defined.

Multiplying the disorientation angle � with the disorienta-

tion axis g we obtain the disorientation vector

h ¼ �g: ð1Þ
This disorientation vector will play an important role

throughout this paper as it allows us to represent elements of

the curved orientation space locally by ordinary three-

dimensional vectors. While many standard mathematical

operations, like taking the mean, fail in the curved orientation

space, they are well defined in the three-dimensional vector

space of disorientation vectors. In our applications we often

use the grain mean orientation as the reference orientation

O2, which guarantees that orientation O1 and the reference

orientation O2 are sufficiently close together to allow for a

good approximation. Approximating an orientation by its

disorientation vector with respect to some reference orienta-

tion can be seen as projecting the orientation into the

tangential space of the reference orientation. This mapping is

often referred to as the (matrix) logarithm and the inverse

mapping as the (matrix) exponential (cf. Morawiec, 2004).

Note that in contrast to the disorientation axis the computa-

tion of the disorientation vector (1) is stable with respect to

measurement errors.

2. Comparison of denoising methods

2.1. An artificial orientation map

In this section we construct a simple synthetic orientation

map which we will use to benchmark different denoising

methods in the subsequent sections. The synthetic orientation

map consists of 100 � 25 pixels [cf. Fig. 1(a)] and contains

several flat regions, a 2� low-angle grain boundary, a small

oscillating part with an amplitude of 3�, an 18� high-angle

grain boundary and a section with a constant orientation

gradient of 0.6� per pixel. For simplicity, all these features have

been integrated into the field of the second Euler angle �,

while the first and third Euler angles are set to ’1 ¼ ’2 ¼ 0.

In order to simulate a measured orientation map we add

different kinds of noise. When dealing with noisy scalar data
~ff ðxÞ at locations x ¼ ðx1; x2Þ 2 R

2 one usually assumes a noise

model of the form

~ff ðxÞ ¼ f ðxÞ þ "ðxÞ; ð2Þ
where f ðxÞ represents the noise-free data and "ðxÞ is the noise,

e.g. an independent random sample of a Gaussian distribution.

For orientation data OðxÞ we have to replace the summation in

(2) by the multiplication with some random orientations

EEEðxÞ, i.e.
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~OOðxÞ ¼ EEEðxÞOðxÞ: ð3Þ
We assume the orientations EEEðxÞ to be an independent random

sample of a probability distribution E on the space of rota-

tions. Important examples of such distributions follow now.

2.1.1. Bingham- and De la Vallée Poussin-distributed noise.

A generalization of the Gaussian distribution to orientations is

the Bingham distribution (Bachmann et al., 2010). To formu-

late the corresponding density function we will make use of

the parameterization of disorientations by quaternions

q ¼ ðq0; q1; q2; q4ÞT, which are connected to the disorientation

angle � and the disorientation axis g by q1 ¼ cosð�=2Þ and

ðq2; q3; q4ÞT ¼ sinð�=2Þg. The density function gðqÞ of the

Bingham distribution on the orientation space then reads

gðqÞ ¼ C expðqTAqÞ ð4Þ
with a symmetric 4 � 4 matrix A and a normalization constant

C such that the integral of g over the entire orientation space is

one. Assuming that the eigenvector corresponding to the

largest eigenvalue of A is the orientation (0, 0, 0) and that all

other eigenvalues are equal, we obtain anisotropic noise

without any systematic deviation. The variance depends on

the fraction between the largest and the smallest eigenvalues.

A suitable approximation for the anisotropic Bingham

distribution is given by the following De la Vallée Poussin

(DlVP) distribution (Schaeben, 1999):

gðqÞ ¼ B 3
2 ;

1
2

� �
B 3

2 ; �þ 1
2

� � q2�
1 ; ð5Þ

where B denotes the Beta function, q1 is the real part of the

quaternion q and � models the variance. Using the DlVP

distribution (5), the numerically challenging computation of

the normalization constant of distribution (4) can be omitted.

Fig. 1(b) displays the artificial orientation map corrupted by

DlVP-distributed noise with a half-width of 2�. For simulating

noisy orientation data according to (3) we have to draw a

random sample EEEðxÞ from a given density function g. This can

be done numerically in MTEX and is explained in more detail

by Hielscher (2013).

2.1.2. Impulsive noise. While the generalization of Gaus-

sian noise discussed in the previous section models small

deviations from the true orientation due to indexing errors,

the noise model in this section models the case that the

indexing process results in a completely wrong orientation

that is entirely independent of the true orientation. Such noise

is called ‘impulsive noise’. The corresponding distribution

involves a parameter � 2 ½0; 1�.
Then, with a chance of � the original orientation is replaced

by a random orientation and with a chance of 1 � � the

original orientation is left unchanged.

Our artificial orientation map – corrupted first by Gaussian-

like noise and second by impulsive noise with � ¼ 0:05 – is

depicted in Fig. 1(c).

2.2. Definition of a filter

Denoising a noisy orientation map ~OOðxÞ ¼ EEEðxÞOðxÞ means

finding an orientation map ÔO that is as close as possible to the

‘true’ orientation map O. We will call any algorithm that

computes out of a noisy orientation map ~OO a denoised map ÔO

a filter F and write

ÔO ¼ F ~OO: ð6Þ
Accordingly, F ~OOðxÞ denotes the orientation at pixel position x

in the denoised map.

Implicitly, every filter makes some assumptions about the

structure of the noise as well as about the ‘true’ orientation

map. In this paper, we do not discuss mathematical details of

these assumptions. Instead, we directly demonstrate the effect

as we analyze different types of filters with respect to different

types of noise and different kinds of features in orientation

maps.

2.3. The mean filter

Let x be a certain pixel position within an EBSD map and

r 2 N. Then we denote by N rðxÞ the set of all neighboring

pixels up to order r and by #N rðxÞ the number of these

neighbors. Now, the mean filter is defined as

Fmean
~OOðxÞ ¼ 1

#N rðxÞ
X

x02N rðxÞ
~OOðx0Þ; ð7Þ

which replaces the noisy orientation ~OOðxÞ at position

x ¼ ðx1; x2Þ with the mean of all orientations ~OOðx0Þ in the

neighborhood N rðxÞ of x.

Note that equation (7) is formally not correct. Owing to the

curved non-Euclidean geometry of the orientation space, the
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Figure 1
Synthetic orientation maps colorized according to the second Euler angle. (a) Synthetic, noise-free orientation data. (b) After adding De la Vallée Possin
noise with half-width 2�. (c) After adding 5% impulsive noise too. The dimensions of the maps are 100 � 25 pixels. The upper plots display the second
Euler angles of a horizontal section (red line) through the middle of the orientation maps.
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sum of orientations is, in general, not an orientation anymore.

A better option to compute the mean orientation is the largest

eigenvector of the mean orientation tensor as described by

Bachmann et al. (2010) or the disorientation vectors defined in

(1). Both methods have been used for the numerical results

presented in this paper. However, in order to keep the nota-

tion simple in the present section we will stick to the notation

in (7), keeping in mind that its actual computation is slightly

more involved.

We can generalize the mean filter by introducing a

weighting function w:Rþ ! Rþ which models the impact of

an orientation on the mean orientation as a function of the

distance between the points x and x0, i.e.

Fmean
~OOðxÞ ¼

P
x02N rðxÞ wðkx� x0kÞ ~OOðx0ÞP

x02N rðxÞ wðkx� x0kÞ : ð8Þ

Setting the weighting function !ðdÞ ¼ 1, the filter is inde-

pendent of the distance d ¼ kx� x0k to the neighboring pixel

at x0 and we obtain formula (7). Setting

!ðdÞ ¼ expð�d2=�2Þ; ð9Þ
the corresponding mean filter can be interpreted as the

convolution of the noisy image with a Gaussian. The weighting

function ! could also be chosen to be dependent on some

quality measure of the orientation measurement at position x0

or the disorientation angle between ~OOðxÞ and ~OOðx0Þ.
The basic motivation for the mean filter is the central limit

theorem. As a consequence, the mean filter behaves particu-

larly well if the orientation data are corrupted by Bingham

noise. Fig. 2 shows the application of the mean filter to our

synthetic orientation map Fig. 1(a). We observe that the data

are smoothed and the noise is reduced and that this effect

increases if the second- or third-order neighbors are used for

averaging too. On the downside, increasing the number of

neighbors also increases the blurring. The blurring effect

becomes particularly visible at the grain boundaries and

around the small oscillating feature.

While the mean filter behaves well for Gaussian-type noise,

it cannot handle impulsive noise. This is illustrated in the right

subfigure of Fig. 2. The reason is that the mean filter averages

equally over all orientations and is not able to identify outliers.

2.4. The median filter

Let us again denote by NðxÞ the set of neighboring

measurement positions to x and let �ðO; ~OOÞ denote the

disorientation angle between two orientations O and ~OO. Then,

according to Gupta & Agnew (2010), the median filter

Fmedian
~OOðxÞ on some noisy orientation map ~OOðxÞ is defined as

the orientation ~OOðx0Þ with x0 2 N ðxÞ such that it possesses the

minimum mean distance to all other orientations ~OOð�xxÞ,
�xx 2 N ðxÞ, in the neighborhood, i.e. x0 2 N ðxÞ is chosen such

that for any other choice x00 2 N ðxÞ the following inequality is

satisfied:

P
�xx2N ðxÞ

�½ ~OOðx0Þ; ~OOð�xxÞ� � P
�xx2N ðxÞ

�½ ~OOðx00Þ; ~OOð�xxÞ�: ð10Þ

Note that the median filter may be extended to be applicable

to multiple phases. In this case we set �ðO; ~OOÞ to some large

value whenever the orientations O and ~OO belong to different

phases. Furthermore, the reliability of orientation measure-

ments can be incorporated into the filter using a weight

function !ðxÞ similarly as for the mean filter. Let us assume

that 1=!ðxÞ models the reliability of the orientation

measurement ~OOðxÞ, i.e. by being the band contrast, the mean
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Figure 2
Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise (right) after denoising with the mean filter involving first-order neighbors
(left and right) and third-order neighbors (middle). The green curves show noise-free data.

Figure 3
Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise (right) after denoising with the median filter involving first-order neighbors
(left) and third-order neighbors (middle and right).
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angular deviation, a confidence index or some cross-correla-

tion score. Then, condition (10) can be generalized to

X
x2N ðxÞ

!ðxÞ�½ ~OOðx0Þ; ~OOðxÞ�
!ðx0Þ þ !ðxÞ �

X
x2N ðxÞ

!ðx00Þ�½ ~OOðx00Þ; ~OOðxÞ�
!ðx00Þ þ !ðxÞ ; ð11Þ

which favors measurements with smaller expected error over

those with higher expected error.

By construction, the median filter does not introduce new

orientations, but the orientations of the filtered map are a

subset of the noisy orientations. As a consequence, the median

filter works very well in removing outliers, e.g. for impulsive

noise (cf. Fig. 3, right), and does not blur subgrain boundaries.

On the downside, it leads to blocky images which tend to

underestimate the true local texture gradient and KAM.

These effects are illustrated by Fig. 3 (left). Another type of

median filter that works in a comparable manner was reported

by Kobler et al. (2013).

2.5. The Kuwahara filter

A second denoising method that is a built-in tool of much

EBSD-pattern-processing software is the Kuwahara filter.

Similarly to the mean and the median filters, the Kuwahara

filter is a sliding-window filter that determines the new

orientation FKuwahara
~OOðxÞ from the noisy orientations ~OOðx0Þ

within a certain neighborhood NðxÞ around the original pixel

x. The idea of the Kuwahara filter is to split this neighborhood

NðxÞ into smaller regions N iðxÞ, i ¼ 0; . . . ; 3, which are

usually taken as the four quadrants if the original region is

assumed to be centered at the origin. Next, for each subregion

N iðxÞ the mean orientation miðxÞ and the standard deviation

�iðxÞ of the disorientation angle to miðxÞ are computed. Finally,

the filtered orientation FKuwahara
~OOðxÞ is chosen to be the mean

orientation miðxÞ corresponding to the smallest standard

deviation.

Because a subregion is selected before taking the mean, the

Kuwahara filter shows good performance at grain boundaries

but tends to generate blocky structures in the presence of

Gaussian noise (cf. Fig. 4). The resulting maps show more

details than those generated by the mean and median filters

but also appear more noisy. For impulsive noise, the Kuwahara

filter behaves well if the outliers are not too dense such that

there is always a subregion without outliers. However, in order

to make the Kuwahara filter effective for Gaussian noise, the

sliding window has to be chosen to be about twice as large as

for the mean filter, which makes it likely to have at least one

outlier in each subregion. As soon as this happens, the outliers

generate blocky artifacts in the filtered image (cf. Fig. 4, right).

2.6. Variational filters

The variational approach to image denoising consists of

approximating noisy data ~OOðxÞ by orientations ÔO ¼ F var
~OOðxÞ

that minimize a certain ‘energy’ functional

JðÔOÞ ¼ P
x

�½ ~OOðxÞ; ÔOðxÞ�2 þ �’ðÔOÞ: ð12Þ

The first summand is the data fidelity term, which ensures that

the approximating values ÔOðxÞ are not too far from the

measured values OðxÞ, and the second summand ’ðÔOÞ, called

the penalty term, ensures that the approximating image ÔO is

more smooth than ~OO. The regularization parameter � allows

one to adjust the solution between being very close to the

original data and being very smooth.

2.6.1. Smoothing splines. The simplest form of a variational

filter uses the square Euclidean norm of the Laplacian as the

penalty term, i.e.

JðÔOÞ ¼ P
x

�½ ~OOðxÞ; ÔOðxÞ�2 þ �k4ÔOðxÞk2: ð13Þ

Solutions of the corresponding minimization problem are

known as smoothing splines. However, the generalization of

the Laplacian 4OðxÞ to orientation-valued functions OðxÞ is

not straightforward. Possible definitions have been discussed

by Bergmann et al. (2014). In this work we first approximate

the orientation map ~OO locally by a disorientation vector map
~hhðxÞ [cf. equation (1)] with respect to some reference orien-

tation. Since, the disorientation vector map ~hhðxÞ takes values

in R
3 we can then use the Euclidean Laplacian and apply

standard algorithms (e.g. Garcia, 2010) to compute the mini-

mizer ĥh of the translated problem:

JðĥhÞ ¼ P
x

�½ ~hhðxÞ; ĥhðxÞ�2 þ �k4ĥhðxÞk2 ! min : ð14Þ

Finally, we translate the disorientation vector map ĥhðxÞ back

into an orientation map ÔOðxÞ. The approximation of orienta-

tions by disorientation vectors with respect some reference

orientation is fairly good as long as the orientations are close

to the reference orientation. Hence, it is appropriate to apply

the approximation for each grain separately and choose as the

reference orientation the mean orientation of the grain.
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Figure 4
Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise (right) after denoising with the Kuwahara filter involving first neighbors
(left) and third neighbors (middle and right).
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In their standard form, smoothing splines behave poorly

with respect to impulsive noise. To overcome this restriction,

the algorithm described by Garcia (2010) includes an adaptive

reweighting scheme that assigns a lower weight to function

values identified as outliers. Fig. 1(c) shows that the adaption

to orientation data behaves well with respect to impulsive

noise. The smoothing spline algorithm described by Garcia

(2010) also possesses two more features interesting for

denoising EBSD data. Firstly, it implements a cross-correla-

tion-based approach to automatically detect the regularization

parameter �. As the automatic detection of this parameter

requires several runs of the minimization problem, it is

recommended to detect the optimal regularization parameter

for the largest grain only and use this value for all other grains.

Secondly, it allows for weights !ðxÞ that can be used to

describe the reliability of orientation data at position x (cf.

Section 2.4). Fitting to orientations with low weight is then

considered less important in the approximation process than

fitting orientations with a high weight.

The results for our synthetic example are shown in Fig. 5.

We observe that the smoothing splines filter behaves similarly

to the mean filter, i.e. it is very good at recovering the orien-

tation gradient and the oscillating feature but significantly

blurs the grain boundary. The overall performance appears to

be better than that of the mean filter.

2.6.2. Total variation. The blurring effect of the smoothing

splines is mostly due to the use of the square in the penalty

term in (13). If we replace the Laplacian with the norm of the

gradient and remove the square we obtain the well known

isotropic total variation (TV) functional

JðÔOÞ ¼ P
x

�½ÔOðxÞ; ~OOðxÞ�2 þ �krÔOðxÞk2: ð15Þ

The mathematical challenge in solving the corresponding

minimization problem is related to the fact that the penalty

term is not differentiable. There is a huge amount of literature

describing algorithms that approximately solve (15) in the

Euclidean setting. Among others, the following algorithms

have been generalized to orientation values: an algorithm

based on half-quadratic minimization (Bergmann et al., 2016)

and an algorithm based on proximal mappings (Weinmann et

al., 2014).

The idea of half-quadratic minimization is to approximate

the square root of squares in the TV term by a differentiable

functional. Furthermore, we may include a cut-off at a certain

threshold angle d such that disorientations larger than the

threshold, e.g. at (sub) grain boundaries, are not penalized. An

example of such a function is

’ð�Þ ¼ ð�2 þ �Þ1=2 �< d;
0 � � d;

�
ð16Þ

which for � ! 0 converges to the TV penalty term.

Applying the total variation filter to our synthetic EBSD

map we observe in Fig. 6 that it can be seen as an improved

version of the median filter. Similarly to the median filter it

reproduces sharp grain boundaries but tends to blocky images.

Both low- and high-angle grain boundaries are recovered very

well. On the downside, one can see some staircasing in the

linear gradient part. Also, with increasing regularization

parameter the oscillating feature is replaced by a flat feature.

We may conclude that the total variation filter does a very

good job for orientation maps with sharp grain and subgrain

boundaries but has problems recovering small oscillating

features. In its current implementation the total variation filter

is also not able to distinguish between grain boundaries that
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Figure 5
Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise (right) after denoising with smoothing splines with � = 0.2 (left) and � = 5
(middle and right).

Figure 6
Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise (right) after denoising by total variation with � = 0.025 (left) and � = 0.5
(middle and right).
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exceed the threshold � and impulsive noise, as illustrated in

Fig. 6 (right).

2.6.3. Infimal convolution. The drawback of TV regular-

ization is that it prioritizes piecewise constant functions, i.e.

the results are prone to staircasing. An idea to overcome this

issue is to decompose the image OðxÞ ¼ UðxÞVðxÞ into the

product of a piecewise constant part UðxÞ which is penalized

with the TV term and a smooth part VðxÞ that is penalized by a

higher-order differential operator, i.e. the Laplacian, as

suggested by Bergmann et al. (2018). In this setting the func-

tional

JðÛU; V̂VÞ ¼ P
x

�½ ~OOðxÞ; ÛUðxÞV̂VðxÞ�2 þ �krÛUðxÞk2 þ �k4V̂VðxÞk:
ð17Þ

to minimize has two arguments ÛU, V̂V, which are penalized

separately but generate the final orientation map via ÔO ¼ ÛUV̂V.

Again, half-quadratic minimization and proximal mappings

are two suitable methods to find the minimizer of (17). The

most challenging part in applying infimal convolution is the

choice of the two regularization parameters � and �. It is

recommended to start with a very high value for � and to

choose the parameter � such that the noise is sufficiently

reduced. For large � the solution of the infimal convolution

functional is almost the same as for the total variation func-

tional and hence we should expect some staircasing. Then, we

can reduce the parameter � until the staircasing effect is

reduced.

Comparing the infimal convolution filter in Fig. 7 with the

total variation filter in Fig. 6, we observe that the high-angle

grain boundary is preserved with similar sharpness, while the

small oscillating feature appears less blocky, but the low-angle

grain boundary is severely smoothed.

2.7. Morphological filters and inpainting

As we have seen in the previous sections, most of the

denoising methods do not work well with impulsive noise. A

possible workaround for this problem is to perform grain

reconstruction on the noisy EBSD map and consider all one-

pixel grains as impulsive noise. Those pixel values are first

removed and subsequently filled by the respective denoising

method. This method is illustrated in Fig. 8 for the synthetic

orientation data given in Fig. 1(c).

Infimal convolution is not included in this list as we have not

yet implemented inpainting with this method. We observe that
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Figure 8
Simulated data corrupted by 2� DlVP noise and 5% impulsive noise, where the impulsive noise is removed as one-pixel grains and the holes are filled by
the inpainting method. (a) Noisy data with one-pixel grains removed, (b) mean filter, third-order neighbors, (c) median filter, third-order neighbors, (d)
Kuwahara filter, third-order neighbors, (e) smoothing splines, � = 5 and ( f ) total variation, � = 0.5.

Figure 7
Artificial orientation maps corrupted by DlVP noise (all) and impulsive noise (right) after denoising by infimal convolution with � = 0.025 (left) and � =
0.5 (middle and right).

electronic reprint



all remaining denoising methods show good performance for

filling one-pixel holes. In particular, the mean filter, the

Kuwahara filter and the total variation method show much

better results in comparison to the case when the outliers have

not been removed [cf. Figs. 2 (right), 4 (right) and 6 (right)].

This approach can be generalized by removing all grains

with a specific shape, e.g. all grains that are only one pixel thick

but arbitrarily long. While for the sliding-window filters the

size of the window limits the capability to fill arbitrarily large

holes, such a restriction does not apply for variational

denoising techniques. This fact makes them extremely

powerful for denoising purely indexed EBSD maps, e.g. from

highly deformed materials.

To this point, only artificial, synthetic orientation data have

been considered. As a particularly challenging example of

experimental data, we consider now an EBSD map of a real

geological forsterite sample which is publicly available as a

standard data set in MTEX (Hielscher, Bachmann, Mainprice

& Kilian, 2018). As visible in Fig. 9(a), we find a lot of non-

indexed pixels in the map. Nonetheless, the grain structure is

still observable. However, owing to the large number of non-

indexed pixels, the traditional grain boundary (GB) recon-

struction method completely fails to recover the original grain

structure [cf. Fig. 9(a)]. In such settings it turns out to be

extremely useful to reconstruct the grain structure using the

Voronoi decomposition algorithm as described by Bachmann

et al. (2011). This algorithm places the grain boundaries

accurately through the non-indexed regions and gives a GB

reconstruction which is much closer to our expectation [cf.

Fig. 9(c)].

In order to make orientation gradients within the grains

visible, we colorize the orientations in Fig. 10 according to

their disorientation angle and axis with respect to the grain

mean orientation (cf. Thomsen et al., 2017). We observe some

sharp subgrain boundaries in the upper-left grain and some

horizontal and vertical artifacts in the lower-left grains, which

probably originate from the measurement process.

Subsequently, we applied the denoising methods discussed

in this paper to this example data set. Since grain boundaries

reconstructed by the Voronoi-decomposition-based algorithm

may pass through pixels which then cannot be assigned to a

certain grain anymore, we decided to leave all those pixels

crossed by a grain boundary unfilled. For the mean, median

and Kuwahara filters we have chosen the size of the sliding

window to be sufficiently large that most of the non-indexed

pixels get filled. The resulting denoised maps nicely display the
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Figure 9
Grain boundaries reconstructed from poorly indexed geological forsterite data: (a) raw geological data, (b) traditional GB reconstruction and (c)
advanced GB reconstruction. The standard IPF color map from MTEX is used (Hielscher, Bachmann, Mainprice & Kilian, 2018).

Figure 10
Raw and denoised EBSD data of a geological forsterite sample colored according to disorientation angle and axis with respect to the grain mean
orientation (Thomsen et al., 2017): (a) raw data, (b) mean filter, (c) median filter, (d) Kuwahara filter, (e) smoothing splines and ( f ) total variation.
The more the colors are saturated, the higher the deviation from the mean orientation. Fully saturated colors correspond to a disorientation angle of at
least 2.5�.
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main characteristics of the different denoising methods. The

mean filter and the smoothing splines clearly ‘smooth away’

subgrain boundaries, while the median and Kuwahra filters

create blocky artifacts and ignore small features such as the

small yellow region in the upper-left grain. The total variation

reconstruction performs a very convincing job. Subgrain

boundaries remain sharp and regions with many inpainted

pixels become very smooth, i.e. the algorithm does not

generate an artificial structure. Moreover, the aforementioned

inherent artifacts (horizontal and vertical lines) remain clearly

visible as such and even become visible in formerly poorly

indexed regions, e.g. in the middle grain at the upper

boundary.

3. Applications

In this section we discuss the application of different denoising

methods to specific use cases.

3.1. Kernel average misorientation estimation

The KAM is an isotropic measure for the local texture

gradient and is commonly applied to evaluate the local strain

or stored energy. Given an orientation map OðxÞ, we denote

by N "
r ðxÞ the set of rth-order neighboring measurements x0 to

x that have a disorientation angle �½OðxÞ;Oðx0Þ� less than a

certain threshold ". Now, the kernel average misorientation is

defined as

KAMðxÞ ¼ 1

#N "
r ðxÞ

X
x02N "

r ðxÞ
�½OðxÞ;Oðx0Þ�: ð18Þ

Taking noisy data ~OOðxÞ ¼ EEEðxÞOðxÞ into account, the KAM

can be split into a portion KAMtrue that originates from the

true data and a portion KAMnoise that originates from the

noise:

#N "
r ðxÞKAMðxÞ ¼ P

x02N "
r ðxÞ

�½EEEðxÞOðxÞ; EEEðx0ÞOðx0Þ�

� P
x02N "

r ðxÞ
�½EEEðxÞOðxÞ; EEEðxÞOðx0Þ�

þ �½EEEðxÞOðx0Þ; EEEðx0ÞOðx0Þ�
¼ P

x02N r
"ðxÞ

�½OðxÞ;Oðx0Þ� þ �½EEEðxÞ; EEEðx0Þ�

¼ KAMtrueðxÞ þ KAMnoiseðxÞ: ð19Þ
This means that the kernel average misorientation of some

noisy EBSD map is approximately the kernel average misor-

ientation of the noise-free map plus the mean angular devia-

tion of the noise. Note that in the presence of an orientation

gradient the kernel average misorientation increases if the

order r of neighbors is increased while the noise component

remains constant. This explains why higher-order KAM is less

sensitive to noise than first-order KAM.

Let us demonstrate these effects with the help of our

synthetic example from Section 2. In the noise-free case the

KAM is 0� in the regions of constant orientation, 0.5� in the

right-hand region with linear orientation gradient and rises up

to 1� at the small oscillating feature [cf. Fig. 11(a)]. Next, we

applied De la Vallée Poussin-distributed noise with half-width

� ¼ 1� and computed the KAM from the noisy data [cf.

Fig. 11(b)]. The KAM of the noisy data is about 2� every-

where. In particular, no features of the ‘true’ KAM map are

observable anymore.

In Fig. 12(a) we have plotted horizontal profiles of the

KAM of our synthetic data corrupted by DlVP noise with the

half-width varying from � ¼ 0:1� to � ¼ 1�. We observe that,

in the presence of noise, orientation gradients are only

observable if they are about four times as large as the half-

width of the noise distribution.

Next, we applied the infimal convolution variation filter to

the synthetic data corrupted by DlVP noise with half-width
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Figure 11
The kernel average misorientation (from third-order neighbors) in degrees (a) for the exact synthetic data as defined in Section 2 (no noise), (b) for the
same data corrupted by DlVP noise with half-width � ¼ 1�, and (c)–( f ) after denoising with the infimal convolution filter with different regularization
parameters �, � [(c) � = � = 0.0075, (d) � = � = 0.01, (e) � = � = 0.2 and ( f ) � = � = 0.4].
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� ¼ 1�. Figs. 11(c)–11( f) and 12(b) illustrate the dependency

of the KAM computed from the denoised orientation data

with respect to different regularization parameters �, �. For

� ¼ 0:0075 and � ¼ 0:01 the KAM remains noisy but makes

the features of the ‘true’ KAM map visible. For � ¼ 0:02 and

� ¼ 0:04 the KAM becomes more and more smooth. While in

the large region with linear texture gradient the ‘true’ KAM is

approximated better and better, we observe underestimation

of the KAM in the small oscillating region. However, for all

the choices of the regularization parameter the resulting KAM

maps are more accurate than the KAM map computed from

the noisy data directly.

3.2. Gradient and curvature tensor estimation

The orientation gradient or curvature tensor describes the

local change of orientation within a specimen. Let us consider

the local orientation OðxÞ as a smooth function of the spatial

variable x ¼ ðx1; x2; x3Þ. Then, the partial derivative with

respect to the ath coordinate ea is defined as

@

@xa
OðxÞ ¼ lim

h!0

Oðxþ heaÞ �OðxÞ
h

: ð20Þ

It is important to understand that the matrix @
@xa

OðxÞ – just like

the orientation OðxÞ – mixes crystal and specimen frames.

Representing @
@xa

OðxÞ entirely with respect to the specimen

reference frame leads to the skew-symmetric matrix

WaðxÞ ¼ @

@xa
OðxÞ

� �
OðxÞT: ð21Þ

This is related to the lattice disorientation vector haðxÞ per unit

distance by the equation

�ai ðxÞ ¼ 1
2 �ijkW

a
jkðxÞ; ð22Þ

where �ijk is Levi-Civita’s permutation symbol and we have

assumed summation over all indices appearing twice. The

vector haðxÞ can be interpreted as the disorientation axis

between the orientations Oðxþ heaÞ and OðxÞ in specimen

coordinates scaled by the disorientation angle per distance h

for the limiting process h ! 0 (cf. Morawiec, 2004).

Following the latter characterization, the vectors hx1 ðxm;nÞ
and hx2ðxm;nÞ can be determined approximately from discrete

orientation data Oðxm;nÞ on some two-dimensional regular

grid xm;n (m ¼ 1; 2; . . .; n ¼ 1; 2; . . .) by the products

hx1 ðxm;nÞ ’ �½Oðxm;nÞ;Oðxmþ1;nÞ�
4x1

g Oðxm;nÞ;Oðxmþ1;nÞ� �
;

hx2 ðxm;nÞ ’ � Oðxm;nÞ;Oðxm;nþ1Þ� �
4x2

g Oðxm;nÞ;Oðxm;nþ1Þ� �
;

ð23Þ
where 4x1, 4x2 are the step sizes of the measurement grid,

�ðO1;O2Þ is the disorientation angle and gðO1;O2Þ is the

disorientation axis between two orientations in specimen

coordinates (cf. Section 1.1).1 Note that other approximations

of hx1 ðxm;nÞ are possible, e.g. symmetric disorientations

between Oðxmþ1;nÞ and Oðxm�1;nÞ.
The lattice disorientation vectors per unit distance given by

hx1 , hx2 and hx3 with respect to the specimen directions x1, x2

and x3 define the lattice curvature

jðxÞ ¼
�x1

1 ðxÞ �x2
1 ðxÞ �x3

1 ðxÞ
�x1

2 ðxÞ �x2
2 ðxÞ �x3

2 ðxÞ
�x1

3 ðxÞ �x2
3 ðxÞ �x3

3 ðxÞ

2
4

3
5: ð24Þ

In the case of orientation data measured on a two-dimensional

grid, hx3 remains unknown.

As an example we consider an EBSD data set of interstitial-

free steel as presented by Hickey et al. (2018). The orienta-

tions colorized by an inverse pole figure (IPF) map are

displayed in Fig. 13(a). The white pixels correspond to non-

indexed orientations. Fig. 13(b) displays the same data but

colorized according to the disorientation axis and the disor-

ientation angle with respect to the grain mean orientation as

explained by Thomsen et al. (2017). Fig. 13(b) clearly shows

that the orientation measurements are affected by some noise.

Applying a total-variation-based filter for noise removal, we

obtain the orientation maps depicted in Figs. 13(c) and 13(d).
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Figure 12
Horizontal KAM profiles of the synthetic data corrupted by DlVP noise. In (a) the noise level � varies and no denoising is applied. In (b) the noise level
is � ¼ 1� and the KAM is computed from data denoised by total variation using different regularization parameters �.

1 We prefer this definition of a discrete gradient as equation (21) together with
a finite difference approximation of equation (20) does not lead to a skew-
symmetric matrix.
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Although the raw data appear to be acceptable [cf. Fig. 13(a)],

they are still too noisy to compute meaningful values for the

curvature, as shown in Fig. 14(a). The reason is that computing

the orientation gradient significantly amplifies the noise in the

data. Applying a denoising filter before computing the

curvature improves the accuracy considerably [cf. Fig. 14(b)].

3.3. Dislocation density estimation

The dislocation density tensor characterizes the dislocation

state of the crystal lattice. To be precise, a quantifies the local

closure failure of the crystal and describes to what extent

dislocations are geometrically necessary in order to preserve

the compatibility. Under the assumptions of small lattice

rotations (i.e. the rotation gradients are additive) and negli-

gible elastic lattice strain gradients, the lattice curvature tensor

jðxÞ at a position x can be related to the dislocation density

tensor aðxÞ by

a ¼ jT � trðjÞI , j ¼ aT � 1
2 trðaÞI ð25Þ

(cf. Pantleon, 2008). Given that only the first two columns of

the lattice curvature tensor j are known, the following coef-

ficients of the dislocation density tensor can be computed: �12,

�13, �21, �23, �33, as well as the difference �11 � �22.

One approach to determine the missing coefficients in the

lattice curvature tensor is to represent the dislocation density

tensor as the weighted sum

aðxÞ ¼ PK
k¼1

	kðxÞbk 	 lk ð26Þ

of screw and edge dislocations at preferred slip systems

described by its Burgers vectors bk and line tangent vectors lk,

where the corresponding dislocation densities 	k are strictly

positive.2 Using the relationship (25) we obtain for the lattice

curvature tensor the representation

jðxÞ ¼ PK
k¼1

	kðxÞ lk 	 bk � 1
2 trðbk 	 lkÞI

� �
: ð27Þ

However, even in the case of complete knowledge of the

lattice curvature tensor j, the decomposition (27) cannot be

uniquely recovered, provided that sufficiently many slip

systems are considered. For this reason one imposes as an

additional condition that some measure of the total energy of

dislocations, e.g.

UðxÞ ¼ PK
k¼1

	kðxÞuk with 	kðxÞ � 0; ð28Þ

should be minimized at each position x (cf. Pantleon, 2008;

Wilkinson & Randman, 2010), where uk denotes the energy of

the kth dislocation type (measured per unit dislocation density

and per unit volume).
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Figure 13
Orientation maps of interstitial-free steel (Hickey et al., 2018) before and after denoising by the total variation method. (a) IPF-colored raw data, (b)
axis–angle-colored raw data, (c) IPF-colored denoised data and (d) axis–angle-colored denoised data.

2 From the physical point of view, we seek an equivalent composition of
elementary dislocation segments such that the same dislocation state is
obtained.
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Applying this approach to the curvatures computed in the

previous section we obtain the total GND density as depicted

in Fig. 15. The GND densities computed before denoising are

completely corrupted, while the GND densities (and thus the

total density/energy) computed after denoising seem physi-

cally reasonable and, in the first place, interpretable.

Hickey et al. (2018) also analyzed the Kikuchi pattern of the

sample discussed above by a cross-correlation method. The

resulting high-angular-resolution EBSD data were used to

compute the total GND density depicted in Fig. 15(c).

Although Fig. 15(c) offers much more detail, these GND

densities still compare well with the total GND density

computed from the Hough-transform-based EBSD data after

denoising. We also observe that blank regions in Fig. 15(c),

due to non-indexed orientations, correspond to regions of high

GND density in Fig. 15(b). This is reasonable as those regions

are hard to index.

In future research, the presented application to the esti-

mation of the dislocation density (tensor) should be extended

to the geometrically nonlinear case when lattice rotations may

become large and relation (25) no longer holds.

3.4. Denoising high-resolution EBSD data

High-angular-resolution EBSD data originate from

improved methods for interpreting Kikuchi patterns and, most

commonly, from correlation or dictionary-based methods. In

those methods the orientation OðxÞ of a Kikuchi pattern PðxÞ

at position x is determined as the solution of the maximization

problem

CfPðxÞ;M½OðxÞ�g ! max; ð29Þ
where M½OðxÞ� denotes a simulated master pattern rotated in

orientation OðxÞ and CðP;MÞ denotes the cross-correlation

between a measured pattern P and a master pattern M. Such

methods have proven to be much more accurate than tradi-

tional Hough-transform-based indexing methods and, hence,

denoising methods have not been considered yet. However, it

happens often that the maximization problem leads to

multiple peaks and the indexing algorithm has to choose one

particular maximum. In those cases a combination with the

denoising methods presented in this paper could serve as an

additional criterion for choosing the right orientation and

increase the accuracy of the methods. More precisely, we

suggest to combine the cross-correlation term with a regular-

ization term in the following form:P
x

�CfPðxÞ;M½OðxÞ�g þ 
krOðxÞk2 ! min; ð30Þ

which is essentially the minimization problem (15) but with

the correlation term replacing the disorientation to an orien-

tation determined by another indexing method. According to

this approach, orientations are chosen such that the simulated

pattern has a high correlation with the measured pattern and,

simultaneously, minimizes the total variation functional, i.e.

varies smoothly in the spatial domain.
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Figure 14
The coefficient �11 (unit mm�1) of the lattice curvature tensor of the EBSD data depicted in Fig. 13(a) (before denoising) (a) and in Fig. 13(b) (after
denoising) (b).

Figure 15
Total GND density

P
	k (unit 1=m2) computed (a) from the raw (Hough-based) EBSD map, (b) after denoising and (c) using high-angular-resolution

EBSD data (Hickey et al., 2018).
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The disadvantage of this approach is that it is computa-

tionally very expensive. It will be the subject of future research

to find algorithms that manage to solve this optimization

problem in reasonable time.

4. Conclusions and discussion

In the present paper we have shown that denoising filters

provide a very powerful tool to increase the accuracy of noisy

orientation maps. This is particularly true if the orientation

data are used for subsequent calculations of kernel averaged

misorientations, misorientation axes, orientation curvature

tensors or geometrically necessary dislocation densities.

The main risk associated with denoising filters is to ‘over-

smooth’ the data. In order to avoid this, the denoising method

and the regularization parameters have to be selected care-

fully.

In future research, even more advanced techniques from

mathematical image analysis, like wavelet decomposition,

could be adapted to the setting of orientation maps to improve

the distinction between small microstructural features and real

noise.
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